
 1

The Change of Algorithmic Data Dependencies and their Properties in
Relational Sets

BIRUTĖ PLIUSKUVIENĖ, PETRAS ADOMĖNAS

Information SystemsDepartment
Vilnius Gediminas Technical University

Saulėtekio al. 11, Vilnius
LITHUANIA

Abstract: In this article an extension of the relational model with a new method is presented; i.e., the realisation
of algorithmic dependencies between attributes that are in initial data sets formed for solving a particular
applied problem. The concept, classification, general expressions and change of algorithmic dependencies are
defined.

Key-words: algorithmic dependencies, relational sets, attribute, identification model, tuple, domain.

1 Introduction

Problems arise while solving applied problems
because as problem domains change initial data
structures and their contents as well as algorithms
of problems being solved often have to be
changed. Since it is very difficult or impossible to
plan for future modification beforehand, one is
forced to design and program applied problems
and to incorporate them into functioning systems
anew. And that often changes algorithms for
applied problems. Therefore, adaptive data
processing systems are created whose purpose is
to minimize difficulties in solving problems when
data and the algorithms for their processing
change. To create an adaptive system for data
processing one must have data structures of large
volume and various nature, in which both initial
and processed data are provided in the same
structures as expressed by relational sets (RS).
These data structures can provide initial data and
result data on real-world object, phenomena,
processes, etc [1].

Since solving many applied problems requires
that the data for processing be supplied in some
order or sequence, for this purpose we provide the
model for identifying relational sets that contains
all the required identifiers. This model for
identifying data structures provides an
opportunity out of the totality of data expressed
by relational sets to easily collect the data for
designing and solving a particular problem in the
order and quantity required. This allows one to
control data completeness, decrease the time and
resources for solving a problem, since the same

model fits for any applied problem whose initial
data and the data after processing are relational
sets [2].

Having formed the set of initial data or the sets
required for solving a particular problem, that
problem can be solved as the realization of
certain algorithmic dependencies between data
because algorithmic dependencies appear
between attributes. Therefore, while solving this
problem the attributes are being associated, i.e.,
they depend on one another. As one of them
changes other attributes can either change or not
change. Also, the latter algorithmic dependencies
may change. For one processing being designed
they can be of some nature between the same
attributes and for another processing they may
need to be chosen in a similar manner.

2 The Classification of Algorithmic
Dependencies

From a theoretical standpoint, the algorithmic
data dependency is considered an algorithm that
determines how data are processed while solving
the problem required that is inside the same RS.
If data are in a different RS, then it is necessary to
perform the exclusive algorithmic dependency of
data transformation. The algorithm realization of
the latter dependency transforms out of any RS
collection into one of the needed RS of initial
data for a particular problem. The data in this data
processing system are really attribute values cij of
RS. For every attribute value or for any subset of
RS values an ordered set of algorithmic
dependencies is chosen whose programmable

Proceedings of the 5th WSEAS Int. Conf. on Artificial Intelligence, Knowledge Engineering and Data Bases, Madrid, Spain, February 15-17, 2006 (pp95-99)

 2

modules for realizing algorithms of its elements
perform data processing:

<fij>→ <cij> → <c'
ij>,

where <fij> is a set of algorithmic
dependencies, <cij> – a set of initial data and
<c'

ij> – the result of problem solution.
If, while solving a data processing problem, a

need for new algorithmic dependencies or the
models for their realization arises because their
totality at hand cannot perform certain actions
required for solving the problem, then a new
algorithmic dependency and the model for its
realization is created that are included into the
sets of algorithmic dependencies and
programmable models already present. The new
algorithmic dependency together with the others
also includes the realization of the solution
algorithm for the new problem. We can thus
claim that the set of all algorithmic dependency
classes and the number of algorithmic
dependencies in the class is open.

Algorithmic dependencies (AD) can be
subdivided into six classes:

1) The AD of RS transformations – f t. This
class determines the operation that enables to
transfer the attribute values required from the
initial data sets for solving an already-formed
particular problem to one common set. If needed,
the structure and contents of data sets can be
changed during transformation.

2) The computation-infological AD – f ci. This
class is divided into two closely interconnected
but separate groups. The first group is used to
describe various arithmetic operations also
getting the results of these operations. The second
AD group is used to compare the results of
various arithmetic operations while checking the
compatibility and correctness of various
processes.

