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Abstract: - The aim of this paper is the proposition of a soft computing approach for solving patter recognition problems. In 
particular, starting from Shannon’s Fuzzy Entropy, we propose a mathematical model which extracts fuzzy inference with 
minimal entropy. The proposal approach has been applied to evaluate Synthetic Aperture Radar imagery. In addition, a 
comparison with the classical Shannon’s Fuzzy Entropy has been taken into account. 
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1   Introduction 
Pattern recognition problem is frequently approached in a 
lot of scientific fields. In order to solve it, various 
approaches have been used; at the beginning, classification 
tests were led by using linear classifiers (e. g. Bayesian 
classifier [1]), but great advantages were obtained with the 
introduction of nonlinear systems, such as Fuzzy Inference 
Systems (FIS), Artificial Neural Networks (ANNs) and 
Binary or Multi-Class Support Vector Machines (BSVMs 
and MCSVMs) [2], [3]. The main aim is to structure a 
handly-user pattern recognition model, sufficiently 
autonomous from user interferences and with good 
performances in terms of: reliability, robustness, 
computational complexity and times, as during training as 
during testing phases. 
     The aim of our work is to build a thematic map starting 
from a Fuzzy model by using Fuzzy Entropy Theory. In 
particular, a Fuzzy Entropy measure based on Shannon’s 
informative entropy theory (i.e. Shannon’s Fuzzy Entropy, 
SFE) has been considered, and a mathematical model able 
to build a pattern classifier with minimal entropy has been 
implemented. This is the proposed Minimal Fuzzy Entropy 
(MFE) classifier. It has been tested in a Synthetic Aperture 
Radar (SAR) context, in particular by approaching the 
problem of a good recognizing of punctual zones inner a 
SAR image, according to the specific civil or military 
application in which remote sensing is applied. Moreover, 
a comparison with usual SFE has been carried out. 
     The paper is organized as follows: section 2 describes 
mathematical fundamentals of MFE; section 3 intuitively 
describes SAR system as well as our case study; in section 
4 implementation of MFE classifier is explained; section 5 
shows a comparison between proposed approach and an 
usual SFE-based classifier; finally, in section 6, 
conclusions are depicted. 
 

2   MFE: Decisional Models Implementation 
and Classification Approach 
In a pattern classification problem,  is the level of 
fuzzy membership of jth defect to kth class (k=1, 2, …, N). 
Let N classes are given, the shading-type partition 
produces N informative layers representing membership 
levels of the defects to the selected classes. Shannon index 
[4] has been widely applied to evaluate the fuzziness 
degree of a fuzzy classification. Entropy of a defect, H, i.e. 
its amount of statistic information, is: 
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where ln 0jku =  when  [5]. 0jku =

     According to fuzzification of Shannon Entropy 
principle, a new SFE-based approach has been considered 
through construction of a Minimal Fuzzy Entropy 
Decisional Model (MFEDM)  for each considered feature. 
In order to build each MFEDM, the following algorithm 
has been considered: 
1. let us denote X = {x1, …, xn} as a universal set of 

pattern space elements, with i = 1, …, n; 
2. let Ã be a k-elements fuzzy set (k<n) defined on an 

interval of pattern space; membership degree mapping 
of xi elements into the fuzzy set Ã is denoted as µÃ(xi); 

3. let C1, C2, …, Cm be the m classes into which the n 
elements are divided; 

4. let SCj(xn) represent a set of elements of jth class into the 
universal set X; 

5. let us define Dj (2), the match degree with the fuzzy set 
Ã for elements of jth class in an interval, where j = 1, 2, 
…, m: 
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6. let us define SFE of elements of jth class in an interval, 
: ( )Ã

jCSFE
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7. let us define SFE in a universal set X for elements in an 
interval, SFE(Ã): 
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     In (4)  is a non-probabilistic entropy. 

Therefore, the term match degree for D
( )Ã

jCSFE

j has been coined. In 
the next section, the case study is going to be explained. 
 
