
Genetic algorithm in Grid Scheduling with multiple
objectives

SIRILUCK LORPUNMANEE1, MOHD NOOR MD SAP2,

ABDUL HANAN ABDULLAH3, SURAT SRINOY4
1,4Faculty of Science and Technology, Suan Dusit Rajabhat University

295 Rajasrima Rd., Dusit, Bangkok, Thailand,
Tel: (662)-2445244, Fax: (662)-6687136

 http://www.dusit.ac.th

1,2,3Faculty of Computer Science and Information Systems, University Technology of
Malaysia, 81310 Skudai, Johor, Malaysia,
Tel: (607) - 5532070, Fax: (607) 5565044

 http://www.utm.my

Abstract: - Grid computing is the principle in utilizing and sharing large-scale resources to solve the complex
scientific problem. Under this principle, Grid environment has problems in providing flexible, secure,
coordinated resource sharing among dynamic collections of individuals, institutions, and resources. However,
the major problem is in optimal job scheduling, which Grid nodes need to allocate the resources for each job.
This paper proposes the models for multi-objective jobs scheduling in Grid environment. The model presents
the strategies of allocating jobs to different nodes. We develop the models based on multi-objective of genetic
algorithm to select multiple optimization scheduling of the jobs. In this preliminary tests we show how the
solution founded may minimize the average waiting time and the make-span time in Grid environment. The
benefits of the usage of multiple objective genetic algorithm is improving the performance of the scheduling is
discussed. The simulation has been obtained using historical information to study the job scheduling in Grid
environment. The experimental results have shown that the scheduling system using the multiple objective
genetic algorithms can allocate jobs efficiently and effectively.

Key-Words: - Grid computing, Genetic algorithm, job scheduling, optimal job scheduling, average waiting
time, make-span time.

1 Introduction

 Grid Computing is the principle that occurs for a
long period of time by focusing on virtual
organizations [1] to share large-scale resources,
innovating applications and in some cases getting
high-performance orientation. Under this principle,
Grid has problem in flexible, secure, coordinated
resource sharing among dynamic collections of
individuals, institutions, and resources. In Grid [2]
concept is a new generation of technologies combine
physical resources and applications that provide
vastly more effective solutions to complex problems
(e.g., scientific, engineering and business). These
new technologies must be built on secure discovery,
jobs allocates to resources, integration resources and
services from the others. In [3] is a formal definition
of Grid concepts. They define conceptual models is
abstract machines that support applications and
services. Fig. 1 taken from [3], are formally defined
(e.g., Organization, Virtual Organization, Virtual

Machine, Programming System, etc.). Currently,
Global Grid Forum [4] formulated and provided
standards documents of virtual organization.

Grid Computing goes beyond distributing and
sharing resources to more applications, which are
adapting to use Grid resources. Although, using
distributed resources are useful but this is possible
only if the Grid resources are scheduled as well. The
optimal scheduler will result in high performance in
Grid computing but the poor scheduler will be
making contrast result. Now, the Grid scheduling is
big topic in Grid environment for new algorithm
model.

 The Grid scheduling is responsible for resource
discovery, resources selection, and job assignment
over a decentralized heterogeneous system, which
resources belong to multiple administrative
domains. Normally, the resources are requested by a
Grid application, which use to computing, data and
network resources etc. However, Grid scheduling of

Proceedings of the 5th WSEAS Int. Conf. on Artificial Intelligence, Knowledge Engineering and Data Bases, Madrid, Spain, February 15-17, 2006 (pp429-435)

applications is absolutely more complex than
scheduling an applications of a single computer.
Because resources information of single computer
scheduling is easy to get information, such as CPU
frequency, number of CPU a machine, memory size,
memory configuration and network bandwidth etc.
But Grid environment is dynamic resources sharing
and distributing. Then an application is hard to get
resources information, such as CPU load, available
memory, available network capacity etc. And Grid
environment also hard to classify jobs characteristic,
that run in Grid. There are basically two approaches
to solve this problems, the first is based on jobs
characteristic and second is based on a distributed
resources discovery and allocation system. It should
optimize the allocation of a job allowing the
execution on the optimization of resources. The
scheduling in Grid environment has to satisfy a
number of constraints on different problems.

 We have defined a set of them to study the
feasibility and the usefulness of applying genetic
algorithm to this field. The model are designed for
multiple objective in scheduling system in which
often involve a lot of historical data and many
complex objective. Our model consider in job
submit time, run time, idle time and jobs end time
that each jobs running on the Grid. Genetic
algorithms are applied to solve the jobs scheduling
system with multiple objective and the results have
shown that the scheduling system using the multiple
objective genetic algorithm can improve the
performance and can allocate jobs efficiently and
effectively.