3) The computational AD in domains – f c.
Computation-infological ADs are applied to
attribute values in RS tuples, so computational
ADs are defined that are applied only to RS
domains. If arithmetic operations have to be
performed in domains, an additional domain of
special tuple keys and the sums of various
attribute values is introduced. In this case, the
distribution of attribute values and the number of
tuples can vary.

4) The internal AD of attribute values – f a.
This is a group of very varied algorithmic
dependencies, rather different from one another,
that are relatively permanent. It means that as a
particular attribute value is used in solving
different problems, that attribute value can differ.

Even such algorithmic dependency of an attribute
value as an attribute value – number or text –
cannot be considered permanent. If we define an
attribute value as text, this value could not be
used in an arithmetic operation. While solving
one problem one may need to consider attribute
values to be numbers, and solving another – to be
text.

5) The AD of program steps – f p. Many
algorithmic dependencies use data from various
RS addresses so it is necessary to start a program
step at the required address and continue in the
required direction. Otherwise, the process of data
processing becomes incorrect or impossible. All
program steps in algorithmic RS (ARS) are
divided into successive and non-successive. An
ARS is a set composed of the identifiers for
algorithmic dependencies of attribute values that
unambiguously determines the use of attribute
values in a certain operation of data processing.

6) The external AD – f e. The external
dependencies of algorithmic RS regulate the
interrelation of the ARS of the data being
processed with the adjacent ARS. These links
cannot be separated from the RS of the data being
processed.

Several of the main classes of algorithmic
dependencies are described in more detail in
other sections.

3 The Algorithmic Dependencies of
RS Transformations

RS transformations is one kind of algorithmic
transformations and is denoted by f t. Set
transformation are expressed by the formula that
can change operation of relational algebra, and in
many cases can exceed their capabilities. Since
arithmetic or logical operation can be realized
while performing transformations, the RS
accepting data can be formed in part or fully out
of completely new attribute values cij whose data
has not been present at the source. If needed we
can change both the structure and contents of data
sets [3].

As noted before, an RS transformation is an
operation that enables one to transfer attribute
values from one set to another. The RS from
which data is transformed is called a data source,
and the set into which data is transformed is
called an RS receiving data. If the data
coordinates of the receiving RS are denoted by i
and j, and the coordinates of a data source by k
and l, then the data is transformed from addresses
< k / l > to addresses < i / j >. The RS addresses

Proceedings of the 5th WSEAS Int. Conf. on Artificial Intelligence, Knowledge Engineering and Data Bases, Madrid, Spain, February 15-17, 2006 (pp95-99)

 3

from which data is taken and the RS addresses to
which data is entered must be at the same
distance from the start of their own RS. It is
sufficient to denote RS addresses by l and j, i.e.,
to show only the distance c from the start of the
tuple.

RS transformations can be subdivided
according to semantics algorithms into
unconditional, conditional, conditional
continuous, conditional cyclical and result.

In all the transformations mentioned except
for unconditional the conditions for comparing
data are denoted by the following symbols: = , ≠ ,
> , < , ≥ , ≤ , ∨∧, , ¬ .

In conditional transformations the contents of
addressed are compared, and the transformation is
performed only if the condition is satisfied.

Transformation addresses in RS can be of
several kinds:

- the addresses from which data is taken
< k / l >;
- the addresses to which data is deposited
< i / j >;
- the addresses whose contents are
compared by the set condition { k / l },
{ i / j }.

These addresses are merged into simple set not
ordered ones because the addresses being
compared can be very different. For example, the
contents of one address can be compared with a
large quantity of source addresses, and the
transformation performed if the condition is
satisfied. In this case the order of positioning
source addresses has no significance whatsoever.

Hence, the address structure of the
transformation formula is as follows:

{ k / l }n < k / l >n < i / j >n { i / j }n.

Here the contents of addresses { i / j } and { k

/ l} are being compared; Σ is defined as a symbol
for one of the comparison conditions mentioned
above. When the condition is satisfied, data are
transferred from address < k / l > to addresses
< i / j >. The arrow indicates the direction of data
transformation. Index n means the number of set
order. At the same time these indices can be all
different or all the same. If n values are different,
then the comparison of data to satisfy the
condition Σ is performed in some groups and the
transformation of data in the others. If n values
are the same, then data are compared and
transformed in the same RS; i.e., the change (data
positioning and/or their quantity) of one RS
structure is performed.

