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Abstract: Job shop scheduling problem has been always a hardest task in the combinatorial research. Keeping in 
view the strong computational power of MATrix LABoratory (MATLAB) and robustness of GA, we have used a 
different novel approach for solving difficult shop floor scheduling problems. In this paper, parallel genetic 
algorithm based solution methodology has been presented and the algorithm is implemented using powerful 
MATrix LABoratory (MATLAB) environment to solve practical problems of job shop. The special coded 
mutation and crossover operators were designed to avoid any infeasible formulation of children. The solution 
result reveals that this methodology can be used to solve the complex optimization problems.  In this work, job 
shop scheduling problem has been formulated and subsequently solved with the parallel genetic algorithm 
approach. The robustness and flexibility of GA offers a lot to tackle the stochastic solution of nondeterministic 
polynomial (NP) hard problems. The work is supported by the experimental and simulation results.  The make 
span minimisation performance criteria were chosen in the experimental analysis.  
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1 Introduction  
Job shop scheduling problems (JSSP) are the most 
frequently encountered problems in practical 
manufacturing environment. Due to the exponential 
growing search space in the combination of goals 
and resources, the problem is NP-complete [1,2]. 
Many researchers have tried to tackle the practical 
job shop problems with different approaches and 
many of them found the results with reasonable 
degree of confidence. The complexity of the 
problem has, however, been so dynamic that the no 
single all-round strategy can be applied to tackle all 
the real situations at frequently changing shop floor 
environment.  The traditional approaches to the 
solution of scheduling problems depend heavily on 
dispatching rules and knowledge-based systems. The 
disadvantage with such dispatching rules is that 
there is no single rule that will be effective for all 
production conditions, and manual selection or 
updating is required where using rules [3,4]. Also 
the traditionally operational methods such as 
dynamic programming, branch & bound method, 
and integer programming can give an optimal 
solution only for a reasonably sized problem [5]. 
The use of knowledge base expert system also 

demonstrate inability to solve the complex job shop 
scheduling due to lack of limited and updated knowledge 
or expertise required from human experience. 
In this paper, we propose novel parallel genetic 
algorithm (PGA) approach using MATrix LABoratory 
(MATLAB) [6] GA toolbox to solve the JSSP in a 
parallel machine environment.   The experimental 
problems have been attempted using MATLAB 
computing environment. Due to the advantages of 
retarding premature convergence problem, we have 
focused on  the  parallelization strategy in GA. The goal 
of this research is to propose an efficient PGA-based 
scheduling methodology using MATLAB computing 
environment to address the JSSP. The work is supported 
by the experimental  results and conclusion. 
 
2 Problem Formulation for Job Shop 
Scheduling 
 
The concept of genetic algorithm (GA) has been 
successfully applied to many useful areas like 
artificial intelligence, pattern recognition and 
control problems. However, there is not enough 
reported work on combinatorial problems.  The 
application of GA can be useful with reasonable 
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time due to recent advancement in computing 
area.  Due to the stochastic nature of the GA, it 
can be usefully applied to the NP hard problems 
with useful results. In this paper, the PGA 
approach using MATLAB environment has 
been used. We exploited the flexibility and easy 
tradeoff in the GA parameters to avoid any 
premature convergence and have introduced a 
diversity in children selection. We start with a 
generic problem of Pm | |Cmax [7] for m 
machines in parallel. All jobs are released 
simultaneously where the objective is to 
minimize the makespan with no preemption 
allowed. This approach regards determination of 
an optimal job-shop schedule as a linear 
programming problem with integer adjustments, 
and then employs genetic algorithms to optimise 
a solution. The problem formulation  Let Cik 
denote the completion time of job i on machine 
k (i.e. the completion time of the particular 
operation of job i that needs machine k), m(i j k) 
be the machine for operation(i,j,k) and tijk, the 
processing time for operation (i,j,k). The values 
of Cik will off course help to determine the 
schedule. Most of the excellent work and 
problem formulation already done by J G Qi  and 
et al [8] was carried forward and new GA design 
parameters were introduced in the latest  
MATLAB release 14 environment to avoid the 
problem of premature convergence with 
improved and some new results. Such problems 
and issues have been reported by many 
researchers. This goal of minimum premature 
convergence with improved results was main 
focus in mind while solving the JSSP.  We tried 
the parallel GA approach and premature 
convergence problem of GA with the intelligent 
combination and mix of crossover and mutation 
operators was reduced to minimum. Here job-
shop operation is described by a triplet (i,j,k) i.e. 
operation j of job i is to be executed on machine 
k. If the operation (i,j-1,h) requires machine h, 
then operation (i,j,k) would require machine k, 
then used inequalities precedence constraints. 
Ci k − Ci h − ti j k ≥0,   1 ≤  j ≤  m,   1≤ i ≤ n        (1) 
Where m and n are the number of machines and 
number of jobs, respectively. 
It is necessary to ensure that no two operations are 
processed simultaneously by the same machine. For 

