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Abstract: - Grid computing is the principle in utilizing and sharing large-scale resources to solve the complex 
scientific problem. Under this principle, Grid environment has problems in providing flexible, secure, 
coordinated resource sharing among dynamic collections of individuals, institutions, and resources. However, 
the major problem is in optimal job scheduling, which Grid nodes need to allocate the resources for each job. 
This paper proposes the models for multi-objective jobs scheduling in Grid environment. The model presents 
the strategies of allocating jobs to different nodes. We develop the models based on multi-objective of genetic 
algorithm to select multiple optimization scheduling of the jobs. In this preliminary tests we show how the 
solution founded may minimize the average waiting time and the make-span time in Grid environment. The 
benefits of the usage of multiple objective genetic algorithm is improving the performance of the scheduling is 
discussed.   The simulation has been obtained using historical information to study the job scheduling in Grid 
environment. The experimental results have shown that the scheduling system using the multiple objective 
genetic algorithms can allocate jobs efficiently and effectively. 
 
Key-Words: - Grid computing, Genetic algorithm, job scheduling, optimal job scheduling, average waiting 
time, make-span time. 
 
1   Introduction 

 Grid Computing is the principle that occurs for a 
long period of time by focusing on virtual 
organizations [1] to share large-scale resources, 
innovating applications and in some cases getting 
high-performance orientation. Under this principle, 
Grid has problem in flexible, secure, coordinated 
resource sharing among dynamic collections of 
individuals, institutions, and resources. In Grid [2] 
concept is a new generation of technologies combine 
physical resources and applications that provide 
vastly more effective solutions to complex problems 
(e.g., scientific, engineering and business). These 
new technologies must be built on secure discovery, 
jobs allocates to resources, integration resources and 
services from the others. In [3] is a formal definition 
of Grid concepts. They define conceptual models is 
abstract machines that support applications and 
services. Fig. 1 taken from [3], are formally defined 
(e.g., Organization, Virtual Organization, Virtual 

Machine, Programming System, etc.). Currently, 
Global Grid Forum [4] formulated and provided 
standards documents of virtual organization. 

Grid Computing goes beyond distributing and 
sharing resources to more applications, which are 
adapting to use Grid resources. Although, using 
distributed resources are useful but this is possible 
only if the Grid resources are scheduled as well. The 
optimal scheduler will result in high performance in 
Grid computing but the poor scheduler will be 
making contrast result. Now, the Grid scheduling is 
big topic in Grid environment for new algorithm 
model.   

 The Grid scheduling is responsible for resource 
discovery, resources selection, and job assignment 
over a decentralized heterogeneous system, which 
resources belong to multiple administrative 
domains. Normally, the resources are requested by a 
Grid application, which use to computing, data and 
network resources etc. However, Grid scheduling of 
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applications is absolutely more complex than 
scheduling an applications of a single computer. 
Because resources information of single computer 
scheduling is easy to get information, such as CPU 
frequency, number of CPU a machine, memory size, 
memory configuration and network bandwidth etc. 
But Grid environment is dynamic resources sharing 
and distributing. Then an application is hard to get 
resources information, such as CPU load, available 
memory, available network capacity etc. And Grid 
environment also hard to classify jobs characteristic, 
that run in Grid. There are basically two approaches 
to solve this problems, the first is based on jobs 
characteristic and second is based on a distributed 
resources discovery and allocation system. It should 
optimize the allocation of a job allowing the 
execution on the optimization of resources. The 
scheduling in Grid environment has to satisfy a 
number of constraints on different problems. 

 We have defined a set of them to study the 
feasibility and the usefulness of applying genetic 
algorithm to this field. The model are designed for 
multiple objective in scheduling system in which 
often involve a lot of historical data and many 
complex objective. Our model consider in job 
submit time, run time, idle time and jobs end time 
that each jobs running on the Grid. Genetic 
algorithms are applied to solve the jobs scheduling 
system with multiple objective and the results have 
shown that the scheduling system using the multiple 
objective genetic algorithm can improve the 
performance and can allocate jobs efficiently and 
effectively.    