The data source can contain an unlimited
number of RS and various schemas. Since such
use of the data source is governed by one
expression of the transformation formula, the
formula must be capable of regulating the
selection of data from the source and their
inclusion into the receiving set. The symbol ∆
denotes the data selection regulator, and the data
inclusion regulator is denoted by ∇ . So the RS
transformation formula is as follows:

f t (∆ {k / l}n <k / l>n ∇ <i / j >n {i / j}n).

In case of unconditional transformation
condition Σ is not in the formula and neither are
the addresses in the parentheses. Hence, the
formula of unconditional transformation:

f t (∆< k / l >n ∇ < i / j >).

In expression < i / j > index n has no meaning

because the RS receiving data is always a single
one.

In all transformation data can be transferred
from one set to another in three ways:

 performing Cartesian transformation;
 performing transformation in tuples;
 performing transformation in domains.

We set the schema for writing down
transformation:

[Data source – RS] [RS receiving data] =

= [Transformation result – RS]

We provide an RS example of Cartesian
unconditional transformation that is performed
according to the formula:

f t (< 1,2 > → < 3,4 >).

Traditional capabilities of Cartesian product
are extended by the formulas:

f t (< 1,2 > → < 1,3 >);
f t (< 1,2 > → < 2,4 >);

because the RS result changes the RS schema
itself:

K L
a b
c d

M N
e f
g h

=

M N K L
e f a b
e f c d
g h a b
g h c d

=

Σ

Σ

Proceedings of the 5th WSEAS Int. Conf. on Artificial Intelligence, Knowledge Engineering and Data Bases, Madrid, Spain, February 15-17, 2006 (pp95-99)

 4

The ability to change the RS schema is
especially valuable because it extends the
capabilities for manipulating data without
increasing the quantity and complexity of
programmable modules. An example of this can
be the capability to get the following result by
using address references in formula

f t (< 2 > → < 3 >):

 ,

Transformation in a tuple is performed by
merging the tuples at the same distance from the
start of an RS to one tuple:

Unconditional transformations in a tuple are
performed by the formula:

f t (< 1,3 > → < 2,4 >).
If the data selection addresses in the data

source and the data recording addresses in the
receiving RS match, then unconditional data
transformation in domains has to be performed,
that is:

f t (< 1,2,3 > → < 1,2,3 >);

The examples of unconditional data
transformation provided illustrate only in a
general sense the capability to change the
structure and contents of relational sets during
transformation. Transformation capabilities can
be very easily changed and extended.

4 Data Completeness
Guaranteeing data completeness is achieved in

two ways, the use of which in problems is
necessary if the problem algorithm requires such
completeness at all. First, it must be guaranteed
that for solving a problem all the required RS for
that solution be provided. Second, every RS
provided must have all the tuples required for
solving the problem.

An RA is identified by aBD, where: a is a
schema code (name); B – the RS filled with
attribute values for a dependency subject, i.e. B –
a subject code or name; D – a time factor, its
interval or moment, defining RS data. In the
identification model attributes are denoted by
upper case letters and attribute values by the same
lower case letters [3].

A compact representation of identifiers would
be a1,2 B–b2-4 D–d1 with the capability to denote
each component with any indices required and
changing their positions in the formula: aBD,
aDB, BaD, BDa, DaB, DBa. This way, for
solving a particular problem we can guarantee the
provision of any number of RS required and in
any order of RS required [3]. The formula shown
here can be expanded into the identifier sequence
for each RS:

a1,2 B–b2 - 4 D–d1 =
= a1b2d1 , a1b3d1 , a1b4d1 , a2b2d1 , a2b3d1 ,

a2b4d1
So it is evident that if no RS are found in a

data source whose identifiers are in the identifier
sequence provided for a particular problem, the

K L
a b
c d

M K N L
e 0 f 0
g 0 h 0

=

M K N L
e a f b
e c f d
g a h b
g c h d

=

K L
a b
c d

M N
e f
g h

=

= M N L
e f b
e f d
g h b
g h d

D E F
s1 r1 z1
t1 u1 v1

A D B
r t s
u z v

=

A D B F
r s1 s z1
u t1 v v1

=

K L M N
a1 b1 e1 f1
c1 d1 g1 h1

K L N
a b e
,c d g

,

K L M
a2 b2 e2
c2 d2 g2

K L M
a b e
c d g

a1 b1 e1
c1 d1 g1
a2 b2 e2
c2 d2 g2

=

Proceedings of the 5th WSEAS Int. Conf. on Artificial Intelligence, Knowledge Engineering and Data Bases, Madrid, Spain, February 15-17, 2006 (pp95-99)

 5

missing RS for solving the problem are
determined.