example, if job i precedes job p on machine k (i.e. 
operation (i,j,k) is completed before operation (p,q,k)), 
this is equivalent to a constraint of: 
Cp k - Ci k - tp q k ≥ 0                         (2) 
On the other hand, if job p precedes job i on machine k, 
then it is also necessary to ensure that: 
Ci k - Cp k  - ti j k ≥ 0                                               (3) 
In order to adjust these constraints in the formulation, a 
variable yipk is applied to specify the operation sequence, 
i.e. yipk  = 1   if job i precedes job p on machine k, and 
yipk  = 0 otherwise, the above constraints equation (2) 
and (3) become: 
Cp k - Ci k + N((1 − yi p k) − tp q k  ≥ 0                                (4) 
Ci k  - Cp k +  Nyj p k - tijk  ≥ 0                                      (5) 
Where constant N represents an arbitrary very large 
positive number. Therefore, the entire job-shop problem 
can be formulated as following keeping in view the 
makespan criteria: 

Minimize (max∑
=

n

i
C

1
 i k i )                        (6) 

Subject to  
C i k −Ci  h − t i   j k ≥ 0                      1 ≤ j ≤ m, 1 ≤ i ≤ n 
Cp k −Ci k + N(1−yi p k ) −tp q k  ≥0  i ≥ 1, p ≤ n, 1≤ k ≤ m 
Ci k− Cp k+ Nyi  p k− t i  j k ≥ 0              i ≥ 1, p ≤ n, 1≤ k ≤m 
Ci k ≥ 0                                             yi p k  =  0 or 1                  (7) 
    
yipk = 1 if job i precedes job p on machine k, and yipk = 0 
otherwise,   ki denotes the machine at which the last 
operation of job i is scheduled. 
Generally, makespan is important in parallel machines 
for scheduler to get a good balance [7].  The completion 
time of the last job would be the makespan of the 
schedule. In JSSP, the makespan represents also a good 
performance measure. The schedule with the minimal 
makespan often implies a high utilization of machines. 
 
3 A Proposed Parallel Genetic 
Algorithm on MATLAB Environment  
 
The proposed structure of PGA with a Matlab GA 
toolbox structure is given in Figure 1. The overall 
structure of this PGA and its working is described next. 
 In this work, the initial population is created 
randomly. The fitness of these solutions is evaluated. If 
the fitness criteria is not met in the beginning, then new 
population are created using selection, crossover and 
mutation processes. 
 The objective of the selection method practiced 
in genetic algorithms is to give polynomial 
increasing trials to the fittest individuals. In this 
paper, different selection techniques like stochastic 
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uniform, roulette and tournament selection have 
been tried to pick the fittest initial solutions in 
the current scenario.  Elitism strategy picks the 
fittest individual copying without mutation and 
crossover. Elitism can very rapidly increase 
performance of GA, because it prevents losing 
the best found solution to date. This strategy has 
given favorable results in our computational 
results. 
 

 
Fig 1: A structure of parallel GA 

 
 In a genetic algorithm, crossover recombines 
the genetic material in two parent’s chromosomes to 
make two children, in order to generate a better 
solution. In this paper, four kinds of cross over 
operators; namely two point, intermediate, scattered 
and a custom crossover operators were tried. 
However, the special custom crossover SCX 
operator was found to be the most suitable.  The 
SCX operator is actually a combination of order 
based crossover and multipoint crossover operators. 
This operator always creates the valid and feasible 
genes. The order-based crossover operator applied to 
the first half of the substring is often used in 
sequencing problems because it maintains 
precedence constraints of operations from the 
parents to the offspring. It works by incorporating a 
string sequence from two different parents into two 
new strings. The mechanism of this crossover is 
addressed by first determining two cut points at two 
random positions on the gene strings, then passing 
the portion between the two cut points to the two 
offspring. The operator then begins to construct the 
remaining left-hand and right-hand sides. of the first 
offspring by going over the second parent and 

eliminating the same numbers with the passed portion of 
the first parent, and filling up the missing left and right 
sides according to an order existing on the second 
parent. A genetic algorithm will do this operation pair-
wise. Figure 2 (a) illustrates the SCX operator  with an 
example  given in Figure 2(b). 
 