 
3   The Synthetic Aperture Radar 
SAR is a high-resolution ground-mapping technique that 
effectively synthesizes a large receiving antenna by 
processing the phase of the reflected radar return. SAR 
technology is used in various technical fields, such as 
environmental monitoring, earth-resource mapping, and 
military systems, basically because two advantages: 
1. application fields require broad-area imaging at high 

resolutions; 
2. many times the imagery must be acquired in inclement 

weather or during night as well as day: SAR provides 
such a capability.  

     The microwave part of the electromagnetic spectrum (1-
30cm) is used by radar. It was broken up into bands, listed 
in Table 1. For wavelengths in the region 30-75cm, the 
term P-band is often used. Because of atmospheric 
absorption effects, only certain sharply defined windows in 
the spectrum can be used for imaging purposes. 
 

Table 1– IEEE names for radar frequency bands 
Band Frequency range Wavelength range 

P 0.4÷1 GHz 30÷75 cm 
L 1÷2 GHz 15÷30 cm 
S 2÷4 GHz 7.5÷15 cm 
C 4÷8 GHz 3.7÷7.5 cm 
X 8÷12 GHz 2.5÷3.7 cm 

 
A detailed description of the theory of operation of SAR is 
complex; so we want to give an intuitive feel for how SAR 
works. Considering an airborne SAR imaging 
perpendicular to the aircraft velocity, SARs produce a two-
dimensional (2-D) image. One dimension in the image is 
called range (or along track) and is a measure of the "line-
of-sight" distance from the radar to the target. The along-
track resolution is obtained by timing the radar return 
(time-gating) as for ordinary radar; in this case it has to be 
considered two quantities: range measurement and 
resolution. Range is determined by precisely measuring the 
time from transmission of a pulse to receiving the echo 
from a target; the echo’s time delay is calculated as in the 
following equation (5): 

2R
t

c
=  (5) 

where R is the distance between radar and target. In the 
simplest SAR, range resolution is determined by the 
transmitted pulse width, i.e. narrow pulses yield fine range 
resolution.  Considered resolution is a spatial resolution, 
the so called slant range resolution: considering two target 
points P and P', lighted up by radar beam, echoes reflected 
by them can be distincted if they are time-separated by an 
interval at least equal to the length of a transmitted 
impulse. Defining TP as the impulse length, slant range 
resolution (Fig. 1) is calculated according to the equation 
(6): 

2
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where division by 2 is due to the round trip of signal. Since 
∆Rs e TP are directly proportional, as smaller TP is as 
greater resolution is. 
 

Fig. 1 –  Slant range resolution 

 
 
The other dimension is called azimuth (or along track) and 
is perpendicular to range. It is the ability of SAR to 
produce relatively fine azimuth resolution that 
differentiates it from other radars. The azimuthal resolution 
is obtained by processing the Doppler phase of the radar 
return; a physically large antenna is used to focus the 
transmitted and received energy into a sharp beam in order 
to achieve fine azimuth resolution. The beam sharpness 
defines the azimuth resolution. 
Achieving fine azimuth resolution may also be described 
by a doppler processing viewpoint. A target's position 
along the flight path determines the doppler frequency of 
its echoes: targets ahead of the aircraft produce a positive 
doppler offset; targets behind the aircraft produce a 
negative offset. As the aircraft flies a distance (the 
synthetic aperture), echoes are resolved into a number of 
doppler frequencies. The target's doppler frequency 
determines its azimuth position. Mathematically, let us 
define θH the solid angle in which is bordered the 
transmitted energy and from which the system replies to 
received signals: 

H
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where λ is the wavelength of transmitted energy; two target 
points lying on round at the same slant range distance R 
from radar can be distinguised only if they are not 
simultaneously on the same solid angle. From (7) and 
denoting the length of radar antenna in azimuth as LA, it is 
possible to consider the azimuth resolution like (8): 
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Since ∆AZ e LA are inversely proportional, as greater the 
antenna length is as better the azimuth resolution is. 
 
