

 Extending MATLAB and GA to Solve
Job Shop Manufacturing Scheduling Problems

Hamidullah Khan Niazi1, Sun Hou-Fang2, Zhang Fa-Ping3, Riaz Ahmed4
(1, 4 National University of Sciences and Technology (NUST), CAE, Pakistan

(2, 3 Department of Manufacturing and Automation, Beijing Institute of Technology 100081, China)

Abstract: Job shop scheduling problem has been always a hardest task in the combinatorial research. Keeping in
view the strong computational power of MATrix LABoratory (MATLAB) and robustness of GA, we have used a
different novel approach for solving difficult shop floor scheduling problems. In this paper, parallel genetic
algorithm based solution methodology has been presented and the algorithm is implemented using powerful
MATrix LABoratory (MATLAB) environment to solve practical problems of job shop. The special coded
mutation and crossover operators were designed to avoid any infeasible formulation of children. The solution
result reveals that this methodology can be used to solve the complex optimization problems. In this work, job
shop scheduling problem has been formulated and subsequently solved with the parallel genetic algorithm
approach. The robustness and flexibility of GA offers a lot to tackle the stochastic solution of nondeterministic
polynomial (NP) hard problems. The work is supported by the experimental and simulation results. The make
span minimisation performance criteria were chosen in the experimental analysis.

Key words: Job shop, MATLAB, parallel genetic algorithm, optimisation

1 Introduction
Job shop scheduling problems (JSSP) are the most
frequently encountered problems in practical
manufacturing environment. Due to the exponential
growing search space in the combination of goals
and resources, the problem is NP-complete [1,2].
Many researchers have tried to tackle the practical
job shop problems with different approaches and
many of them found the results with reasonable
degree of confidence. The complexity of the
problem has, however, been so dynamic that the no
single all-round strategy can be applied to tackle all
the real situations at frequently changing shop floor
environment. The traditional approaches to the
solution of scheduling problems depend heavily on
dispatching rules and knowledge-based systems. The
disadvantage with such dispatching rules is that
there is no single rule that will be effective for all
production conditions, and manual selection or
updating is required where using rules [3,4]. Also
the traditionally operational methods such as
dynamic programming, branch & bound method,
and integer programming can give an optimal
solution only for a reasonably sized problem [5].
The use of knowledge base expert system also

demonstrate inability to solve the complex job shop
scheduling due to lack of limited and updated knowledge
or expertise required from human experience.
In this paper, we propose novel parallel genetic
algorithm (PGA) approach using MATrix LABoratory
(MATLAB) [6] GA toolbox to solve the JSSP in a
parallel machine environment. The experimental
problems have been attempted using MATLAB
computing environment. Due to the advantages of
retarding premature convergence problem, we have
focused on the parallelization strategy in GA. The goal
of this research is to propose an efficient PGA-based
scheduling methodology using MATLAB computing
environment to address the JSSP. The work is supported
by the experimental results and conclusion.

2 Problem Formulation for Job Shop
Scheduling

The concept of genetic algorithm (GA) has been
successfully applied to many useful areas like
artificial intelligence, pattern recognition and
control problems. However, there is not enough
reported work on combinatorial problems. The
application of GA can be useful with reasonable

 1

Proceedings of the 5th WSEAS Int. Conf. on Signal Processing, Robotics and Automation, Madrid, Spain, February 15-17, 2006 (pp345-350)

mailto:hamidullah9940, riazg19}@yahoo.com
mailto:sunhf@bit.edu.cn
mailto:zfpnew@163.com

