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Abstract: In this article an extension of the relational model with a new method is presented; i.e., the realisation 
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1 Introduction 

Problems arise while solving applied problems 
because as problem domains change initial data 
structures and their contents as well as algorithms 
of problems being solved often have to be 
changed. Since it is very difficult or impossible to 
plan for future modification beforehand, one is 
forced to design and program applied problems 
and to incorporate them into functioning systems 
anew. And that often changes algorithms for 
applied problems. Therefore, adaptive data 
processing systems are created whose purpose is 
to minimize difficulties in solving problems when 
data and the algorithms for their processing 
change. To create an adaptive system for data 
processing one must have data structures of large 
volume and various nature, in which both initial 
and processed data are provided in the same 
structures as expressed by relational sets (RS). 
These data structures can provide initial data and 
result data on real-world object, phenomena, 
processes, etc [1]. 

Since solving many applied problems requires 
that the data for processing be supplied in some 
order or sequence, for this purpose we provide the 
model for identifying relational sets that contains 
all the required identifiers. This model for 
identifying data structures provides an 
opportunity out of the totality of data expressed 
by relational sets to easily collect the data for 
designing and solving a particular problem in the 
order and quantity required. This allows one to 
control data completeness, decrease the time and 
resources for solving a problem, since the same 

model fits for any applied problem whose initial 
data and the data after processing are relational 
sets [2]. 

Having formed the set of initial data or the sets 
required for solving a particular problem, that 
problem can be solved as the realization of 
certain algorithmic dependencies between data 
because algorithmic dependencies appear 
between attributes. Therefore, while solving this 
problem the attributes are being associated, i.e., 
they depend on one another. As one of them 
changes other attributes can either change or not 
change. Also, the latter algorithmic dependencies 
may change. For one processing being designed 
they can be of some nature between the same 
attributes and for another processing they may 
need to be chosen in a similar manner. 

2 The Classification of Algorithmic 
Dependencies 

From a theoretical standpoint, the algorithmic 
data dependency is considered an algorithm that 
determines how data are processed while solving 
the problem required that is inside the same RS. 
If data are in a different RS, then it is necessary to 
perform the exclusive algorithmic dependency of 
data transformation. The algorithm realization of 
the latter dependency transforms out of any RS 
collection into one of the needed RS of initial 
data for a particular problem. The data in this data 
processing system are really attribute values cij of 
RS. For every attribute value or for any subset of 
RS values an ordered set of algorithmic 
dependencies is chosen whose programmable 
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modules for realizing algorithms of its elements 
perform data processing: 

<fij>→ <cij> → <c'
ij>, 

where <fij> is a set of algorithmic 
dependencies, <cij> – a set of initial data and 
<c'

ij> – the result of problem solution. 
If, while solving a data processing problem, a 

need for new algorithmic dependencies or the 
models for their realization arises because their 
totality at hand cannot perform certain actions 
required for solving the problem, then a new 
algorithmic dependency and the model for its 
realization is created that are included into the 
sets of algorithmic dependencies and 
programmable models already present. The new 
algorithmic dependency together with the others 
also includes the realization of the solution 
algorithm for the new problem. We can thus 
claim that the set of all algorithmic dependency 
classes and the number of algorithmic 
dependencies in the class is open. 

Algorithmic dependencies (AD) can be 
subdivided into six classes: 

1) The AD of RS transformations – f t. This 
class determines the operation that enables to 
transfer the attribute values required from the 
initial data sets for solving an already-formed 
particular problem to one common set. If needed, 
the structure and contents of data sets can be 
changed during transformation. 

2) The computation-infological AD – f ci. This 
class is divided into two closely interconnected 
but separate groups. The first group is used to 
describe various arithmetic operations also 
getting the results of these operations. The second 
AD group is used to compare the results of 
various arithmetic operations while checking the 
compatibility and correctness of various 
processes. 

3) The computational AD in domains – f c. 
Computation-infological ADs are applied to 
attribute values in RS tuples, so computational 
ADs are defined that are applied only to RS 
domains.  If arithmetic operations have to be 
performed in domains, an additional domain of 
special tuple keys and the sums of various 
attribute values is introduced. In this case, the 
distribution of attribute values and the number of 
tuples can vary. 

