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Abstract: - : This paper presents a modified version of the Particle Swarm Optimization (PSO). In the new 
version, particles are allowed to pick from among many positions to where it will move in the next generation. 
The new version outperforms the PSO algorithm on many benchmarks problems. 
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1. Introduction 
 

The Particle Swarm Optimization (PSO) 
algorithm has been successful in solving a number 
of continuous optimization problems  0.  Unlike 
other evolutionary algorithms, each particle 
(solution) in PSO moves in the search space by 
constantly updating its velocity vector based on the 
best solutions found so far by that particle as well as 
others in the population (swarm)  [1]  [3]. Many 
authors add some features to the original PSO to 
produce a hybrid algorithm that is more efficient 
 [4] [5]. 
 

This paper presents a modified version of PSO, 
in which each particle is allowed to pick the best 
velocity among many that will move it to a better 
position. This new version will be compared with 
the original PSO. In the future the algorithm will be 
compared with the modified versions of PSO. 

 
In section 2, we explain a modified version of the 

original PSO algorithm which is used as the original 
PSO by all users. Section 3 describes the MSPSO 
algorithm. Section 4 contains details of the 
experiments, and Section 5 describes the results 
obtained on benchmark problems. 

 
2. PSO Algorithm 

 
The PSO algorithm evolves a population of 

particles called swarm. Each particle updates its 
current velocity and position in the search space 
using historical information regarding its own 
previous best position as well as the best position 

discovered by all other particles or neighbouring 
particles. As both local and global serach were 
invloved, inertia weights was added by Shi and 
Eberhart  [6] to control those searches. As particles 
represent solution, the size of a particle depends on 
the problem. Each particle needs to calculate its new 
velocity for each of its dimension, then this velocity 
is used to move the particle to a new position.  
Figure 1 shows the PSO algorithm. 
 

Particle Swarm Optimization: 
1 begin 
2 t =0; 
3 initialize particles P(t); 
4 evaluate particles P(t); 
5 while (termination conditions are unsatisfied) 
6 begin 
7  t = t + 1; 
8  update weights 
9  select pBest for each particle 
10  select gBest from P(t-1); 
11  calculate particle velocity P(t); 
12  update particle position P(t); 
13  evaluate particles P(t); 
14 end 
15  end 

Figure 1: Particle Swarm Optimization algorithm 
 
In each dimension (depending on the problem 

being solved), particle n moves in the space using 
the following two equations: 
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Where C1 and  C2 are random numbers, Gi  is the best 
particle found so far (by all particles) in dimention i, 
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and  li,n is the best position discovered so far by 
particle n in dimension i. Velocity magnitude are 
clipped to a predetermined maximumj value, Vmax 
 [7] [8].  
 
3. MSPSO 
 

The MSPSO algorithm use the same equation for 
the velocity and the position as the original PSO. 
The difference is in the way the velocity being 
updated. Instead of having only one value that is 
used directly to update the velocity, number of 
velocities (m) are produced. Then, those velocities 
are used to calculate (m) new positions. The new 
positions are compared together to find the best 
position that a particle can move to inorder to reach 
the optima. By best position we mean the position 
that can move closer to the optimum. This is done by 
evaluationg the new m positions and pick the one 
with the best fitness.  

In addition, in the original PSO, the new fitness 
is calculated after updating the position in all the 
dimension. In the MSPSO, the fitness is updated 
after each  dimension change. Figure 2 shows the 
MSPSO algorithm 

 
Figure 2: MSPSO algorithm 
 

 Particle Swarm Optimization: 
1 begin 
2 t =0; 
3 initialize particles P(t); 
4 evaluate particles P(t); 
5 while (termination conditions are unsatisfied) 
6 begin 
7      t = t + 1; 
8      update weights 
9     select pBest for each particle 
10     select gBest from P(t-1); 
11     for i=1 to i=n 
12        for k=1 to k=m 
13                 calculate particle velocity Vi,k(t) 
14             calculate particle position Pi,k(t) 
15       choose Vi,k(t) that optimize the fitness 
16      update particle position Pi(t); 
17       evaluate particles P(t); 
18       i=i+1 
19 end 
20  end 

 
4. Experiments 
 

The modified PSO and the MSPSO were tested 
on four different benchmark problems described 
below. Both algorithms have the same parameters 

settings: population size = 10, Vmax = 5, and the 
maximum generation = 200. For MSPSO, the new 
parameter m = 10. That is, in each dimension, 10 
new velocities are being calculated and the best one 
of them is chosen. 

 
The following functions were used as test 

functions, each of which was to be minimized: 
 
1. Generalized Sphere Function: 
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Where x is an n-dimensional real-valued vector 
and xi is the  ith element of that vector. 