 In this paper we discussed multiple objective 
genetic algorithm in scheduling system. To this end, 
we are reviewing a related work in Section 2. Next, 
Section 3 we brief the classification scheduling. 
Section 4, show the internal resources selection. 
Section 5, we show genetic algorithms and our 
model. Section 6, show the configuration and the 
result of experiment. Section 7 concludes the paper 
by summarizing this work, and providing a preview 
of future research in this area, is given in Section 8 
 
 
2 Related worked 
Most of the job scheduling in Grid environment 
based on job execute time and job run time has been 
proposed. In [5], the module prediction engine is a 
part of scheduling and offer a history based 
approach for estimating the run time of job 
submission. Intelligence will be a key feature in the 
next generation of Grid environment. In [6] 
proposed two modules for predicting the completion 

time of jobs in a service Grid and applying genetic 
algorithm to job scheduling. The problems of 
scheduling system on the Grid environment has been 
in [7], [8], [9], [10]. All of them adopt the method of 
genetic algorithm for jobs scheduling by applying 
different jobs characterization to improve 
performance. We noticed that their methods focused 
on optimization or sub-optimization for scheduling 
system.  

Efficacious and effective job scheduling in Grid 
requires to model can allocate the available 
resources on Grid nodes to compute jobs, determine 
the current workload and predict the job execution 
time. In [11], was job scheduling in parallel and 
cluster computing; their goals are to achieve best 
performance and load balancing across the entire 
system.     

Facing varying situations, intelligent Grid 
environments need complicated scheduling 
strategies and algorithms to handle different kinds of 
jobs. 

Heuristic algorithms are often used in Grid 
environment for scheduling system. The algorithms 
use historical data of workload and explicit 
constraints to scheduling jobs [12], [13]. 

In [14] proposed models for scheduling system 
by using genetic algorithm with multiple goals. It’s 
considered problems in parallel machine scheduling. 

Our approach, especially examine the 
implications of the fact that workload of jobs is 
expected to have an impact on the resources 
utilization and, even more interestingly for 
researcher on the performance quality. We use 
information about static workload data from the 
Standard Workload Archive [14] and it has been 
experimented in several publications [15], [16]. 
These workload traces consists of information about 
all job submissions on a machine for a certain period 
of time which usually ranges over several months 
and several thousands of jobs. Therefore, it is 
reasonable to start with the available workload 
traces information from the compute centers to 
evaluate the impact of jobs characterization in Grid 
environment. 
 
 
3   Classification 

 The structure of the hierarchical classification of 
the taxonomy is shown in Fig. 2, taken from [17]. In 
the following subsections, we will briefly discuss 
the various design options for the allocation 
strategy. 
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3.1 Local vs global scheduling 
 At the highest level, general scheduling policies 

can be divided as local and global scheduling. Local 
scheduling algorithms are usually referred to the 
assignment of jobs to the time-slices of a single 
processor. As Global scheduling algorithms are 
normally referred to the assignment of jobs to the 
processors in parallel system.  

 
 

3.2 Static vs dynamic allocation  
 Processors allocation can be dynamic or static 

depending on the time at which the allocation is 
done. In static scheduling algorithms, all of 
information regarding the jobs must be entirely 
known before execution time. Therefore, the 
processor that will execute the process is decided 
right at this time. As dynamic scheduling algorithms, 
all of information regarding the jobs is usually 
unknown before the jobs are executed in the system. 
Therefore, the scheduling decisions are made on the 
fly.   
 
 
3.3 Distributes vs centralized allocation 

 Distributed scheduling algorithms, interact with 
each other and commit jobs to remote system. No 
central scheduling control is responsible for the 
scheduling system, as all of information on the state 
of available system in centralized scheduling 
algorithms must be collected here.   

 
 

3.4 Adaptive vs non-adaptive allocation 
 An adaptive scheduling algorithms change its 

scheduling decisions in response to the previous and 
current behavior of the system. Normally, adaptive 
scheduling algorithms are dynamic. As non-
adaptive scheduling algorithms does not change its 
scheduling decisions according to the previous and 
current behavior of the system.  
 