4) The internal AD of attribute values – f a. 
This is a group of very varied algorithmic 
dependencies, rather different from one another, 
that are relatively permanent. It means that as a 
particular attribute value is used in solving 
different problems, that attribute value can differ. 

Even such algorithmic dependency of an attribute 
value as an attribute value – number or text – 
cannot be considered permanent. If we define an 
attribute value as text, this value could not be 
used in an arithmetic operation. While solving 
one problem one may need to consider attribute 
values to be numbers, and solving another – to be 
text. 

5) The AD of program steps – f p. Many 
algorithmic dependencies use data from various 
RS addresses so it is necessary to start a program 
step at the required address and continue in the 
required direction. Otherwise, the process of data 
processing becomes incorrect or impossible. All 
program steps in algorithmic RS (ARS) are 
divided into successive and non-successive. An 
ARS is a set composed of the identifiers for 
algorithmic dependencies of attribute values that 
unambiguously determines the use of attribute 
values in a certain operation of data processing. 

6) The external AD – f e. The external 
dependencies of algorithmic RS regulate the 
interrelation of the ARS of the data being 
processed with the adjacent ARS. These links 
cannot be separated from the RS of the data being 
processed. 

Several of the main classes of algorithmic 
dependencies are described in more detail  in 
other sections. 

3 The Algorithmic Dependencies of 
RS Transformations 

RS transformations is one kind of algorithmic 
transformations and is denoted by f t. Set 
transformation are expressed by the formula that 
can change operation of relational algebra, and in 
many cases can exceed their capabilities. Since 
arithmetic or logical operation can be realized 
while performing transformations, the RS 
accepting data can be formed in part or fully out 
of completely new attribute values cij whose data 
has not been present at the source. If needed we 
can change both the structure and contents of data 
sets [3]. 

As noted before, an RS transformation is an 
operation that enables one to transfer attribute 
values from one set to another. The RS from 
which data is transformed is called a data source, 
and the set into which data is transformed is 
called an RS receiving data. If the data 
coordinates of the receiving RS are denoted by i 
and j, and the coordinates of a data source by k 
and l, then the data is transformed from addresses 
< k / l > to addresses < i / j >. The RS addresses 
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from which data is taken and the RS addresses to 
which data is entered must be at the same 
distance from the start of their own RS. It is 
sufficient to denote RS addresses by l and j, i.e., 
to show only the distance c from the start of the 
tuple. 

RS transformations can be subdivided 
according to semantics algorithms into 
unconditional, conditional, conditional 
continuous, conditional cyclical and result. 

In all the transformations mentioned except 
for unconditional the conditions for comparing 
data are denoted by the following symbols: = , ≠ , 
> , < , ≥ , ≤ , ∨∧, , ¬  . 

In conditional transformations the contents of 
addressed are compared, and the transformation is 
performed only if the condition is satisfied. 

Transformation addresses in RS can be of 
several kinds: 

- the addresses from which data is taken  
< k / l >; 
- the addresses to which data is deposited  
< i / j >; 
- the addresses whose contents are 
compared by the set condition { k / l }, 
{ i / j }. 

These addresses are merged into simple set not 
ordered ones because the addresses being 
compared can be very different. For example, the 
contents of one address can be compared with a 
large quantity of source addresses, and the 
transformation performed if the condition is 
satisfied. In this case the order of positioning 
source addresses has no significance whatsoever. 

Hence, the address structure of the 
transformation formula is as follows: 
 
{ k / l }n < k / l >n  < i / j >n { i / j }n. 

 
Here the contents of addresses { i / j } and { k 

/ l} are being compared; Σ is defined as a symbol 
for one of the comparison conditions mentioned 
above. When the condition is satisfied, data are 
transferred from address < k / l > to addresses  
< i / j >. The arrow indicates the direction of data 
transformation. Index n means the number of set 
order. At the same time these indices can be all 
different or all the same. If n values are different, 
then the comparison of data to satisfy the 
condition Σ is performed in some groups and the 
transformation of data in the others. If n values 
are the same, then data are compared and 
transformed in the same RS; i.e., the change (data 
positioning and/or their quantity) of one RS 
structure is performed. 

