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Abstract:  Due to the limited cache size in each server, the traditional neural network techniques applied to 
improve the cache hit rate of scheduling algorithm in load-balancing web server cannot provide a good 
performance real web site because it cannot balance the server workload properly. Here, we propose a fuzzy 
neural network technique by feeding back the real-time system usage with an updating mapping rules based 
on different requested objects categorized into different servers groups with different cache size and 
according to their input frequency to enhance the cache hitting rate of scheduling, simulation result shows 
that the proposed technique keeps 92% to 99% cache hit rate and in parallel finely balances backend server 
resource usage. 
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1 Introduction 
As web sites gain popularity and its traffic 
increases, single web server will no longer be able 
to handle the increased requests. Multiple servers 
must be used in web sites with heavy traffic load. 
This topology facilitates the sharing of information 
among servers with network storage such as 
distributed file system (DFS).  
The deployment of cluster web server is quite 
complex as all the servers serve the requests of the 
same web site. The requests have to be distributed 
to each server depending on its current status. 
Recently, the computational approach to artificial 
intelligence has undergone a significant evolution. 
Neural network is involved in the solutions of 
different practical problems such as face 

recognition [1] and control system [2] 
The main objective of this paper is to study the   
server cache hit rate and distributing the incoming 
object requests according to the real-time servers’ 
information using a fuzzy-neural network. The 
simulation results indicate that the server cache hit 
rate has significantly been improved and the 
backend server resource usage has been optimized. 
 
 
2 Load-Balancing Algorithms in Web 
Service Provider 
The common architecture used in a multiple server 
web site is shown in Fig.1. The requests from client 
are received by a load-balancer and redistributed to 
different servers [3].  
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There are four different approaches to distribute the 
client requests to the servers – client-based, 
DNS-based, dispatcher-based and server-based. 
Dispatcher-based approaches can achieve 
fine-grained load-balancing to maximize the 
performance of systems [3]. The key of high 
performance in dispatcher-based approach is the 
distributing algorithm of the load-balancer. It 
centralizes the servers’ information and gives the 
best solution for the incoming requests.  
 
2.1 Neural Networks for Load-Balancing System 
Neural Network (NN), which provides organizing, 
correlating and self-learning properties, is fulfilling 
the requirements of distributing algorithm in 
load-balancing system. NN can analyze the current 
system environment and give a suitable decision to 
the incoming requests. 
The Secure Socket Layer (SSL) is a technology that 
creates a private data pipe in network with a secret 
session key. It is commonly used in the Internet 
application such as online bank transaction. 
However, session keys are expensive to be 
generated, so their lifetime is as long as about 100 

seconds [4]. Thus, it is simple for a system to route 
the same client connection to a single load balancer 
server. The competitive learning method of a neural 
network is naturally for assigning a new input 
request to a server, and the learning rule strengthens 
the connection between the input and the server. 
 
 
3 Conceptual Framework 
The conceptual framework model balances the 
workload among servers and ensures high cache 
high rate at the same time. Although caching data at 
client side can improve the web site performance 
by reducing the servers’ loading [5], in the real 
situation, there are many limitations such as 
capacity limit of the cache at clients and the reload 
problem in the web pages with dynamic content. To 
enhance the performance of the system, we focus 
on the caching data process at the server side and it 
is used to test the improvement of performance in 
web systems [4]. In a load-balancing system, client 
requests are distributed to a group of computers. To 
optimize the cache hit-rate in the servers, a 
Fuzzy-Neural Network technique is used.  
The modified conceptual model is shown at Fig.2. 
The load-balancer consists two parts— Neural 
Network and Fuzzy Logic Controller. The Neural 
Network chooses the most suitable server to serve 
the incoming client request, so that the hit-rate and 
the system resources can be efficiently used. The 
resources usage in each server will be send to the 
load-balancer periodically, however, the 
measurement of usage level cannot be accepted 
directly by the Neural Network to modify its weight 
in order to enhance its performance. A Fuzzy Logic 
Controller is used to standardize the server 
resources usage and send the new weights to 
improve the Neural Network.  

Fig.1: A common topology of web site with multiple 

servers. All the client requests will be collected and 

forwarded to the selected backend servers. And the server 

responses to the incoming request with the data stored in 

the network storage. 
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3.1 Structure of Framework 
In the proposed framework, a one-layer neural 
network is used. There are P nodes in this layer, 
where each server S is assigned a neuron N. Q 
selected inputs in the input set of K size are fully 
meshed with each neuron. The weight wij connects 
input i and neuron j and represents the strength of 
relationship between them. Fig.3 illustrates this 
architecture. 
 
