
Multi-Speed Particle Swarm Optimization

BUTHAINAH S. AL-KAZEMI
Kuwait University

Department of Computer Engineering
P.O. Box 5969 Safat, 13060

KUWAIT
 http://www.faculty.eng.kuniv.edu.kw/staff/bsnak.jsp

Abstract: - : This paper presents a modified version of the Particle Swarm Optimization (PSO). In the new
version, particles are allowed to pick from among many positions to where it will move in the next generation.
The new version outperforms the PSO algorithm on many benchmarks problems.

Key-Words: - PSO, MSPSO, Evolutionary Computation, Convergence.

1. Introduction

The Particle Swarm Optimization (PSO)
algorithm has been successful in solving a number
of continuous optimization problems 0. Unlike
other evolutionary algorithms, each particle
(solution) in PSO moves in the search space by
constantly updating its velocity vector based on the
best solutions found so far by that particle as well as
others in the population (swarm) [1] [3]. Many
authors add some features to the original PSO to
produce a hybrid algorithm that is more efficient
 [4] [5].

This paper presents a modified version of PSO,
in which each particle is allowed to pick the best
velocity among many that will move it to a better
position. This new version will be compared with
the original PSO. In the future the algorithm will be
compared with the modified versions of PSO.

In section 2, we explain a modified version of the

original PSO algorithm which is used as the original
PSO by all users. Section 3 describes the MSPSO
algorithm. Section 4 contains details of the
experiments, and Section 5 describes the results
obtained on benchmark problems.

2. PSO Algorithm

The PSO algorithm evolves a population of

particles called swarm. Each particle updates its
current velocity and position in the search space
using historical information regarding its own
previous best position as well as the best position

discovered by all other particles or neighbouring
particles. As both local and global serach were
invloved, inertia weights was added by Shi and
Eberhart [6] to control those searches. As particles
represent solution, the size of a particle depends on
the problem. Each particle needs to calculate its new
velocity for each of its dimension, then this velocity
is used to move the particle to a new position.
Figure 1 shows the PSO algorithm.

Particle Swarm Optimization:
1 begin
2 t =0;
3 initialize particles P(t);
4 evaluate particles P(t);
5 while (termination conditions are unsatisfied)
6 begin
7 t = t + 1;
8 update weights
9 select pBest for each particle
10 select gBest from P(t-1);
11 calculate particle velocity P(t);
12 update particle position P(t);
13 evaluate particles P(t);
14 end
15 end

Figure 1: Particle Swarm Optimization algorithm

In each dimension (depending on the problem

being solved), particle n moves in the space using
the following two equations:

)1()()1(
))()((*))()((*)(*)1(

,,,

,,2,1,,

++=+

−+−+=+

tVtXtX
tXtlCtXtGCtVwtV

ninini

nininiinini

Where C1 and C2 are random numbers, Gi is the best
particle found so far (by all particles) in dimention i,

Proceedings of the 5th WSEAS Int. Conf. on Artificial Intelligence, Knowledge Engineering and Data Bases, Madrid, Spain, February 15-17, 2006 (pp85-89)

and li,n is the best position discovered so far by
particle n in dimension i. Velocity magnitude are
clipped to a predetermined maximumj value, Vmax
 [7] [8].

3. MSPSO

The MSPSO algorithm use the same equation for
the velocity and the position as the original PSO.
The difference is in the way the velocity being
updated. Instead of having only one value that is
used directly to update the velocity, number of
velocities (m) are produced. Then, those velocities
are used to calculate (m) new positions. The new
positions are compared together to find the best
position that a particle can move to inorder to reach
the optima. By best position we mean the position
that can move closer to the optimum. This is done by
evaluationg the new m positions and pick the one
with the best fitness.

In addition, in the original PSO, the new fitness
is calculated after updating the position in all the
dimension. In the MSPSO, the fitness is updated
after each dimension change. Figure 2 shows the
MSPSO algorithm

Figure 2: MSPSO algorithm

 Particle Swarm Optimization:
1 begin
2 t =0;
3 initialize particles P(t);
4 evaluate particles P(t);
5 while (termination conditions are unsatisfied)
6 begin
7 t = t + 1;
8 update weights
9 select pBest for each particle
10 select gBest from P(t-1);
11 for i=1 to i=n
12 for k=1 to k=m
13 calculate particle velocity Vi,k(t)
14 calculate particle position Pi,k(t)
15 choose Vi,k(t) that optimize the fitness
16 update particle position Pi(t);
17 evaluate particles P(t);
18 i=i+1
19 end
20 end

4. Experiments

The modified PSO and the MSPSO were tested
on four different benchmark problems described
below. Both algorithms have the same parameters

settings: population size = 10, Vmax = 5, and the
maximum generation = 200. For MSPSO, the new
parameter m = 10. That is, in each dimension, 10
new velocities are being calculated and the best one
of them is chosen.

