
Enhanced Dynamic Web Page Allocation using Fuzzy Neural Network

Y. K. LIU, L.M. CHENG, L.L.CHENG
Department of Electronic Engineering

City University of Hong Kong
Tat Chee Avenue, Kowloon, Hong Kong SAR

HONG KONG

Abstract: Due to the limited cache size in each server, the traditional neural network techniques applied to
improve the cache hit rate of scheduling algorithm in load-balancing web server cannot provide a good
performance real web site because it cannot balance the server workload properly. Here, we propose a fuzzy
neural network technique by feeding back the real-time system usage with an updating mapping rules based
on different requested objects categorized into different servers groups with different cache size and
according to their input frequency to enhance the cache hitting rate of scheduling, simulation result shows
that the proposed technique keeps 92% to 99% cache hit rate and in parallel finely balances backend server
resource usage.

Key-Words: Neural Network, Load-Balancing, Fuzzy, Competitive Learning, Caching, Clustering
Techniques, Online Learning

1 Introduction
As web sites gain popularity and its traffic
increases, single web server will no longer be able
to handle the increased requests. Multiple servers
must be used in web sites with heavy traffic load.
This topology facilitates the sharing of information
among servers with network storage such as
distributed file system (DFS).
The deployment of cluster web server is quite
complex as all the servers serve the requests of the
same web site. The requests have to be distributed
to each server depending on its current status.
Recently, the computational approach to artificial
intelligence has undergone a significant evolution.
Neural network is involved in the solutions of
different practical problems such as face

recognition [1] and control system [2]
The main objective of this paper is to study the
server cache hit rate and distributing the incoming
object requests according to the real-time servers’
information using a fuzzy-neural network. The
simulation results indicate that the server cache hit
rate has significantly been improved and the
backend server resource usage has been optimized.

2 Load-Balancing Algorithms in Web
Service Provider
The common architecture used in a multiple server
web site is shown in Fig.1. The requests from client
are received by a load-balancer and redistributed to
different servers [3].

Proceedings of the 5th WSEAS Int. Conf. on Artificial Intelligence, Knowledge Engineering and Data Bases, Madrid, Spain, February 15-17, 2006 (pp183-188)

There are four different approaches to distribute the
client requests to the servers – client-based,
DNS-based, dispatcher-based and server-based.
Dispatcher-based approaches can achieve
fine-grained load-balancing to maximize the
performance of systems [3]. The key of high
performance in dispatcher-based approach is the
distributing algorithm of the load-balancer. It
centralizes the servers’ information and gives the
best solution for the incoming requests.

2.1 Neural Networks for Load-Balancing System
Neural Network (NN), which provides organizing,
correlating and self-learning properties, is fulfilling
the requirements of distributing algorithm in
load-balancing system. NN can analyze the current
system environment and give a suitable decision to
the incoming requests.
The Secure Socket Layer (SSL) is a technology that
creates a private data pipe in network with a secret
session key. It is commonly used in the Internet
application such as online bank transaction.
However, session keys are expensive to be
generated, so their lifetime is as long as about 100

seconds [4]. Thus, it is simple for a system to route
the same client connection to a single load balancer
server. The competitive learning method of a neural
network is naturally for assigning a new input
request to a server, and the learning rule strengthens
the connection between the input and the server.

3 Conceptual Framework
The conceptual framework model balances the
workload among servers and ensures high cache
high rate at the same time. Although caching data at
client side can improve the web site performance
by reducing the servers’ loading [5], in the real
situation, there are many limitations such as
capacity limit of the cache at clients and the reload
problem in the web pages with dynamic content. To
enhance the performance of the system, we focus
on the caching data process at the server side and it
is used to test the improvement of performance in
web systems [4]. In a load-balancing system, client
requests are distributed to a group of computers. To
optimize the cache hit-rate in the servers, a
Fuzzy-Neural Network technique is used.
The modified conceptual model is shown at Fig.2.
The load-balancer consists two parts— Neural
Network and Fuzzy Logic Controller. The Neural
Network chooses the most suitable server to serve
the incoming client request, so that the hit-rate and
the system resources can be efficiently used. The
resources usage in each server will be send to the
load-balancer periodically, however, the
measurement of usage level cannot be accepted
directly by the Neural Network to modify its weight
in order to enhance its performance. A Fuzzy Logic
Controller is used to standardize the server
resources usage and send the new weights to
improve the Neural Network.

Fig.1: A common topology of web site with multiple

servers. All the client requests will be collected and

forwarded to the selected backend servers. And the server

responses to the incoming request with the data stored in

the network storage.

Proceedings of the 5th WSEAS Int. Conf. on Artificial Intelligence, Knowledge Engineering and Data Bases, Madrid, Spain, February 15-17, 2006 (pp183-188)

3.1 Structure of Framework
In the proposed framework, a one-layer neural
network is used. There are P nodes in this layer,
where each server S is assigned a neuron N. Q
selected inputs in the input set of K size are fully
meshed with each neuron. The weight wij connects
input i and neuron j and represents the strength of
relationship between them. Fig.3 illustrates this
architecture.