 
Fig 2:(a) SCX operator(b) An operator’s example [8]  
  
 In this paper, we introduced a custom mutation 
instead of using Gaussian or uniform mutation from the 
tool box which sometime gives infeasible children 
during the swapping process.  The custom mutation 
works in two steps: firstly it allows mutating the two 
genes randomly, based on position followed by another 
mutation which is dictated by an order based swapping.  
This process is explained in Figure 3 (a  and  b). 
 

 
 
 Fig 3: (a) position based swapping (b) An order based 
swapping 
 
 The objective of scheduling is to minimise the total 
completion time of all jobs, i.e. all jobs should be 
completed as early as possible. The suitable objective 
functions are max (Ciki), and the optimising process is 
min(max(Ciki)). When formulating constraints penalty 
approach suggested by Goldberg [9] has been followed 
in this work as mentioned in equations (10) and (11) in 
section 5. This approach transforms a constrained 
problem into an unconstrained problem by associating a 
cost, or penalty, with all constraint violations for the 
objective function.  
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 The migration model divides the population in 
multiple subpopulations, also called island 
populations.  Migration options specify how 
individuals move between subpopulations. When 
migration occurs, the best individuals from one 
subpopulation replace the worst individuals in 
another subpopulation depending upon the 
competition. Individuals that migrate from one 
subpopulation to another are copied. They are not 
removed from the source subpopulation.  
 The important control parameters in the island 
migration model are: topology, direction, interval, 
fraction (rate) etc. In our approach, we  have focused 
mainly on three migration parameters i.e. direction, 
interval and its fraction.  The number of exchanged 
individuals, the selection method of the individuals 
for migration and the scheme of migration 
determines how much genetic diversity can occur in 
the subpopulations and the exchange of information 
between subpopulations. For example for a interval 
of 10 generations, if individuals migrate from a 
subpopulation of 60 individuals into a subpopulation 
of 100 individuals and you set fraction to 0.1, then 
the number of individuals that would migrate is 
0.1 * 60 = 6  after every 10 generation in the set 
direction (which could be forward or both). In this 
paper, we used the forward migration model with 
fraction of .25 and migration interval of 25 
generations.  
 The genetic processes of crossover, selection 
and replacement continue unless interrupted under 
certain termination criteria. The termination criteria 
used in this paper was as to be 200 maximum 
number of desired generation and stall generation as 
to be 60. 
 
4 Fitness Function and Chromosome 
and Constraint Representations 
The objective of scheduling is to minimize the 
maximum completion time i.e minimize makespan 
where objective function is,   
Obj = max (Ciki), so optimization function is, 
min(max(Ciki)). Now using Goldberg [9] approach 
for handling constraint in GA problem by 
transforming constrained problem into unconstrained 
problem by employing penalty function for the 
constraint violation. 
 
     Minimize z(x)            (8) 
     Subject to   gi(x)  ≥ 0  (I = 1, 2, …n)             (9) 
 

 where ‘x’ is an m vector. Thus the transformed 
unconstrained problem becomes: 

minimize    z(x) + r          (10) )]([
1

xg
n

i
i∑

=

φ

Where φ  - is a penalty function and r is a penalty 
coefficient. A number of alternatives exist for handling 
the penalty functionφ . In this paper, we have squared φ  
[gi(x)] = gi