The following functions were used as test

functions, each of which was to be minimized:

1. Generalized Sphere Function:

∑
=

=
n

i
ixxf

1

2)(

Where x is an n-dimensional real-valued vector
and xi is the ith element of that vector.

2, Generalized Rastrigin Function :

)10)2cos(10()(
1

2 +−= ∑
=

i

n

i
i xxxf π

3. De Jong Function F2:

2
1

2
2

2
121)1()(100),(xxxxxf −+−= ,

Where -2.048 ≤ Xi ≤ 2.048

4. De Jong Function F5:

),(1
1),(

21
125

1

21
xxfk

xxf
jj
−

=∑+
=

,

Where ∑ =
−+=

2

1
6

21)(),(
i ijijj axcxxf

,

Where -65.536 ≤ Xi ≤ 65.536, k = 500,

cj = j

[] 







−−−−−−
−−−

=
323232...163232323232
32160...32321601632

ija

5. Results

Table 1 lists the average results for both PSO and
MSPSO for the computational problem of Circle and
Rastrigin 2D. Table 2 displays average results for
PSO and MSPSO algorithms for the DeJongF2 and
DeJongF5 equations.

Proceedings of the 5th WSEAS Int. Conf. on Artificial Intelligence, Knowledge Engineering and Data Bases, Madrid, Spain, February 15-17, 2006 (pp85-89)

 Circle Rastrigin 2D
Gen PSO MSPS

O
PSO MSPS

O

5
1117.86
98

952.994
0 10.7374 4.2734

10
582.766
2

176.797
2 8.3023 0.4683

15
229.422
0 3.2271 7.1324 0.0906

20 37.7236 0.0052 6.2764 0.0037
25 4.0610 0.0000 4.8099 0.0000

Table 1 Average fitness for Circle, Rastrigin 2D
over 25 Generations

 DeJongF2 DeJongF5
Gen PSO MSPSO PSO MSPSO

5 7.4910 3.0625
222.776
1

106.903
1

10 2.2978 0.0387 40.4220 4.3363
15 1.9998 0.0034 23.6380 2.0362
20 1.0349 0.0003 13.9231 1.7920
25 0.7210 0.0001 12.6756 1.7917

Table 2 Average fitness for DeJong F2 and
DeJong F5 over 25 Generations

Figure 3, 4, 5, and 6 shows the behaviour of both
PSO and MSPSO for functions: Circle, Rastrigin,
DeJong F2, and DeJong F5, respectively.

Circle

0

200

400

600

800

1000

1200

1400

1600

1 10 100Generation

Fi
nt

ne
ss PSO

MSPSO

Figure 3 Comparison of evolution of best fitness
for PSO and MSPSO for circle function

Rastrigin

0
2
4

6
8

10
12
14
16
18

1 10 100 1000

Generation

B
es

t F
itn

es
s

PSO
MSPSO

Figure 4 Comparison of evolution of best fitness
for PSO and MSPSO for Rastrigin function (2D)

DeJong F2

0

2

4

6

8

10

12

14

16

1 10 100 1000

Generation

B
es

t F
itn

es
s

PSO
MSPSO

Figure 5 Comparison of evolution of best fitness
for PSO and MSPSO for DeJongF2

DeJong F5

0

50

100

150

200

250

300

350

400

1 10 100 1000
Generation

B
es

t F
itn

es
s

PSO
MSPSO

Figure 6 Comparison of evolution of best fitness
for PSO and MSPSO for DeJongF5

Proceedings of the 5th WSEAS Int. Conf. on Artificial Intelligence, Knowledge Engineering and Data Bases, Madrid, Spain, February 15-17, 2006 (pp85-89)

Table 3 shows the result of applying PSO and

MSPSO to Rastrigin function in three different
dimensions: 10, 20, and 30. Figures 7, 8, and 9
shows the performance of algorithms in Rastrigin
10, 20, and 30 respectively.