time due to recent advancement in computing
area. Due to the stochastic nature of the GA, it
can be usefully applied to the NP hard problems
with useful results. In this paper, the PGA
approach using MATLAB environment has
been used. We exploited the flexibility and easy
tradeoff in the GA parameters to avoid any
premature convergence and have introduced a
diversity in children selection. We start with a
generic problem of Pm | |Cmax [7] for m
machines in parallel. All jobs are released
simultaneously where the objective is to
minimize the makespan with no preemption
allowed. This approach regards determination of
an optimal job-shop schedule as a linear
programming problem with integer adjustments,
and then employs genetic algorithms to optimise
a solution. The problem formulation Let Cik
denote the completion time of job i on machine
k (i.e. the completion time of the particular
operation of job i that needs machine k), m(i j k)
be the machine for operation(i,j,k) and tijk, the
processing time for operation (i,j,k). The values
of Cik will off course help to determine the
schedule. Most of the excellent work and
problem formulation already done by J G Qi and
et al [8] was carried forward and new GA design
parameters were introduced in the latest
MATLAB release 14 environment to avoid the
problem of premature convergence with
improved and some new results. Such problems
and issues have been reported by many
researchers. This goal of minimum premature
convergence with improved results was main
focus in mind while solving the JSSP. We tried
the parallel GA approach and premature
convergence problem of GA with the intelligent
combination and mix of crossover and mutation
operators was reduced to minimum. Here job-
shop operation is described by a triplet (i,j,k) i.e.
operation j of job i is to be executed on machine
k. If the operation (i,j-1,h) requires machine h,
then operation (i,j,k) would require machine k,
then used inequalities precedence constraints.
Ci k − Ci h − ti j k ≥0, 1 ≤ j ≤ m, 1≤ i ≤ n (1)
Where m and n are the number of machines and
number of jobs, respectively.
It is necessary to ensure that no two operations are
processed simultaneously by the same machine. For

example, if job i precedes job p on machine k (i.e.
operation (i,j,k) is completed before operation (p,q,k)),
this is equivalent to a constraint of:
Cp k - Ci k - tp q k ≥ 0 (2)
On the other hand, if job p precedes job i on machine k,
then it is also necessary to ensure that:
Ci k - Cp k - ti j k ≥ 0 (3)
In order to adjust these constraints in the formulation, a
variable yipk is applied to specify the operation sequence,
i.e. yipk = 1 if job i precedes job p on machine k, and
yipk = 0 otherwise, the above constraints equation (2)
and (3) become:
Cp k - Ci k + N((1 − yi p k) − tp q k ≥ 0 (4)
Ci k - Cp k + Nyj p k - tijk ≥ 0 (5)
Where constant N represents an arbitrary very large
positive number. Therefore, the entire job-shop problem
can be formulated as following keeping in view the
makespan criteria:

Minimize (max∑
=

n

i
C

1
 i k i) (6)

Subject to
C i k −Ci h − t i j k ≥ 0 1 ≤ j ≤ m, 1 ≤ i ≤ n
Cp k −Ci k + N(1−yi p k) −tp q k ≥0 i ≥ 1, p ≤ n, 1≤ k ≤ m
Ci k− Cp k+ Nyi p k− t i j k ≥ 0 i ≥ 1, p ≤ n, 1≤ k ≤m
Ci k ≥ 0 yi p k = 0 or 1 (7)

yipk = 1 if job i precedes job p on machine k, and yipk = 0
otherwise, ki denotes the machine at which the last
operation of job i is scheduled.
Generally, makespan is important in parallel machines
for scheduler to get a good balance [7]. The completion
time of the last job would be the makespan of the
schedule. In JSSP, the makespan represents also a good
performance measure. The schedule with the minimal
makespan often implies a high utilization of machines.

3 A Proposed Parallel Genetic
Algorithm on MATLAB Environment

The proposed structure of PGA with a Matlab GA
toolbox structure is given in Figure 1. The overall
structure of this PGA and its working is described next.
 In this work, the initial population is created
randomly. The fitness of these solutions is evaluated. If
the fitness criteria is not met in the beginning, then new
population are created using selection, crossover and
mutation processes.
 The objective of the selection method practiced
in genetic algorithms is to give polynomial
increasing trials to the fittest individuals. In this
paper, different selection techniques like stochastic

 2

Proceedings of the 5th WSEAS Int. Conf. on Signal Processing, Robotics and Automation, Madrid, Spain, February 15-17, 2006 (pp345-350)

uniform, roulette and tournament selection have
been tried to pick the fittest initial solutions in
the current scenario. Elitism strategy picks the
fittest individual copying without mutation and
crossover. Elitism can very rapidly increase
performance of GA, because it prevents losing
the best found solution to date. This strategy has
given favorable results in our computational
results.