 In this paper we discussed multiple objective
genetic algorithm in scheduling system. To this end,
we are reviewing a related work in Section 2. Next,
Section 3 we brief the classification scheduling.
Section 4, show the internal resources selection.
Section 5, we show genetic algorithms and our
model. Section 6, show the configuration and the
result of experiment. Section 7 concludes the paper
by summarizing this work, and providing a preview
of future research in this area, is given in Section 8

2 Related worked
Most of the job scheduling in Grid environment
based on job execute time and job run time has been
proposed. In [5], the module prediction engine is a
part of scheduling and offer a history based
approach for estimating the run time of job
submission. Intelligence will be a key feature in the
next generation of Grid environment. In [6]
proposed two modules for predicting the completion

time of jobs in a service Grid and applying genetic
algorithm to job scheduling. The problems of
scheduling system on the Grid environment has been
in [7], [8], [9], [10]. All of them adopt the method of
genetic algorithm for jobs scheduling by applying
different jobs characterization to improve
performance. We noticed that their methods focused
on optimization or sub-optimization for scheduling
system.

Efficacious and effective job scheduling in Grid
requires to model can allocate the available
resources on Grid nodes to compute jobs, determine
the current workload and predict the job execution
time. In [11], was job scheduling in parallel and
cluster computing; their goals are to achieve best
performance and load balancing across the entire
system.

Facing varying situations, intelligent Grid
environments need complicated scheduling
strategies and algorithms to handle different kinds of
jobs.

Heuristic algorithms are often used in Grid
environment for scheduling system. The algorithms
use historical data of workload and explicit
constraints to scheduling jobs [12], [13].

In [14] proposed models for scheduling system
by using genetic algorithm with multiple goals. It’s
considered problems in parallel machine scheduling.

Our approach, especially examine the
implications of the fact that workload of jobs is
expected to have an impact on the resources
utilization and, even more interestingly for
researcher on the performance quality. We use
information about static workload data from the
Standard Workload Archive [14] and it has been
experimented in several publications [15], [16].
These workload traces consists of information about
all job submissions on a machine for a certain period
of time which usually ranges over several months
and several thousands of jobs. Therefore, it is
reasonable to start with the available workload
traces information from the compute centers to
evaluate the impact of jobs characterization in Grid
environment.

3 Classification

 The structure of the hierarchical classification of
the taxonomy is shown in Fig. 2, taken from [17]. In
the following subsections, we will briefly discuss
the various design options for the allocation
strategy.

Proceedings of the 5th WSEAS Int. Conf. on Artificial Intelligence, Knowledge Engineering and Data Bases, Madrid, Spain, February 15-17, 2006 (pp429-435)

3.1 Local vs global scheduling
 At the highest level, general scheduling policies

can be divided as local and global scheduling. Local
scheduling algorithms are usually referred to the
assignment of jobs to the time-slices of a single
processor. As Global scheduling algorithms are
normally referred to the assignment of jobs to the
processors in parallel system.

3.2 Static vs dynamic allocation
 Processors allocation can be dynamic or static

depending on the time at which the allocation is
done. In static scheduling algorithms, all of
information regarding the jobs must be entirely
known before execution time. Therefore, the
processor that will execute the process is decided
right at this time. As dynamic scheduling algorithms,
all of information regarding the jobs is usually
unknown before the jobs are executed in the system.
Therefore, the scheduling decisions are made on the
fly.

3.3 Distributes vs centralized allocation

 Distributed scheduling algorithms, interact with
each other and commit jobs to remote system. No
central scheduling control is responsible for the
scheduling system, as all of information on the state
of available system in centralized scheduling
algorithms must be collected here.

3.4 Adaptive vs non-adaptive allocation
 An adaptive scheduling algorithms change its

scheduling decisions in response to the previous and
current behavior of the system. Normally, adaptive
scheduling algorithms are dynamic. As non-
adaptive scheduling algorithms does not change its
scheduling decisions according to the previous and
current behavior of the system.

4 Internal resources selection

 Large parallel computing and heterogeneous
computing system are usually shared by many users.
The mechanisms that support this sharing follow as.

 4.1 Space-sharing
 The machine may be partitioned into sets of

processors and each processor is allocated to a
single job that is allowed to run to completion.

4.2 Time-sharing

More than one job may be allocated to a
processor, in which case each job runs on some
quantum time before being preempted to allow
other jobs to run.