3.1 The Formation of SAR Images  
A SAR system illuminates a scene with microwaves and 
records both the amplitude and the phase of the back-
scattered radiation, making it a coherent imaging process.  
The received signal is sampled and converted into a digital 
image. The field recorded at pixel x, denoted E(x), can be 
written: 

( )( ) ( ) ( , )i s

s

E x a s e h sφ= ∑ x  (9) 

where the summation ranges over the scatterers, a(s) and 
φ(s) are respectively the amplitude and phase of the signal 
received from scatterer s, and h is the instrument (or point-
spread) function. The value of h is near 1 when s is in or 
near the resolving cell corresponding to pixel x, and near 
zero otherwise. Assuming that h is translation-invariant 
(does not depend on x) then it can be written as a one-
parameter function: h(s-x). Thus the detected field E is an 
array of complex numbers. The square of the modulus of 
the field at x is called the detected intensity at x; the 
square-root of the intensity is called the envelope or the 
amplitude. This is not the same as the amplitude of the 
received signal because the received field is perturbed by 
the instrument function. The amplitude of the received 
signal, a(s), is called reflectivity, and its square is called 
surface cross-section. That is what it would try to recreate 
when reducing the speckle. Datasets for SAR images can 
be stored as either intensity or amplitude data. It is 
important you know what type of data you are using. Many 
images are stored as amplitude since the speckle is less 
obtrusive when these images are displayed. 
 
3.2 Case Study  
In this paper, the image in Fig. 2 has been considered as 
case study: this is the gray-scaled version of a ERS-1 SAR 
multispectral survey of Torre de Hercules’ coast 
(December 13, 1992) [6]. It was taken ten days after the 
disaster in which the Greek oil tanker Aegean Sea 
exploded at Torre de Hercules releasing all of the oil into 
the sea. Aircraft observations allow to conclude the very 
dark area is heavily polluted sea, while the dark grey area 
and dark streaks are older and more dispersed oil. So, it 
can be observed three different zones (classes) into the 
SAR image: Sea (S), Petroleum (PE) an Natural Terrain 
(NT).  

 
Fig. 2 –  ERS-1 SAR image of Torre de Hercules’ coast 
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4   Implementation of MFE Classifier 
In order to implement a pattern classifier, two databases 
are needed: one collects the pattern vectors (input 
database) and the other links each pattern vector x to its 
membership class. In our case, statistical quantities from 
first to fourth order, retrievable from the SAR image, have 
been considered as inputs, since it is possible to 
approximate the informative contents retrieved by the 
image with the one described by these statistical 
parameters. According to these considerations, x has four 
components (features): average, standard deviation, 
skewness and kurtosis, calculated on some sets of pixels 
according to the following schema: 
1. first of all, some boxplots for each class have been 

selected on SAR image as characteristic samples of the 
same class (Fig. 3); each box plot is a square, which 
side is l=2n, 4<n<7, ; n∈

2. let us denote S as step coefficient, initially setted to 4; 
inner each boxplot, all squared SxS sub-boxplots have 
been considered, and their statistical values have been 
calculated; 

3. the step coefficient was multiplied by a 2 factor. 
     The algorithm was repeated while S l≤ . On the other 
hand, the training output database was created by using the 
codify shown in Table 2. 
 

Table 2 - Codify Used to Create Output Database. 
Class Assigned label 

S 1 
PE 2 
NT 3 

 
Table 3 - Range of Variation of Statistical Parameters. 

 Sea Petroleum Natural 
Terrain 

Average 33.12÷205.94 0÷26.69 31.12÷186.19
Standard  
Deviation 6.81÷49.68 0÷24.75 3.3÷96.34 

Skewness -2.64÷1.99 0.2÷15.84 -2.27÷1.94 
Kurtosis 1.26÷15.23 1.34÷317.36 1÷8.31 
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Fig. 3 –  Boxplots: a) Sea, b) Petroleum, c) Natural Terrain 
a) 
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     According to the mathematical algorithm proposed 
inner section 2, input and output databases have been used 
to find a MFEDM for each considered statistical 
parameter, in order to implement a MFE classifier. 
Matlab® workspace has been used, by a mixed exploiting 
of GENFIS® toolbox and self-made functions. Each 
MFEDM represents the fuzzy model which has the 
minimum value of entropy for a growing number of 
intervals (INTs), with INT initially setted to 3 (equal to 
number of classes in our case study). Table 4 shows INT 
value for each feature. 
 