 
4   Internal resources selection 

  Large parallel computing and heterogeneous 
computing system are usually shared by many users. 
The mechanisms that support this sharing follow as. 

 
 

 4.1 Space-sharing 
  The machine may be partitioned into sets of 

processors and each processor is allocated to a 
single job that is allowed to run to completion. 
 

 
4.2 Time-sharing 

More than one job may be allocated to a 
processor, in which case each job runs on some 
quantum time before being preempted to allow 
other jobs to run.  

In our simulation we assumed that each of jobs 
is allowed to run in each node by using space-
sharing mechanism. In space sharing scheduling, a 
job requests a fixed number of nodes on arrival and 
the scheduling finds and allocates the nodes, 
possibly after the job has been in a waiting queue. 
The job executes on the available nodes until 
completion. As the nodes are not shared and the 
jobs are never preempt during execution. To 
simulate, we only need to know the submission 
times, the run times, the idle times and the end times 
of jobs. In most modern parallel machines, the 
physical location of the nodes on which job 
executes does not significantly affect the execution, 
and then the workload traces can be taken as the 
execution time for simulations. All scheduling 
optimizations evaluated in this paper are for a space 
sharing model. 
 
 
5 Genetic Algorithms and our Model 

 Genetic algorithms (GA) are a class of 
stochastic search algorithms which based on 
biological evolution [18], [19]. A basic GA can be 
represented as in Fig 7.2 taken from [20]. 

 Genetic algorithms combine the exploitation of 
past results with the exploration of new areas of the 
search space by using survival of the fittest 
techniques combined with a structured of 
randomized information exchange, a GA can mimic 
some of the innovative intelligence of human search. 
A generation is a collection of artificial creatures 
(strings). In every new generation a set of strings is 
created using information from the previous times. 
Occasionally a new part is tried for good measure. 
GAs are randomized, but they are not simple random 
walks. They efficiently exploit historical information 
to speculate on new search points with expected 
improvement. 

The approach used in this work generates a set 
of initial scheduling, evaluates the scheduling to 
obtain a measure of fitness, selects the most 
appropriate and combines then together using 
operators (crossover and mutation) to formulate a 
new set of solutions.  

The basic type of GAs, known as the simple 
GA (SGA), uses a population of binary strings, 
single point crossover, and proportional selection 
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[18], [19]. Many other modifications to the SGA 
have been proposed; some of these are adopted in 
our work by using multi-objective. The following 
subsections explain the steps in our proposed 
approach; 
 
 
5.1 Population 

Typically, SGA use of a population of 30-100 
individual solutions, as in our simulation use a very  
large population of 500 – 1,000 individuals in order 
to simulate. 
 
 
5.2 Initialization and Realization 

The first step in the GA is to create an initial 
population. Usually a random number generator is 
used to uniformly distribute numbers in the desired 
range. For our simulation, we use workload traces 
consist of jobs population and then chromosomes are  
               {

111 ,, irsJ , 
211 ,, irsJ , 

311 ,, irsJ , …,   
IirsJ ,, 11

,  

                
121 ,, irsJ ,

221 ,, irsJ , 
321 ,, irsJ , …,  

IirsJ ,, 21
, 

                     M            M              M         M             M  
               

11 ,, irs R
J ,

21 ,, irs R
J , 

31 ,, irs R
J , …,

IR irsJ ,,1
 

              
112 ,, irsJ , 

212 ,, irsJ , 
312 ,, irsJ   , …, 

IirsJ ,, 12
 

              
122 ,, irsJ ,

222 ,, irsJ  , 
322 ,, irsJ   , …, 

IirsJ ,, 22
 

                     M            M              M         M             M  
              

12 ,, irs R
J ,

22 ,, irs R
J  , 

32 ,, irs R
J   , …, 

IR irsJ ,,2
 

                     M            M              M         M             M  
              

1,, irs RS
J ,

2,, irs RS
J  , 

3,, irs RS
J   , …, 

IRS irsJ ,, }. 

            Figure 1 Chromosome of job in Grid 
 

Let s be the job submission time, r be the job 
run time and i be the job idle time. 