In our simulation we assumed that each of jobs
is allowed to run in each node by using space-
sharing mechanism. In space sharing scheduling, a
job requests a fixed number of nodes on arrival and
the scheduling finds and allocates the nodes,
possibly after the job has been in a waiting queue.
The job executes on the available nodes until
completion. As the nodes are not shared and the
jobs are never preempt during execution. To
simulate, we only need to know the submission
times, the run times, the idle times and the end times
of jobs. In most modern parallel machines, the
physical location of the nodes on which job
executes does not significantly affect the execution,
and then the workload traces can be taken as the
execution time for simulations. All scheduling
optimizations evaluated in this paper are for a space
sharing model.

5 Genetic Algorithms and our Model

 Genetic algorithms (GA) are a class of
stochastic search algorithms which based on
biological evolution [18], [19]. A basic GA can be
represented as in Fig 7.2 taken from [20].

 Genetic algorithms combine the exploitation of
past results with the exploration of new areas of the
search space by using survival of the fittest
techniques combined with a structured of
randomized information exchange, a GA can mimic
some of the innovative intelligence of human search.
A generation is a collection of artificial creatures
(strings). In every new generation a set of strings is
created using information from the previous times.
Occasionally a new part is tried for good measure.
GAs are randomized, but they are not simple random
walks. They efficiently exploit historical information
to speculate on new search points with expected
improvement.

The approach used in this work generates a set
of initial scheduling, evaluates the scheduling to
obtain a measure of fitness, selects the most
appropriate and combines then together using
operators (crossover and mutation) to formulate a
new set of solutions.

The basic type of GAs, known as the simple
GA (SGA), uses a population of binary strings,
single point crossover, and proportional selection

Proceedings of the 5th WSEAS Int. Conf. on Artificial Intelligence, Knowledge Engineering and Data Bases, Madrid, Spain, February 15-17, 2006 (pp429-435)

[18], [19]. Many other modifications to the SGA
have been proposed; some of these are adopted in
our work by using multi-objective. The following
subsections explain the steps in our proposed
approach;

5.1 Population

Typically, SGA use of a population of 30-100
individual solutions, as in our simulation use a very
large population of 500 – 1,000 individuals in order
to simulate.

5.2 Initialization and Realization

The first step in the GA is to create an initial
population. Usually a random number generator is
used to uniformly distribute numbers in the desired
range. For our simulation, we use workload traces
consist of jobs population and then chromosomes are
 {

111 ,, irsJ ,
211 ,, irsJ ,

311 ,, irsJ , …,
IirsJ ,, 11

,

121 ,, irsJ ,

221 ,, irsJ ,
321 ,, irsJ , …,

IirsJ ,, 21
,

 M M M M M

11 ,, irs R
J ,

21 ,, irs R
J ,

31 ,, irs R
J , …,

IR irsJ ,,1

112 ,, irsJ ,

212 ,, irsJ ,
312 ,, irsJ , …,

IirsJ ,, 12

122 ,, irsJ ,

222 ,, irsJ ,
322 ,, irsJ , …,

IirsJ ,, 22

 M M M M M

12 ,, irs R
J ,

22 ,, irs R
J ,

32 ,, irs R
J , …,

IR irsJ ,,2

 M M M M M

1,, irs RS
J ,

2,, irs RS
J ,

3,, irs RS
J , …,

IRS irsJ ,, }.

 Figure 1 Chromosome of job in Grid

Let s be the job submission time, r be the job
run time and i be the job idle time.

A variation to this is the extended random
initialization, where the GA is seeded with
individuals known to be in the vicinity of the global
minimum.

5.3 The Fitness and Objective Functions

The objective function provides the mechanism
for evaluating each chromosome in the problem
domain. In this case of a minimization problem, the
most fit individuals would have the lowest numerical
value for their objective function. The fitness
function normalizes the objective function value. In
our model is multi-objective genetic algorithm, then
our fitness function are:

0
2

≅−= ∑
=

ij

p

j
idleTime ETSTT ;j > i (1)

Let STj be the submission time of the j-th job

and let ETi be the end time of the i-th job. Equation
(1) represents the idle time of all the jobs where the
aim of the process is to minimize the job idle time
with respect to the scheduling.

Let WT be the waiting time of the j-th and i-th
job and let AWT be the average waiting time of jobs.
We define

ijomosomeCurrentchr WTWTAWT −≥ ; j > i (2)

 Equation (2) represents the average waiting

time and waiting time of each job in Grid
environment where the aim of the process is to
minimize the average waiting time and waiting time
of each job with respect to the scheduling.

Let RT be the run time of the j-th and i-th that
execute in Grid environment. We define

ij RTRT > ; j > i (3)

Equation (3) represents the run time of each job

in Grid environment and it is to order the run time of
each job to the scheduling.