The data source can contain an unlimited 
number of RS and various schemas. Since such 
use of the data source is governed by one 
expression of the transformation formula, the 
formula must be capable of regulating the 
selection of data from the source and their 
inclusion into the receiving set. The symbol ∆  
denotes the data selection regulator, and the data 
inclusion regulator is denoted by ∇ . So the RS 
transformation formula is as follows: 

 
f  t (∆ {k / l}n <k / l>n ∇ <i / j >n {i / j}n). 
 

In case of unconditional transformation 
condition Σ is not in the formula and neither are 
the addresses in the parentheses. Hence, the 
formula of unconditional transformation: 

 
f  t (∆< k / l >n  ∇ < i / j >). 

 
In expression < i / j > index n has no meaning 

because the RS receiving data is always a single 
one. 

In all transformation data can be transferred 
from one set to another in three ways: 

 performing Cartesian transformation; 
 performing transformation in tuples; 
 performing transformation in domains. 

We set the schema for writing down 
transformation: 

 
[Data source – RS] [RS receiving data] = 

= [Transformation result – RS] 
 

We provide an RS example of Cartesian 
unconditional transformation that is performed 
according to the formula: 

f  t (< 1,2 > → < 3,4 >). 
 

 
  
 
 

 
 

 
 

 
 

Traditional capabilities of Cartesian product 
are extended by the formulas: 

f  t (< 1,2 > →  < 1,3 >); 
f  t (< 1,2 > →  < 2,4 >); 

because the RS result changes the RS schema 
itself: 

K L 
a b 
c d 

M N 
e f 
g h 

= 

M N K L 
e f a b 
e f c d 
g h a b 
g h c d 

= 

Σ 

Σ 
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The ability to change the RS schema is 
especially valuable because it extends the 
capabilities for manipulating data without 
increasing the quantity and complexity of 
programmable modules. An example of this can 
be the capability to get the following result by 
using address references in formula 

f  t (< 2 > →  < 3 >): 
 

 
 
 
 

 
 
   , 

 
 

 
 

Transformation in a tuple is performed by 
merging the tuples at the same distance from the 
start of an RS to one tuple: 

 
 
 
 

 
 
 
 
 
 

Unconditional transformations in a tuple are 
performed by the formula: 

f  t (< 1,3 > → < 2,4 >). 
If the data selection addresses in the data 

source and the data recording addresses in the 
receiving RS match, then unconditional data 
transformation in domains has to be performed, 
that is: 

f  t (< 1,2,3 > → < 1,2,3 >); 
 
 

 
 
  
 
 

 
 
 

 
 
 
   
 

The examples of unconditional data 
transformation provided illustrate only in a 
general sense the capability to change the 
structure and contents of relational sets during 
transformation. Transformation capabilities can 
be very easily changed and extended. 

4 Data Completeness  
Guaranteeing data completeness is achieved in 

two ways, the use of which in problems is 
necessary if the problem algorithm requires such 
completeness at all. First, it must be guaranteed 
that for solving a problem all the required RS for 
that solution be provided. Second, every RS 
provided must have all the tuples required for 
solving the problem.  

An RA is identified by aBD, where: a is a 
schema code (name); B  – the RS filled with 
attribute values for a dependency subject, i.e. B – 
a subject code or name; D – a time factor, its 
interval or moment, defining RS data. In the 
identification model attributes are denoted by 
upper case letters and attribute values by the same 
lower case letters [3].  