3.2 Balance between Cache Hitting Rate and
System Usage
In the learning rule, we add a load-balancing factor,
which collects the knowledge from the system
environment. By the “rich-get-richer” property in
the competitive learning, the network will tend to
forward the objects request to the server the same
as last time. Therefore, a load-balancing factor has

to be included in the neural network to balance the
workload in the system.
In the V. V. Phoha algorithm [4], a weight
averaging factor is added in the learning rule. The
values in the weight vector of neurons are moving
towards the average of it when the NN is training.
However, it cannot balance the workload
effectively because it only averages the probability
of each server to receive requests, but does not put
focus on unbalancing workload in a real site.
In our proposed algorithm, we add a load-balancing
item which is related to the usage of the backend
servers in the learning rule. Therefore, the NN can
distribute the system workload appropriately by
learning the information of servers’ resources usage.
To get the resource information of each backend
server in the system, a Fuzzy Logic Controller is
included in the load-balancer. It is used to sum up
the usage of different resources such as processor,
network and memory usage. Finally, the resulting
value will be defuzzyified and send to NN. Fig.4
shows the structure of the Fuzzy Logic Controller.

4 Learning Rule of the NN
Under the new learning rule, NN groups the
backend servers to handle different input requests
and modifies the size of them according to the input
frequency of each object type. At the same time, it
collects the usage information from each server and

Fig. 3: The architecture of the Neural Network.

Fig.2: A conceptual model of the framework. 1: A client

sends an object request to the Load-Balancer. 2: The request

is passed to the Neural Network. 3: The Neural Network

decides which server response to the request. 4: Forward the

request. 5: The server responses to the client. 6. Each server

sends their resources usage to the load-balancer periodically.

7: The received information is passed to the fuzzy logic

controller. 8: The NN learns the distribution of system usage

from the result of the fuzzy logic controller.

Proceedings of the 5th WSEAS Int. Conf. on Artificial Intelligence, Knowledge Engineering and Data Bases, Madrid, Spain, February 15-17, 2006 (pp183-188)

rearranges the members of each group. We have
three objectives:

 Maximize the cache hit rate of the backend

 ystem.
the

 request of object

servers. This can enhance the performance of
the whole system by reducing the IO
operations of the backend servers.
Balance the resources usage in the s

 Accommodate the sudden change in
network traffic pattern in the running time.

A r from client is received by

 is represented by:

≠ riifi 0

the load-balancer and it selects backend server N to
follow this request.
The input of the NN

⎩
⎨
⎧ =

=
riif

R
1

 where Ki∈ (1)

The neuron with the highest output value will be

⎣ ⎠⎝

chosen to handle the client request. So that:

⎥
⎤

⎢
⎡

⎟
⎞

⎜
⎛

⎦
Ω

⎠⎝
=⎟

⎞
⎜
⎛

Ω ij
K

iiN
K

i
(2)

where and

∑∑ wRwR max

[]Pj ,1∈

 () ve
v ρ−+
=Ω

1
1 (3)

is the output function

 each learning step, the weight of each neuron

 (4)
here

In
will be updated with w∆ :
 [] [] wnwnw ∆+−= 1
w

 () ()()
()()⎩

⎨
⎧

<+Ψ+
>=+−Ψ+

=∆
0

09.0

jijjj

jijjj
j bifawba

bifawba
w (5)

where],1[Pj ∈ , Ki ∈
and

 () dv

dv

e
ev −

−

+
−

=Ψ (6)
1
1

Variable is a competitive learning factor which

reinforces the request forwarding memory. On the

other hand, is the load-balancing factor which

provides the knowledge on the usage of the

backend servers.

ja

jb

Equation of a:

()

⎩
⎨
⎧

≠
=−⋅

=
riif

riifwRH
a iji

j 0
η

 (7)

where

 2

2

2γ
ε

−

= eH

and

 =γ βλ +− rtfe

and

 ε is the ranking of the neuron output values,

 is the ratio of the request frequency of object r to

all objects
rf

.Equation of b:

 [] () []1−⋅+−= nbKUUnb javgj α (8)

where

 is the resources usage of server j, jU

 is the average resources usage of all servers in

the system

avgU

The parametersη ,γ , K and α determine the rate
of learning and the weight of the load-balancing
factor.

Fig. 4: The structure of the Fuzzy Logic Controller

Proceedings of the 5th WSEAS Int. Conf. on Artificial Intelligence, Knowledge Engineering and Data Bases, Madrid, Spain, February 15-17, 2006 (pp183-188)

 Load-Balancer
Computer

Server
Computer
Group 1

Server
Computer
Group 2

No. of
Computers 1 12 4

Processor Pentium 4 2.8C
(2.8GHz)

Pentium 4
2.8C

(2.8GHz)

Pentium 3
800E

(800MHz)
Memory 512MB 512MB 256MB

NIC 100Mbps 100Mbps 100Mbps

Table 1: The equipments of the computers in the experiment.

Total Number

of Servers
Number of Group 1

Computers
Number of Group 2

Computers
4 2 2

8 4 4

16 12 4

Table 2: The combination of server computers in the

experiment.