Fig 1: A structure of parallel GA

 In a genetic algorithm, crossover recombines
the genetic material in two parent’s chromosomes to
make two children, in order to generate a better
solution. In this paper, four kinds of cross over
operators; namely two point, intermediate, scattered
and a custom crossover operators were tried.
However, the special custom crossover SCX
operator was found to be the most suitable. The
SCX operator is actually a combination of order
based crossover and multipoint crossover operators.
This operator always creates the valid and feasible
genes. The order-based crossover operator applied to
the first half of the substring is often used in
sequencing problems because it maintains
precedence constraints of operations from the
parents to the offspring. It works by incorporating a
string sequence from two different parents into two
new strings. The mechanism of this crossover is
addressed by first determining two cut points at two
random positions on the gene strings, then passing
the portion between the two cut points to the two
offspring. The operator then begins to construct the
remaining left-hand and right-hand sides. of the first
offspring by going over the second parent and

eliminating the same numbers with the passed portion of
the first parent, and filling up the missing left and right
sides according to an order existing on the second
parent. A genetic algorithm will do this operation pair-
wise. Figure 2 (a) illustrates the SCX operator with an
example given in Figure 2(b).

Fig 2:(a) SCX operator(b) An operator’s example [8]

 In this paper, we introduced a custom mutation
instead of using Gaussian or uniform mutation from the
tool box which sometime gives infeasible children
during the swapping process. The custom mutation
works in two steps: firstly it allows mutating the two
genes randomly, based on position followed by another
mutation which is dictated by an order based swapping.
This process is explained in Figure 3 (a and b).

 Fig 3: (a) position based swapping (b) An order based
swapping

 The objective of scheduling is to minimise the total
completion time of all jobs, i.e. all jobs should be
completed as early as possible. The suitable objective
functions are max (Ciki), and the optimising process is
min(max(Ciki)). When formulating constraints penalty
approach suggested by Goldberg [9] has been followed
in this work as mentioned in equations (10) and (11) in
section 5. This approach transforms a constrained
problem into an unconstrained problem by associating a
cost, or penalty, with all constraint violations for the
objective function.

 3

Proceedings of the 5th WSEAS Int. Conf. on Signal Processing, Robotics and Automation, Madrid, Spain, February 15-17, 2006 (pp345-350)

 The migration model divides the population in
multiple subpopulations, also called island
populations. Migration options specify how
individuals move between subpopulations. When
migration occurs, the best individuals from one
subpopulation replace the worst individuals in
another subpopulation depending upon the
competition. Individuals that migrate from one
subpopulation to another are copied. They are not
removed from the source subpopulation.
 The important control parameters in the island
migration model are: topology, direction, interval,
fraction (rate) etc. In our approach, we have focused
mainly on three migration parameters i.e. direction,
interval and its fraction. The number of exchanged
individuals, the selection method of the individuals
for migration and the scheme of migration
determines how much genetic diversity can occur in
the subpopulations and the exchange of information
between subpopulations. For example for a interval
of 10 generations, if individuals migrate from a
subpopulation of 60 individuals into a subpopulation
of 100 individuals and you set fraction to 0.1, then
the number of individuals that would migrate is
0.1 * 60 = 6 after every 10 generation in the set
direction (which could be forward or both). In this
paper, we used the forward migration model with
fraction of .25 and migration interval of 25
generations.
 The genetic processes of crossover, selection
and replacement continue unless interrupted under
certain termination criteria. The termination criteria
used in this paper was as to be 200 maximum
number of desired generation and stall generation as
to be 60.