A variation to this is the extended random 
initialization, where the GA is seeded with 
individuals known to be in the vicinity of the global 
minimum. 
 
 
5.3 The Fitness and Objective Functions 

The objective function provides the mechanism 
for evaluating each chromosome in the problem 
domain. In this case of a minimization problem, the 
most fit individuals would have the lowest numerical 
value for their objective function. The fitness 
function normalizes the objective function value. In 
our model is multi-objective genetic algorithm, then 
our fitness function are: 

 

0
2

≅−= ∑
=

ij

p

j
idleTime ETSTT   ;j > i            (1) 

 
Let STj be the submission time of the j-th job 

and let ETi be the end time of the i-th job. Equation 
(1) represents the idle time of all the jobs where the 
aim of the process is to minimize the job idle time 
with respect to the scheduling. 

Let WT be the waiting time of the j-th and i-th 
job and let AWT be the average waiting time of jobs. 
We define 

 
ijomosomeCurrentchr WTWTAWT −≥  ; j > i     (2)   

  
 Equation (2) represents the average waiting 

time and waiting time of each job in Grid 
environment where the aim of the process is to 
minimize the average waiting time and waiting time 
of each job with respect to the scheduling. 

Let RT be the run time of the j-th and i-th that 
execute in Grid environment. We define  

 
                    

ij RTRT >     ; j > i                       (3) 
   
Equation (3) represents the run time of each job 

in Grid environment and it is to order the run time of 
each job to the scheduling.   

Equation (4) represents the average waiting 
time that calculates from current chromosomes and 
new average waiting times that calculate from new 
chromosomes.    

 
         Min(AWTCurrentChromosome )≥ Min(AWTNewChromosome)     (4) 
 

In equation (5), Let Makespan be the make-
span time of all jobs that execute in Grid. We define 

 
Min(MakespanCurrentChromosome)≥Min(MakespanNewChromosome)(5)                      
          
       The equation can be given weights θμφαβ ,,,,                     
to obtain the fitness function F: 
 

         )(
1

θμφαβ ++++=∑
=

=

nj

j

F                    (6) 

 
 

5.4 Selection 
Selection models use the survival of the fittest 

mechanism. Fitter solutions survive while weaker 
ones perish. In the GA, a fitter string is more likely 
to receive a higher number of offspring, increasing 
its chances of survival.  
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In the proportionate selection scheme where a 
string with fitness value Fi is allocated a relative 
fitness of Fi=F, where F is the average fitness of the 
population. The GA uses the roulette wheel style of 
selection to implement proportional selection. Each 
string is allocated a sector (slot) of a roulette wheel 
with the angle subtended by the sector at the center 
of the wheel. The algorithm selects strings until the 
next generation is completely generated. 
 
 
5.5 Crossover 

Crossover produces new individuals that have 
some portions of both parent's genetic material. A 
crossover rate Pc is chosen to promote rapid 
convergence. This rate has been chosen for use in 
Grid scheduling through a large number of 
experiments. If size of populations is Pop, then 
Pc*Pop parent are chosen, through the selection 
process, to create a new population.  

 The crossover process can produce illegal 
chromosomes that can contain the duplicates of the 
same job(s). We use the uniform permutation 
crossover [21] when we generate two child 
chromosomes from two parent chromosomes. It has 
two main steps. In the first step, we randomly 
generate a child chromosome (C) from parent 
chromosome (P). Then at each position (i) of C such 
that C(i) = ji and P(i) = ji, we copy ( )niP →2,1  to 

( )niC →2,1  by randomization of position (i) in 
chromosome and we crossover times equal Pc*Pop.  
 Fig. 2 shows an example of the crossover process. 
 

 
Master j1

P1

j2 j3 j4 …. jn

P1(j1) P1(j2) P1(j3) P1(j4) …. P1(jn)

P2(j1 P2(j2) P2(j3) P2(j4) …. P2(jn)

P1(j1) P1(j2) P2(j3) P2(j4) …. P2(jn)

P2(j1) P2(j2) P1(j3) P1(j4) …. P1(jn)

P2

C1

C2
 

                            Figure 2  
 
 
5.6 Mutation 
In GA, mutation is randomly applied with a low 
probability, typically in the range of 0.1-1.0 percent. 
In the GA, mutation is a background operator, 
ensuring that the probability of finding the optimal 
solution is never zero. Mutation also acts as a safety 

net to recover good genetic material that may be lost 
through selection and crossover. 