5 Features of the algorithm
In the learning rule, we add a history term in the
load-balancing part. It minimizes the memory
clearance effect of the load-balancing factor and
boosts the number of incoming requests to the
backend servers, which have lower resources usage
than the average of the servers in the system. Thus,
the server performance can be enhanced.
One-time training mode is one of the limitations of
traditional neural network. In this algorithm, online
learning mode is used instead of one-time training.
Online neural network can study the inputs and
modify the weight at the running time. The NN can
response to the change of resources usage and the
request traffic pattern to modify the weight of the
network [7]. Thus, the NN can provide the best
solution to the system at anytime.

6 Experimental Results
To incorporate the characteristics of Web traffic

s [] γ−> xxXP ~ a ∞→x for 20 << γ . Pareto
distribution is used in our simulation:

 (9) 1)(−−= γγγ xkxp
 where = 9.0γ and 1.0=k
The simulation environment consists of 17PCs
2.8GHz P4 at Digital System Laboratory in City
University of Hong Kong. Details are listed in
Table 1 and Table 2. Load-balancer and client
program are written in C#.net. The client request
generator and the neural network are built on the

Fig.7: The performance of load-balancing is inversely

proportional to the standard deviation of the resources

usage. The proposed algorithm (Fuzzy-Neural) keeps the

value of standard deviation at a low level.

Fig.6: Server cache hit rate of various scheduling

algorithms are shown. The proposed algorithm

(Fuzzy-Neural) gives the highest cache hit rate which is

between 92% and 99%. And the next highest is V.V.

Phoha’s Algorithm (VVPA) which is about 90%.

Proceedings of the 5th WSEAS Int. Conf. on Artificial Intelligence, Knowledge Engineering and Data Bases, Madrid, Spain, February 15-17, 2006 (pp183-188)

load-balancer program.
In the simulation, the performance of round-robin
(RR) and V. V. Phoha’s Algorithm (VVPA) [4] are
compared.
The charts in Fig.6 and Fig.7 show the comparison
of the cache hit rate and the standard deviation of
the servers’ usage in the system. The standard
deviation of usage is inversely proportional to the
performance of the load-balancing function in each
scheme.
Fig. 6 shows that both the Fuzzy-Neural and VVPA
give high cache hit rates in the experiment. And,
the cache hit rate in Fuzzy-Neural ranges between
92% and 99%. On the other hand, the hit rate of the
RR is less than 44% and decreases with the number
of web objects due to limitation of the server cache
size.
In the Fig. 7, the standard deviation of servers’
usage is shown and represents the performance of
load-balancing. In the chart, the value of standard
deviation of VVPA and RR ranges between 18 and
20, whereas the Fuzzy-Neural algorithm gives the
value around 7. It means Fuzzy-Neural algorithm
can effectively balance the incoming client requests
according to the resources in each backend server.
In the experiment, the proposed algorithm can
provide a high cache hit rate and finely adjusted
load in each server according to their capability.

7 Conclusion
A load-balancing scheduling algorithm with
fuzzy-neural network is proposed. Fuzzy–neural
network using Kohonen’s algorithm can provide a
high sever cache hit rate. We also propose a new
learning rule which study the distribution of
servers’ resources usage. A Fuzzy Controller
analyzes the servers’ resources usage and the NN

learns the usage level of each backend server to
balance the system’s loading. Online learning is
used in the NN to modify the forwarding pattern
according to the real-time system’s usage
information. A promising result is produced in the
simulation experiment under the environment
containing two groups of servers with different
processing power.

References:
[1] H. A. Rowley, S. Baluja, T. Kanade, “Neural
network-based face detection”, IEEE Transactions
on Pattern Analysis and Machine Intelligence 20
(1): 23-38 Jan 1998.
[2] K. J. Hunt, D. Sbarvaro, R. Zbikowski, “Neural
Networks for Control-Systems - A Survey”,
Automatica 28 (6): 1083-1112 Nov 1992.
[3] V. C. Cardellini, M. Colajanni, P. S. Yu,
“Dynamic load balancing on Web-server systems”,
IEEE Internet Computing 3 (3): 28-+ May-Jun
1999.
[4] V. V. Phoha, S. S. Iyengar, R. Kannan, “Faster
Web page allocation with neural networks”, IEEE
Internet Computing 6 (6): 18-26 Nov-Dec 2002.
[5] C. Aggarwai, J. L. Wolf, P. S. Yu, “Caching on
the World Wide Web”, IEEE Transactions on
Knowledge and Data Engineering 11 (1): 94-107
Jan-Feb 1999.
[6] T. Kohonen, “The Self-Organizing Map”,
Proceedings of the IEEE 78 (9): 1464-1480 Sep
1990
[7] J. Tanomaru, S. Omatu, “Process-Control by
Online Trained Neural Controllers”, IEEE
Transactions on Industrial Electronics 39 (6):
511-521 Dec 1992

Proceedings of the 5th WSEAS Int. Conf. on Artificial Intelligence, Knowledge Engineering and Data Bases, Madrid, Spain, February 15-17, 2006 (pp183-188)