Checking data completeness in every RS
provided for solution, it is determined if all tuples
needed for a problem are in each of the RS.
Therefore, at the RS schema it is necessary to
indicate both key attribute and its value in a fixed
order:

- schema – r (K, L, M, N);
- key attribute with keys –K(c1j , c2j , c3j ,..., cmj).
Hence during the transformation of attribute

values the tuples not needed for solving a
particular problem are not touched, but if in RS a
tuple from sequence:

c1j , c2j , c3j ,..., cmj ,
is not found, then it is easy to determine that data
is missing and precisely what tuples in a
particular RS are not provided.

5 Computation-Infological
Algorithmic Dependencies

Computation-infological ADs are algorithmic
dependencies whose result of algorithm
realisation is a number and a group of qualities
that compute two numbers in a completely
identical way and that relate them by one of the
following symbols:

= , ≠ , > , < , ≥ , ≤ .
Computation (arithmetic) operations can be:

+, -, : , × and others.
The first group of the algorithmic

dependencies of this class is called the
computation AD and is denoted by f +

, and the
second – the infological AD and is denoted by f =.
The general expression for the first group of
algorithmic dependencies is:

f +(A ψ A ψ [c] ψ ...→ A),
where A is an address of an attribute value in a

relational set; ψ – one of the symbols for
computation operations; → – a reference to the
address where the computation result is to be
placed; [c] – a numerical constant (percentage
calculation can serve as an example of using a
constant).

In the general expression for infological
algorithmic dependencies a symbol for comparing
data can replace only once any symbol of
computation operations:

f =(A ψ A ψ A ψ... A).
Since this class closely relates computation

operations and information logic reflected in the
real object and processes, the algorithmic

dependencies described are called computation-
infological dependencies.

Conclusions
The realisation of the data algorithmic

dependencies defined not only indicates how we
can process data while solving a certain applied
problem but also enables to process them. It is
possible because every algorithmic dependency
for its concept has the realisation algorithm and
the programmable module for realising that
algorithm. Hence, we can use the same
algorithms of algorithmic dependencies to solve
various problems. It allows us to extend the list of
solvable problems without writing new
programmable tools, since the said algorithms can
be realised by independent or autonomous
programmable modules. If existing algorithmic
dependencies are not sufficient for solving a
particular problem, the system can be extended.
That is performed not by creating programmable
tools that would realise the algorithm of a new
problem directly but by enhancing the existing
system with new algorithmic dependencies that
would enable, together with already existing
ADs, to solve a new problem. This capability of
enhancing the system often provides new
capabilities not planned directly. And as the
system is enhanced with new algorithmic
dependencies, such additions are needed ever less
frequently.

References:
[1] P.G.Adomėnas, Data Functional Feature Sets
and their Adaptability, Proc. V East–European
Conference on Advances in Databases and
Information Systems, Vilnius, 2001, pp. 131-140.
[2] B.Pakalniškytė, P.Adomėnas, The
Identification Model of Data Structuries, Proc. IV
Conference on Information Technology, Alytus,
2005, pp. 157-162.
[3] P.G.Adomėnas, A.Čiučelis, Data Aggregation
Sets in Adaptive Data Model, Informatica, Vol.
13, No 4, 2002, pp. 381-392.
[4] A.Binemann-Zdanowicz, Current Issues in
Databases and Information Systems, Proc. East-
European Conference on Advances in Databases
and Information Systems, Prague, 2000, pp. 307-
314.
[5] B.Thalheim, Dependencies in Relational
Database, Teubner, 1991.
[6] J.D.Ullman. Principles of Databese and
Knowledge-Base Systems. Computer Science
Press, Rockville, 1988.

Proceedings of the 5th WSEAS Int. Conf. on Artificial Intelligence, Knowledge Engineering and Data Bases, Madrid, Spain, February 15-17, 2006 (pp95-99)