  
2, Generalized Rastrigin Function : 
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3. De Jong Function F2: 
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Where -2.048  ≤   Xi    ≤   2.048 
 
 
4. De Jong Function F5: 
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Where -65.536 ≤   Xi    ≤   65.536, k = 500,     
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5. Results  
 

Table 1 lists the average results for both PSO and 
MSPSO for the computational problem of Circle and 
Rastrigin 2D. Table 2 displays average results for 
PSO and MSPSO algorithms for the DeJongF2 and 
DeJongF5 equations.  
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 Circle Rastrigin 2D 
Gen PSO MSPS

O 
PSO MSPS

O 

5 
1117.86
98 

952.994
0 10.7374 4.2734 

10 
582.766
2 

176.797
2 8.3023 0.4683 

15 
229.422
0 3.2271 7.1324 0.0906 

20 37.7236 0.0052 6.2764 0.0037 
25 4.0610 0.0000 4.8099 0.0000 
 
Table 1 Average fitness for Circle, Rastrigin 2D 
over 25 Generations  
 
 
 DeJongF2 DeJongF5 
Gen PSO MSPSO PSO MSPSO 

5 7.4910 3.0625 
222.776
1 

106.903
1 

10 2.2978 0.0387 40.4220 4.3363 
15 1.9998 0.0034 23.6380 2.0362 
20 1.0349 0.0003 13.9231 1.7920 
25 0.7210 0.0001 12.6756 1.7917 
 
Table 2 Average fitness for DeJong F2 and 
DeJong F5 over 25 Generations 
 

Figure 3, 4, 5, and 6 shows the behaviour of both 
PSO and MSPSO for functions: Circle, Rastrigin, 
DeJong F2, and DeJong F5, respectively. 
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Figure 3 Comparison of evolution of best fitness 
for PSO and MSPSO for circle function  
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Figure 4 Comparison of evolution of best fitness 
for PSO and MSPSO for  Rastrigin  function (2D) 
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Figure 5 Comparison of evolution of best fitness 
for PSO and MSPSO for DeJongF2 
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Figure 6 Comparison of evolution of best fitness 
for PSO and MSPSO for  DeJongF5 
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Table 3 shows the result of applying PSO and 

MSPSO to Rastrigin function in three different 
dimensions: 10, 20, and 30. Figures 7, 8, and 9 
shows the performance of algorithms in Rastrigin 
10, 20, and 30 respectively.  
 
 Rastrigin 10 Rastrigin 20 Rastrigin 30 
 Gen Best 

Fitness 
Gen Best 

Fitness 
Gen Best 

Fitness 
PSO 200 14.59906 200 49.98067 200 116.0156
MSPSO 43 0.000045 60 0.497507 70 0.994974
Table 3 Average fitness for Rastrigin 10, 
Rastrigin 20, Rastrigin 30 over 25 Generations 
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Figure 7 Comparison of Evolution of Best fitness 
for PSO and MSPSO for function – Rastrigin 10 
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Figure 8 Comparison of Evolution of Best fitness 
for PSO and MSPSO for function – Rastrigin 20 
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Figure 9 Comparison of Evolution of Best fitness 
for PSO and MSPSO for function – Rastrigin 30 
 
 
6. Problem Solution  
 

As table 1 and 2 show, MSPSO was able to reach 
the optimum faster than PSO for all the test 
functions. In circle function, PSO was able to reach 
the optimum in mean generation 78, while MSPSO 
already reached the optimum in generation 21. In 
addition, for Rastrigin function, PSO did not reached 
the optimum with the experimental settings, while 
MSPSO reached the optimum in generation 2. For 
DeJong F2, PSO reached the optimum in generation 
177 and for DeJong F5 it did not reached the 
optimum, while MSPSO reached the optimum in 
generation 25 for DeJong F2, and near the optimum 
in DeJong F5. Figures 3 to 6 clearly shows the 
convergence of MSPSO to the optimum faster then 
the PSO algorithm. 
  

From table 3, it is observed that MSPSO was able 
to maintain the convergence to the optimum faster 
than PSO when the problem size increased. For 
Rastrigin 10, MSPSO was able to reach the 
optimum, while PSO failed even to come closer to 
the optimum. As the problem size increased, 
MSPSO was still able to reach near the optimum 
(according to the problem settings), but PSO slowed 
down and was unable to converge.  Figures 7 to 9, 
clearly shows the performance of both MSPSO and 
PSO. 

 
Not shown in the paper, more tests were made in 

Rastrigin 10, 20, and 30 by changing the 
population’s size and the maximum generation for 
both PSO and MSPSO. PSO still used many 
generations to reach near the optimum, while 
MSPSO reached the optimum with les number of 
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generation. 
7. Conclusions   
 

The results presented in the previous section 
show that MSPSO is a powerful algorithm that 
succeeds in solving the benchmark optimization 
problems using a small number of generation to 
reach the best fitness.  
 

The MSPSO algorithm was faster in converging 
to the optimum comparing it to the modified version 
of PSO. The new metric, which was picking the best 
velocity among multiple speeds, made the 
convergence faster. In addition, updating the fitness 
in each dimension will increase the diversity, and 
thus escape from local and global optima.  
 
8. Future Work 
  

 As the MSPSO overcomes the PSO algorithm, it 
will be tested to the other modified versions to find 
how good it is as compared to MSPSO algorithm. 
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