A compact representation of identifiers would 
be a1,2 B–b2-4 D–d1 with the capability to denote 
each component with any indices required and 
changing their positions in the formula: aBD, 
aDB, BaD, BDa, DaB, DBa. This way, for 
solving a particular problem we can guarantee the 
provision of any number of RS required and in 
any order of RS required [3]. The formula shown 
here can be expanded into the identifier sequence 
for each RS:  

a1,2 B–b2 - 4 D–d1 = 
= a1b2d1 ,  a1b3d1 , a1b4d1 , a2b2d1 , a2b3d1 , 

a2b4d1  
So it is evident that if no RS are found in a 

data source whose identifiers are in the identifier 
sequence provided for a particular problem, the 

K L 
a b 
c d 

M K N L 
e 0 f 0 
g 0 h 0 

= 

M K N L 
e a f b 
e c f d 
g a h b 
g c h d 

= 

K L 
a b 
c d 

M N 
e f 
g h 

= 

= M N L 
e f b 
e f d 
g h b 
g h d 

D E F 
s1 r1 z1 
t1 u1 v1 

A D B 
r t s 
u z v 

= 

A D B F 
r s1 s z1 
u t1 v v1 

= 

K L M N 
a1 b1 e1 f1 
c1 d1 g1 h1

K L N 
a b e 
,c d g 

, 

K L M
a2 b2 e2 
c2 d2 g2

K L M 
a b e 
c d g 

a1 b1 e1 
c1 d1 g1 
a2 b2 e2 
c2 d2 g2 

= 
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missing RS for solving the problem are 
determined. 

Checking data completeness in every RS 
provided for solution, it is determined if all tuples 
needed for a problem are in each of the RS. 
Therefore, at the RS schema it is necessary to 
indicate both key attribute and its value in a fixed 
order: 

- schema – r (K, L, M, N); 
- key attribute with keys –K(c1j , c2j , c3j ,..., cmj). 
Hence during the transformation of attribute 

values the tuples not needed for solving a 
particular problem are not touched, but if in RS a 
tuple from sequence: 

c1j , c2j , c3j ,..., cmj , 
is not found, then it is easy to determine that data 
is missing and precisely what tuples in a 
particular RS are not provided. 

5 Computation-Infological 
Algorithmic Dependencies 

Computation-infological ADs are algorithmic 
dependencies whose result of algorithm 
realisation is a number and a group of qualities 
that compute two numbers in a completely 
identical way and that relate them by one of the 
following symbols: 

= , ≠ , > , < , ≥ , ≤ . 
Computation (arithmetic) operations can be: 

+,  -,  : , ×  and others. 
The first group of the algorithmic 

dependencies of this class is called the 
computation AD and is denoted by f +

,  and the 
second – the infological AD and is denoted by f =. 
The general expression for the first group of 
algorithmic dependencies is: 

f +(A ψ A ψ [c] ψ ...→ A), 
where A is an address of an attribute value in a 

relational set; ψ – one of the symbols for 
computation operations; → – a reference to the 
address where the computation result is to be 
placed; [c] – a numerical constant (percentage 
calculation can serve as an example of using a 
constant). 

In the general expression for infological 
algorithmic dependencies a symbol for comparing 
data can replace only once any symbol of 
computation operations: 

f =(A ψ A ψ A ψ... A). 
Since this class closely relates computation 

operations and information logic reflected in the 
real object and processes, the algorithmic 

dependencies described are called computation-
infological dependencies. 

Conclusions 
The realisation of the data algorithmic 

dependencies defined not only indicates how we 
can process data while solving a certain applied 
problem but also enables to process them. It is 
possible because every algorithmic dependency 
for its concept has the realisation algorithm and 
the programmable module for realising that 
algorithm. Hence, we can use the same 
algorithms of algorithmic dependencies to solve 
various problems. It allows us to extend the list of 
solvable problems without writing new 
programmable tools, since the said algorithms can 
be realised by independent or autonomous 
programmable modules. If existing algorithmic 
dependencies are not sufficient for solving a 
particular problem, the system can be extended. 
That is performed not by creating programmable 
tools that would realise the algorithm of a new 
problem directly but by enhancing the existing 
system with new algorithmic dependencies that 
would enable, together with already existing 
ADs, to solve a new problem. This capability of 
enhancing the system often provides new 
capabilities not planned directly. And as the 
system is enhanced with new algorithmic 
dependencies, such additions are needed ever less 
frequently. 
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