4 Fitness Function and Chromosome
and Constraint Representations
The objective of scheduling is to minimize the
maximum completion time i.e minimize makespan
where objective function is,
Obj = max (Ciki), so optimization function is,
min(max(Ciki)). Now using Goldberg [9] approach
for handling constraint in GA problem by
transforming constrained problem into unconstrained
problem by employing penalty function for the
constraint violation.

 Minimize z(x) (8)
 Subject to gi(x) ≥ 0 (I = 1, 2, …n) (9)

 where ‘x’ is an m vector. Thus the transformed
unconstrained problem becomes:

minimize z(x) + r (10))]([
1

xg
n

i
i∑

=

φ

Where φ - is a penalty function and r is a penalty
coefficient. A number of alternatives exist for handling
the penalty functionφ . In this paper, we have squared φ
[gi(x)] = gi

2(x) for all violated constraints transformation.
The chromosome was constructed on the basis of both
job orders and waiting times [10]. The representation of
the chromosome is composed of several substrings, each
of which is referred to a machine as a resource.
For the kth machine, the substring is represented as {Jk1,
Jk2, Jk3,………Jkn, Wk1, Wk2,…….,Wkn}where Jki represents
an operation of a job processed by the kth machine, and
Wki is within the upper limit of the waiting time of the
kth machine to process a job. Thus, if there are m
machines, the whole string is made up of m substrings
which are then composed of 2*n genes where n denotes
the number of jobs to be processed by the machine[8].
For instance, a substring of kth machine which processes
5 parts can be represented like {2 4 5 3 1 0 1 0 2 3}. In
this substring, first five genes (2 4 5 3 1) means 2nd,
4th, 5th, 3rd and 1st parts have a step to be processed by
the kth machine in a fixed order. The later 5 genes (0 1 0
2 3) means that 2nd and 5th parts needs to be processed
at once when completing a previous part, and wait 1
unit if time before processing 4th part, wait 2 units of
time before processing 3rd part and wait 3 units of time
before processing 1st part. The use of this kind of first
half substring leaves us with only two choices i.e. either
to use idle time or start time. We have used idle time in
our coding to narrow down the solution space. This type
of string description naturally satisfies the constraints of
Eqs (2) and (3) or Eqs (4) and (5), but it may not satisfy
the constraint Eq. (1). To obtain a feasible solution, a
penalty approach is adopted in this paper; therefore the
fitness function is finally constructed as
Fitness = min[max(Ciki)] +A∑ C

ij
(ik-Cih-tijk)2 (11)

where ‘A' is a weight

5 Simulation Results and Discussion
The simulation programs were written in MATLAB and
computed with MATLAB GA toolbox. The machines
required for each operation and the operation-processing
times are deterministic without any pre-emption on any
machine. The optimal solution determined by a genetic
algorithm provides a schedule for each machine.
Example data of 8 jobs with workstations of 4 machines
[11] is given in Table 1.

 4

Proceedings of the 5th WSEAS Int. Conf. on Signal Processing, Robotics and Automation, Madrid, Spain, February 15-17, 2006 (pp345-350)

Table 1: Job shop Scheduling data

Jobs Machine Sequence
Processing

Times

Jobs
Due
date

1 M1 M3 M2 M4 4 4 7 3 32

2 M3 M1 M2 M4 3 4 4 2 30

3 M1 M4 M3 M2 3 4 6 3 33

4 M3 M2 M1 M4 6 4 3 4 29

5 M4 M2 M3 M1 4 5 5 3 28

6 M2 M4 M1 M3 4 6 5 4 34

7 M2 M3 M4 M1 2 4 5 5 30

8 M4 M1 M2 M3 3 3 3 5 36

So the machine sequence matrix (with a workstation
of 4 machines) and processing time’s matrices are:

 Following parameters were used: weight A = 100,
probability of crossover (Pc) = 0.7 and the
probability of mutation (Pm) = 0.2
The evaluation parameters used in the optimization
process are given in Table 2. The simulation result is
given in Figure 4.