A mutation rate Pm is chosen experimental, also 
to promote rapid convergence. If size of the exiting 
population is Pop, then Pm * Pop chromosomes are 
chosen. For mutation process we generate randomly 
an integer j for each position (i) and then swap the 
elements at positions i and j in the chromosome. A 
high value of Pm can reverse the progress towards 
convergence; hence, this value must be selected in 
each case through careful study. 

To make the new population size equal to the 
existing population size, after the processes of 
crossover and mutation have been used, the 
remaining chromosomes are selected out of the 
existing population by making them identical with 
the best existing chromosomes, chosen through the 
selection process. This is referred to as elitism. The 
following algorithm expresses the basic ideas of the 
GA approaches with multi-objective. 
 
GA_Multi-Objective( ) 
{ 

Generate initial population of Jobs individuals 
Evaluate individuals according to fitness 
function; 

    While stopping condition is satisfied. 
    { 
       Count from 1 to amount generation; 
       Select two parents from initial population 
       (Population        Parent1 and Parent2); 
       Crossover (Parent1 and Parent2)       Child; 
       Mutation (Child); 
      Fitness (Child); 
      Improvement (Child); 
      Replace (Chromosome, Child); 
      Scheduling(best chromosome); 
    } 
 } return set of the best chromosome in population 
for job scheduling.  
 
 
6   Experimental setup and results 

  In this experiment, we used jobs workload data 
from the Standard Workload Archive [18]. This data 
consists of 18,239 jobs, each of which has 18 
properties field, however we focused on some 
properties that previous mention. In our experiments 
we assumed that each of jobs is allowed to run in 
each node by using space-sharing mechanism. Our 
simulation, we simulated 500 different performance. 
nodes in Grid environment. 
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Figure 3 Nodes workload in Grid environment 
 
Our experiments showed the average waiting 

time and make-span time of all jobs We define 
crossover rate (Pc) is 0.9, mutation rate (Pm) is 0.9 
and 1,000 generation with 10,000 populations for 
our experiments. 
Figure 4, 5 shows the average waiting time and 
make-span time by using genetic algorithm with 
multi-object. 
 

 
Figure 4 Average waiting time of all jobs in Grid 
environment 
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Figure 5 Make-span time of all jobs in Grid 
environment 
 

 
 
7   Conclusion 

We have studied the job scheduling problem for 
Grid environment as a combinatorial prediction and 
optimization. Several observations are in order.  
1. We have proposed a intelligence scheduling in 
Grid environment and used it for our algorithm by 
using genetic algorithm with multi-objective. 
2. We used jobs workload from the Standard 
Workload Archive [18] on space-sharing 
mechanism. We show that the proposed model 
captures the jobs characterization of real workload in 
three different classifications. This model can be 
used to our algorithm for simulating and evaluating 
scheduling policies for simulating Grid environment. 
3. Many scheduling algorithms for Grid environment 
depend on static information provided by the 
Standard Workload Archive [18] and the different 
performance nodes in Grid, simulating by us. We 
observe that this information is often unreliable. 
However, it is a useful way. 
4. The experiment results on the waiting time and the 
makespan have shown that the scheduling using our 
algorithm can allocate the best results. 
5. The results provided here suggest that the 
researcher look forward to new method for such 
problems should consider combine them with their 
method. 
 
 
8   Future Work 

We conclude the interesting topic problems are 
in order.   
1. Our simulation environment will include critical 
parameters, such as submit time, Grid network cost, 
job migrations overhead, fault tolerance. 
2. We plan to investigate the swarm intelligence 
mechanism, such as ant colony algorithm for Grid 
scheduling. 
3. We will include a more complex characterization of 
the constraints for Grid scheduling and will improve 
the complexity problems in Grid environment. 
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