 Rastrigin 10 Rastrigin 20 Rastrigin 30
 Gen Best

Fitness
Gen Best

Fitness
Gen Best

Fitness
PSO 200 14.59906 200 49.98067 200 116.0156
MSPSO 43 0.000045 60 0.497507 70 0.994974
Table 3 Average fitness for Rastrigin 10,
Rastrigin 20, Rastrigin 30 over 25 Generations

Rastrigin 10

0

20

40

60

80

100

120

140

160

1 10 100 1000Generation

Fi
tn

es
s PSO

MSPSO

Figure 7 Comparison of Evolution of Best fitness
for PSO and MSPSO for function – Rastrigin 10

Rastrigin 20

0

50

100

150

200

250

300

350

0 50 100 150 200
Generation

Fi
tn

es
s

PSO
MSPSO

Figure 8 Comparison of Evolution of Best fitness
for PSO and MSPSO for function – Rastrigin 20

Rastrigin 30

0

100

200

300

400

500

600

0 50 100 150 200
Generation

Fi
tn

es
s

PSO
MSPSO

Figure 9 Comparison of Evolution of Best fitness
for PSO and MSPSO for function – Rastrigin 30

6. Problem Solution

As table 1 and 2 show, MSPSO was able to reach
the optimum faster than PSO for all the test
functions. In circle function, PSO was able to reach
the optimum in mean generation 78, while MSPSO
already reached the optimum in generation 21. In
addition, for Rastrigin function, PSO did not reached
the optimum with the experimental settings, while
MSPSO reached the optimum in generation 2. For
DeJong F2, PSO reached the optimum in generation
177 and for DeJong F5 it did not reached the
optimum, while MSPSO reached the optimum in
generation 25 for DeJong F2, and near the optimum
in DeJong F5. Figures 3 to 6 clearly shows the
convergence of MSPSO to the optimum faster then
the PSO algorithm.

From table 3, it is observed that MSPSO was able
to maintain the convergence to the optimum faster
than PSO when the problem size increased. For
Rastrigin 10, MSPSO was able to reach the
optimum, while PSO failed even to come closer to
the optimum. As the problem size increased,
MSPSO was still able to reach near the optimum
(according to the problem settings), but PSO slowed
down and was unable to converge. Figures 7 to 9,
clearly shows the performance of both MSPSO and
PSO.

Not shown in the paper, more tests were made in

Rastrigin 10, 20, and 30 by changing the
population’s size and the maximum generation for
both PSO and MSPSO. PSO still used many
generations to reach near the optimum, while
MSPSO reached the optimum with les number of

Proceedings of the 5th WSEAS Int. Conf. on Artificial Intelligence, Knowledge Engineering and Data Bases, Madrid, Spain, February 15-17, 2006 (pp85-89)

generation.
7. Conclusions

The results presented in the previous section
show that MSPSO is a powerful algorithm that
succeeds in solving the benchmark optimization
problems using a small number of generation to
reach the best fitness.

The MSPSO algorithm was faster in converging
to the optimum comparing it to the modified version
of PSO. The new metric, which was picking the best
velocity among multiple speeds, made the
convergence faster. In addition, updating the fitness
in each dimension will increase the diversity, and
thus escape from local and global optima.

8. Future Work

 As the MSPSO overcomes the PSO algorithm, it
will be tested to the other modified versions to find
how good it is as compared to MSPSO algorithm.

References

[1] J. Kennedy and R. C. Eberhart, Particle Swarm

Optimization, Proc. IEEE International
conference on Neural Networks, 1995.

[2] R. C. Eberhart and J. Kennedy, A new optimizer
using particle swarm theory, Proc. the Sixth
International Symposium on Micro Machine and
Human Science, Nagoya, Japan, 1995.

[3] Shi, Y. and Eberhart, R. C., Empirical study of
particle swarm optimization, Proceedings of the
IEEE Congress on Evolutionary Computation
(CEC 1999), Piscataway, NJ, pp. 1945-1950,
1999.

[4] Suganthan, P. N., Particle swarm optimiser with
neighbourhood operator, Proceedings of the
IEEE Congress on Evolutionary Computation
(CEC 1999), Piscataway, NJ. pp, 1958-1962,
1999.

[5] Al-kazemi, B. and Mohan, C. K., Multi-phase
generalization of the particle swarm
optimization algorithm, Proceedings of the IEEE
Congress on Evolutionary Computation (CEC
2002), Honolulu, Hawaii USA, 2002.

[6] Y. Shi and R. Eberhart, A Modified Particle
Swarm Optimizer, Proc. IEEE International
conference on Evolutionary Computation,
Anchorage, Alaska, 1998.

[7] Shi, Y. and Eberhart, R. C. Parameter selection
in particle swarm optimization, Evolutionary
Programming VII, Proceedings of the Seventh
Annual Conference on Evolutionary
Programming, New York, 1998.

[8] M. Clerc, The Swarm and the Queen: Towards a
Deterministic and Adaptive Particle Swarm
Optimization, Proc. Congress on Evolutionary
Computation, Washington, DC, 1999.

Proceedings of the 5th WSEAS Int. Conf. on Artificial Intelligence, Knowledge Engineering and Data Bases, Madrid, Spain, February 15-17, 2006 (pp85-89)