3.2 Balance between Cache Hitting Rate and 
System Usage 
In the learning rule, we add a load-balancing factor, 
which collects the knowledge from the system 
environment. By the “rich-get-richer” property in 
the competitive learning, the network will tend to 
forward the objects request to the server the same 
as last time. Therefore, a load-balancing factor has 

to be included in the neural network to balance the 
workload in the system.  
In the V. V. Phoha algorithm [4], a weight 
averaging factor is added in the learning rule. The 
values in the weight vector of neurons are moving 
towards the average of it when the NN is training. 
However, it cannot balance the workload 
effectively because it only averages the probability 
of each server to receive requests, but does not put  
focus on unbalancing workload in a real site. 
In our proposed algorithm, we add a load-balancing 
item which is related to the usage of the backend 
servers in the learning rule. Therefore, the NN can 
distribute the system workload appropriately by 
learning the information of servers’ resources usage. 
To get the resource information of each backend 
server in the system, a Fuzzy Logic Controller is 
included in the load-balancer. It is used to sum up 
the usage of different resources such as processor, 
network and memory usage. Finally, the resulting 
value will be defuzzyified and send to NN. Fig.4 
shows the structure of the Fuzzy Logic Controller. 
 
 
4 Learning Rule of the NN 
Under the new learning rule, NN groups the 
backend servers to handle different input requests 
and modifies the size of them according to the input 
frequency of each object type. At the same time, it 
collects the usage information from each server and 

Fig. 3: The architecture of the Neural Network. 

Fig.2: A conceptual model of the framework. 1: A client 

sends an object request to the Load-Balancer. 2: The request 

is passed to the Neural Network. 3: The Neural Network 

decides which server response to the request. 4: Forward the 

request. 5: The server responses to the client. 6. Each server 

sends their resources usage to the load-balancer periodically. 

7: The received information is passed to the fuzzy logic 

controller. 8: The NN learns the distribution of system usage 

from the result of the fuzzy logic controller. 

Proceedings of the 5th WSEAS Int. Conf. on Artificial Intelligence, Knowledge Engineering and Data Bases, Madrid, Spain, February 15-17, 2006 (pp183-188)



rearranges the members of each group. We have 
three objectives: 

 Maximize the cache hit rate of the backend 

 ystem. 
the 

 
 request of object 

servers. This can enhance the performance of 
the whole system by reducing the IO 
operations of the backend servers. 
Balance the resources usage in the s

 Accommodate the sudden change in 
network traffic pattern in the running time. 

A r  from client is received by 

 is represented by: 
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the load-balancer and it selects backend server N to 
follow this request. 
The input of the NN

⎩
⎨
⎧ =

=
riif

R
1

 where Ki∈     (1) 

The neuron with the highest output value will be 

⎣ ⎠⎝

chosen to handle the client request. So that: 

⎥
⎤

⎢
⎡

⎟
⎞

⎜
⎛

⎦
Ω

⎠⎝
=⎟

⎞
⎜
⎛

Ω ij
K

iiN
K

i
(2)  

where and  

∑∑ wRwR max    

[ ]Pj ,1∈  

 ( ) ve
v ρ−+
=Ω    

1
1     (3)   

is the output function 

 each learning step, the weight of each neuron 

    (4) 
here  

 
In
will be updated with w∆ : 
 [ ] [ ] wnwnw ∆+−= 1  
w

 ( ) ( )( )
( )( )⎩

⎨
⎧

<+Ψ+
>=+−Ψ+

=∆
0

09.0

jijjj

jijjj
j bifawba

bifawba
w  (5) 

where ],1[ Pj ∈  , Ki ∈   
and 

  ( ) dv

dv

e
ev −

−

+
−

=Ψ      (6) 
1
1

Variable  is a competitive learning factor which 

reinforces the request forwarding memory. On the 

other hand,  is the load-balancing factor which 

provides the knowledge on the usage of the 

backend servers. 
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 ε  is the ranking of the neuron output values, 

  is the ratio of the request frequency of object r to 

all objects 
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.Equation of b: 
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where  

  is the resources usage of server j, jU

  is the average resources usage of all servers in 

the system 

avgU

The parametersη ,γ , K  and α  determine the rate 
of learning and the weight of the load-balancing 
factor.  
 