2(x) for all violated constraints transformation. 
The chromosome was constructed on the basis of both 
job orders and waiting times [10]. The representation of 
the chromosome is composed of several substrings, each 
of which is referred to a machine as a resource.  
For the kth machine, the substring is represented as {Jk1, 
Jk2, Jk3,………Jkn, Wk1, Wk2,…….,Wkn}where Jki represents 
an operation of a job processed by the kth machine, and 
Wki is within the upper limit of the waiting time of the 
kth machine to process a job. Thus, if there are m 
machines, the whole string is made up of m substrings 
which are then composed of 2*n genes where n denotes 
the number of jobs to be processed by the machine[8]. 
For instance, a substring of kth machine which processes 
5 parts can be represented like {2 4 5 3 1  0 1 0 2 3}. In 
this substring, first five genes (2  4 5 3 1) means 2nd, 
4th, 5th, 3rd and 1st parts have a step to be processed by 
the kth machine in a fixed order. The later 5 genes (0 1 0 
2 3) means that 2nd and 5th parts needs to be processed 
at once when completing a previous part, and  wait 1 
unit if time before processing 4th part,  wait 2 units of 
time before processing 3rd part and wait 3 units of time 
before processing 1st part. The use of this kind of first 
half substring leaves us with only two choices i.e. either 
to use idle time or start time.  We have used idle time in 
our coding to narrow down the solution space. This type 
of string description naturally satisfies the constraints of 
Eqs (2) and (3) or Eqs (4) and (5), but it may not satisfy 
the constraint Eq. (1). To obtain a feasible solution, a 
penalty approach is adopted in this paper; therefore the 
fitness function is finally constructed as 
Fitness = min[max(Ciki)] +A∑ C

ij
( ik-Cih-tijk)2                    (11) 

where ‘A' is a weight 
 
5      Simulation Results and Discussion 
The simulation programs were written in MATLAB and 
computed with MATLAB GA toolbox.  The machines 
required for each operation and the operation-processing 
times are deterministic without any pre-emption on any 
machine. The optimal solution determined by a genetic 
algorithm provides a schedule for each machine. 
Example data of 8 jobs with workstations of 4 machines 
[11] is given in Table 1. 
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Table 1: Job shop Scheduling data 
 

Jobs Machine Sequence 
Processing 

Times 

Jobs 
Due 
date 

1 M1 M3 M2 M4 4 4 7 3 32 

2 M3 M1 M2 M4 3 4 4 2 30 

3 M1 M4 M3 M2 3 4 6 3 33 

4 M3 M2 M1 M4 6 4 3 4 29 

5 M4 M2 M3 M1 4 5 5 3 28 

6 M2 M4 M1 M3 4 6 5 4 34 

7 M2 M3 M4 M1 2 4 5 5 30 

8 M4 M1 M2 M3 3 3 3 5 36 

So the machine sequence matrix (with a workstation 
of 4 machines) and processing time’s matrices are: 

 
 Following parameters were used: weight A = 100, 
probability of crossover (Pc) = 0.7 and the 
probability of mutation (Pm) = 0.2 
The evaluation parameters used in the optimization 
process are given in Table 2. The simulation result is 
given in Figure 4. 
 
Table 2: genetic algorithm parameters 

 

 

Fig 4:  best and mean value plot for objective function  
The optimal solution found is as follows: 

  
The optimal solution using Gantt chart based on the 
PGA is plotted in Figure 5. 
 

 
Fig 5: Gantt chart showing scheduling result. 
 
 In this paper, we also conducted some experiment on 
randomly generated problem consisting of 20 jobs and 5 
machines.  The primary objective was to see the affect of 
population on performance. We first investigated how 
the population size influences the performance by 
proposed PGA.  First we fixed the maximum population 
size to be 200 and Pm and Pc both to be both 0.15. Under 
such lower ratios of crossover and mutation, the 
population size becomes the dominant factor in 
determining the performance of the proposed GA. Later 
on the population size was varied from 10 to 90. The 
results of experiment for the best, average and the worst 
values are plotted in Figure 6 for over 90 random runs 

 5

Proceedings of the 5th WSEAS Int. Conf. on Signal Processing, Robotics and Automation, Madrid, Spain, February 15-17, 2006 (pp345-350)



 

for each parameter setting.  It is found that the 
algorithm performance does not change significantly 
beyond the population size of 60.   
In another performance test, the algorithm was tested 
for fixing the population size to be 100 and 
maximum number of generation to be 200. From the 
performance graph in Figure 7, it is verified that 
mutation plays an important role in the genetic 
performance of the algorithm. 

 
Figure 6:  Affect of population on performance. 
 

 

Fig 7:  Average performance comparison for various 
Pm and Pc. 

The crossover, however, depends on the partitioning 
structure of the algorithm.  

6 Conclusion 
In this paper, we have tested the parallel genetic 
algorithms approach using MATLAB GA toolbox 
with a suitable designing and selection of genetic 
operators. The algorithm was implemented in 
calculating the makespan of JSSP. The performance 
of the algorithm has been tested for various JSSP 
with favorable results. It is verified that the proposed 
algorithm approach using MATLAB toolbox can be 
used to solve the other parallel machine job shop 

scheduling problems with vast computing capabilities of 
MATLAB 
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