Table 2: genetic algorithm parameters

Fig 4: best and mean value plot for objective function
The optimal solution found is as follows:

The optimal solution using Gantt chart based on the
PGA is plotted in Figure 5.

Fig 5: Gantt chart showing scheduling result.

 In this paper, we also conducted some experiment on
randomly generated problem consisting of 20 jobs and 5
machines. The primary objective was to see the affect of
population on performance. We first investigated how
the population size influences the performance by
proposed PGA. First we fixed the maximum population
size to be 200 and Pm and Pc both to be both 0.15. Under
such lower ratios of crossover and mutation, the
population size becomes the dominant factor in
determining the performance of the proposed GA. Later
on the population size was varied from 10 to 90. The
results of experiment for the best, average and the worst
values are plotted in Figure 6 for over 90 random runs

 5

Proceedings of the 5th WSEAS Int. Conf. on Signal Processing, Robotics and Automation, Madrid, Spain, February 15-17, 2006 (pp345-350)

for each parameter setting. It is found that the
algorithm performance does not change significantly
beyond the population size of 60.
In another performance test, the algorithm was tested
for fixing the population size to be 100 and
maximum number of generation to be 200. From the
performance graph in Figure 7, it is verified that
mutation plays an important role in the genetic
performance of the algorithm.

Figure 6: Affect of population on performance.

Fig 7: Average performance comparison for various
Pm and Pc.

The crossover, however, depends on the partitioning
structure of the algorithm.

6 Conclusion
In this paper, we have tested the parallel genetic
algorithms approach using MATLAB GA toolbox
with a suitable designing and selection of genetic
operators. The algorithm was implemented in
calculating the makespan of JSSP. The performance
of the algorithm has been tested for various JSSP
with favorable results. It is verified that the proposed
algorithm approach using MATLAB toolbox can be
used to solve the other parallel machine job shop

scheduling problems with vast computing capabilities of
MATLAB

References

[1] Sethi R. On the complexity of mean flow time
scheduling. Mathematics of Operations Research 1977;
2(4):320–30.

[2] Garey MR, Johnson DS. Computer and
intractability: a guide to the theory of NP-completeness,
San Francisco: W H Freeman, 1979.

[3] J. H. Blackstone Jr, D. T. Phillips and G. L. Hogg,
“A state-of the- art survey of dispatching rules for
manufacturing job shop operation”, International Journal
of Production Research, 20(1), pp. 27–45, 1982.

[4]. R. Haupt, “A survey of priority rule-based
scheduling”, OR Spektrum, 11, pp. 3–16, 1989.

[5] Potts CN. Analysis of a linear programming heuristic
for scheduling unrelated parallel machines. Discrete
Applied Mathematics 1983; 10(2):155–64.

[6] MATLAB 7.0 GA Algorithm and Direct Search
Toolbox R 14
http://www.mathworks.com/products/gads/

[7] Pinedo, Michael, Scheduling, Theory, Algorithms,
and Systems, Prentice Hall, New Jersey, 07632

[8] J G Qi et al, “The Application of Parallel Multi
population Genetic Algorithms to Dynamic Job-Shop
Scheduling” Int J Adv Manuf Technol (20 00) 16:609–
615.

[9] D. E. Goldberg, Genetic Algorithms in Search,
Optimization and Machine Learning, Addison-Wesley,
Reading, MA, 1989.

[10] R. W. Cheng, M. S. Gen and Y. Tsujimura, “A
tutorial survey of job-shop scheduling problems using
genetic algorithms-I. Representation”, Computers and
Industrial Engineering, 30(4), pp. 983–997, September
1996.

[11] Shen Gang et al. “A job shop Scheduling Solution
with Neural Network” Acta Electronica Sinica Vol 23
No.8 Aug.1995 48-51

 6

Proceedings of the 5th WSEAS Int. Conf. on Signal Processing, Robotics and Automation, Madrid, Spain, February 15-17, 2006 (pp345-350)

http://www.mathworks.com/products/gads/