Fig. 4: The structure of the Fuzzy Logic Controller 
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 Load-Balancer 
Computer 

Server 
Computer 
Group 1 

Server 
Computer 
Group 2 

No. of 
Computers 1 12 4 

Processor Pentium 4 2.8C 
(2.8GHz) 

Pentium 4 
2.8C 

(2.8GHz) 

Pentium 3 
800E 

(800MHz)
Memory 512MB 512MB 256MB 

NIC 100Mbps 100Mbps 100Mbps 

Table 1: The equipments of the computers in the experiment. 

 
Total Number 

of Servers 
Number of Group 1 

Computers 
Number of Group 2 

Computers 
4 2 2 

8 4 4 

16 12 4 

Table 2: The combination of server computers in the 

experiment. 

5 Features of the algorithm 
In the learning rule, we add a history term in the 
load-balancing part. It minimizes the memory 
clearance effect of the load-balancing factor and 
boosts the number of incoming requests to the 
backend servers, which have lower resources usage 
than the average of the servers in the system. Thus, 
the server performance can be enhanced. 
One-time training mode is one of the limitations of 
traditional neural network. In this algorithm, online 
learning mode is used instead of one-time training. 
Online neural network can study the inputs and 
modify the weight at the running time. The NN can 
response to the change of resources usage and the 
request traffic pattern to modify the weight of the 
network [7]. Thus, the NN can provide the best 
solution to the system at anytime. 
 
 
6 Experimental Results 
To incorporate the characteristics of Web traffic 

s [ ] γ−> xxXP ~  a ∞→x  for 20 << γ . Pareto 
distribution is used in our simulation:  

      (9) 1)( −−= γγγ xkxp
   where = 9.0γ  and 1.0=k  
The simulation environment consists of 17PCs 
2.8GHz P4 at Digital System Laboratory in City 
University of Hong Kong. Details are listed in 
Table 1 and Table 2. Load-balancer and client 
program are written in C#.net. The client request 
generator and the neural network are built on the 

Fig.7: The performance of load-balancing is inversely

proportional to the standard deviation of the resources 

usage. The proposed algorithm (Fuzzy-Neural) keeps the 

value of standard deviation at a low level.  

Fig.6: Server cache hit rate of various scheduling 

algorithms are shown. The proposed algorithm 

(Fuzzy-Neural) gives the highest cache hit rate which is 

between 92% and 99%. And the next highest is V.V. 

Phoha’s Algorithm (VVPA) which is about 90%. 
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load-balancer program.  
In the simulation, the performance of round-robin 
(RR) and V. V. Phoha’s Algorithm (VVPA) [4] are 
compared. 
The charts in Fig.6 and Fig.7 show the comparison 
of the cache hit rate and the standard deviation of 
the servers’ usage in the system. The standard 
deviation of usage is inversely proportional to the 
performance of the load-balancing function in each 
scheme. 
Fig. 6 shows that both the Fuzzy-Neural and VVPA 
give high cache hit rates in the experiment. And, 
the cache hit rate in Fuzzy-Neural ranges between 
92% and 99%. On the other hand, the hit rate of the 
RR is less than 44% and decreases with the number 
of web objects due to limitation of the server cache 
size. 
In the Fig. 7, the standard deviation of servers’ 
usage is shown and represents the performance of 
load-balancing. In the chart, the value of standard 
deviation of VVPA and RR ranges between 18 and 
20, whereas the Fuzzy-Neural algorithm gives the 
value around 7. It means Fuzzy-Neural algorithm 
can effectively balance the incoming client requests 
according to the resources in each backend server. 
In the experiment, the proposed algorithm can 
provide a high cache hit rate and finely adjusted 
load in each server according to their capability. 
 
 
7 Conclusion 
A load-balancing scheduling algorithm with 
fuzzy-neural network is proposed. Fuzzy–neural 
network using Kohonen’s algorithm can provide a 
high sever cache hit rate. We also propose a new 
learning rule which study the distribution of 
servers’ resources usage. A Fuzzy Controller 
analyzes the servers’ resources usage and the NN 

learns the usage level of each backend server to 
balance the system’s loading. Online learning is 
used in the NN to modify the forwarding pattern 
according to the real-time system’s usage 
information. A promising result is produced in the 
simulation experiment under the environment 
containing two groups of servers with different 
processing power.  
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