Table 4 – INT Values for Each Considered Statistical 
Parameter. 

Mean Std. Dev. Skewness Kurtosis 
3 4 3 3 

 
     According to ranges showed in Table 3, each interval 
has been linked on each MFEDM with a triangular fuzzy 
membership function and an identification class. Average, 
skewness and kurtosis MFEDMs have a minimum of SFE 
corresponding to a number of intervals INT=3; standard 
deviation, instead, shows a minimum of SFE for a number 
of intervals INT=4, with PE class divided into two 
different intervals (Fig. 4). In this way, a MFE classifier 
has been implemented. 

Fig. 4 –  MFEDMs: a) Average, b) Standard Deviation, c) 
Skewness, d) Kurtosis. 
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5   Comparative Test Between Usual SFE-
based and MFE-based Classifiers 
In order to validate proposed approach, a comparative test 
has been carried out between MFE classifier and one based 
on usual SFE principle. In spite of the image exploited is 
again the Torre de Hercules survey, the evaluation phase of 
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classifier is not invalidated. In fact, while the training 
database has been built by using some representative 
boxplots (Fig. 3), the test database has been built by using 
the whole image. So, even considering a mixation phase of 
test dataset, data appears to classifiers like a different 
database as regards to training one. 
     Since extracted features have been statistical quantities, 
it would be illogical to consider each pixel out of the 
context of the whole image. Therefore, each pixel is 
analyzed putting it in a window of opportune dimensions. 
To get an accurate estimate regarding the analyzed pixel it 
is necessary to have a window rather ample; but the bigger 
is the ampleness of this window, the higher is the 
probability to have a inhomogeneity inside of the same 
window, with a completely unreliable estimate. That's why 
the choice of a 9x9 pixel window has seemed quite 
opportune. MFE classifier, as well as SFE-based one, 
retrieve a new image as classification result, where: 
− a white-color pixel shows a classification as Sea; 
− a black-color pixel shows a classification as Petroleum; 
− a gray-color pixel shows a classification as Natural 

Terrain. 
Classification results are showed in Fig. 5; let us denote 
how MFE classifier has better performance than usual 
SFE-based one. 
 

Fig. 5 –  Classification tests: a) MFE Classifier, b) Usual 
SFE-based classifier. 

a) 

b) 

 
 
 
6   Conclusions 
This paper presents a new Fuzzy entropy approach for 
pattern recognition problems. It is based on Shannon’s 
Fuzzy Entropy, developing the principle of minimal 

entropy for a Fuzzy Inference System and obtaining in this 
way a more performing classification model. The retrieved 
heuristic system has been tested on a soft computing 
analysis of a SAR image, in order to compare its 
performances with ones of an usual SFE-based classifier. 
In this final section, by means of Fig. 5, let’s go to sum up 
our work. As a visual analysis of Fig. 5 suggests, MFE 
classifier has the best performances, with a percentage of 
reliability around the 94%. SFE-based classifier shows a 
very low classification capability above all identifying the 
S zone; on the other hand, MFE classifier generally has 
very good performances, and particularly inner the band 
immediately over the wide oil spot, i.e. where the pollutant 
agent is more diffusely wasted on sea. Therefore, thanks to 
its “class separation” abilities, MFE classifier considers the 
zone as PE, with very important usefulness in such fields 
as environmental monitoring applications. 
     Finally, considering performed analyses and retrieved 
results, it is possible to affirm that classification machines 
based on MFE assure encouraging and noteworthy 
performances, above all when survey precision has to be 
privileged as regards the classification elapsed time (Table 
5). 
 

Table 5 – Comparison Between Fuzzy Classifiers. 
 Visual 

performances 
Elapsed 

classification time 
MFE classifier 94% 520.22 s 
SFE classifier 75% 165.83 s 
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