Equation (4) represents the average waiting
time that calculates from current chromosomes and
new average waiting times that calculate from new
chromosomes.

 Min(AWTCurrentChromosome)≥ Min(AWTNewChromosome) (4)

In equation (5), Let Makespan be the make-
span time of all jobs that execute in Grid. We define

Min(MakespanCurrentChromosome)≥Min(MakespanNewChromosome)(5)

 The equation can be given weights θμφαβ ,,,,
to obtain the fitness function F:

)(
1

θμφαβ ++++=∑
=

=

nj

j

F (6)

5.4 Selection
Selection models use the survival of the fittest

mechanism. Fitter solutions survive while weaker
ones perish. In the GA, a fitter string is more likely
to receive a higher number of offspring, increasing
its chances of survival.

Proceedings of the 5th WSEAS Int. Conf. on Artificial Intelligence, Knowledge Engineering and Data Bases, Madrid, Spain, February 15-17, 2006 (pp429-435)

In the proportionate selection scheme where a
string with fitness value Fi is allocated a relative
fitness of Fi=F, where F is the average fitness of the
population. The GA uses the roulette wheel style of
selection to implement proportional selection. Each
string is allocated a sector (slot) of a roulette wheel
with the angle subtended by the sector at the center
of the wheel. The algorithm selects strings until the
next generation is completely generated.

5.5 Crossover

Crossover produces new individuals that have
some portions of both parent's genetic material. A
crossover rate Pc is chosen to promote rapid
convergence. This rate has been chosen for use in
Grid scheduling through a large number of
experiments. If size of populations is Pop, then
Pc*Pop parent are chosen, through the selection
process, to create a new population.

 The crossover process can produce illegal
chromosomes that can contain the duplicates of the
same job(s). We use the uniform permutation
crossover [21] when we generate two child
chromosomes from two parent chromosomes. It has
two main steps. In the first step, we randomly
generate a child chromosome (C) from parent
chromosome (P). Then at each position (i) of C such
that C(i) = ji and P(i) = ji, we copy ()niP →2,1 to

()niC →2,1 by randomization of position (i) in
chromosome and we crossover times equal Pc*Pop.
 Fig. 2 shows an example of the crossover process.

Master j1

P1

j2 j3 j4 …. jn

P1(j1) P1(j2) P1(j3) P1(j4) …. P1(jn)

P2(j1 P2(j2) P2(j3) P2(j4) …. P2(jn)

P1(j1) P1(j2) P2(j3) P2(j4) …. P2(jn)

P2(j1) P2(j2) P1(j3) P1(j4) …. P1(jn)

P2

C1

C2

 Figure 2

5.6 Mutation
In GA, mutation is randomly applied with a low
probability, typically in the range of 0.1-1.0 percent.
In the GA, mutation is a background operator,
ensuring that the probability of finding the optimal
solution is never zero. Mutation also acts as a safety

net to recover good genetic material that may be lost
through selection and crossover.

A mutation rate Pm is chosen experimental, also
to promote rapid convergence. If size of the exiting
population is Pop, then Pm * Pop chromosomes are
chosen. For mutation process we generate randomly
an integer j for each position (i) and then swap the
elements at positions i and j in the chromosome. A
high value of Pm can reverse the progress towards
convergence; hence, this value must be selected in
each case through careful study.

To make the new population size equal to the
existing population size, after the processes of
crossover and mutation have been used, the
remaining chromosomes are selected out of the
existing population by making them identical with
the best existing chromosomes, chosen through the
selection process. This is referred to as elitism. The
following algorithm expresses the basic ideas of the
GA approaches with multi-objective.

GA_Multi-Objective()
{

Generate initial population of Jobs individuals
Evaluate individuals according to fitness
function;

 While stopping condition is satisfied.
 {
 Count from 1 to amount generation;
 Select two parents from initial population
 (Population Parent1 and Parent2);
 Crossover (Parent1 and Parent2) Child;
 Mutation (Child);
 Fitness (Child);
 Improvement (Child);
 Replace (Chromosome, Child);
 Scheduling(best chromosome);
 }
 } return set of the best chromosome in population
for job scheduling.

6 Experimental setup and results

 In this experiment, we used jobs workload data
from the Standard Workload Archive [18]. This data
consists of 18,239 jobs, each of which has 18
properties field, however we focused on some
properties that previous mention. In our experiments
we assumed that each of jobs is allowed to run in
each node by using space-sharing mechanism. Our
simulation, we simulated 500 different performance.
nodes in Grid environment.

Proceedings of the 5th WSEAS Int. Conf. on Artificial Intelligence, Knowledge Engineering and Data Bases, Madrid, Spain, February 15-17, 2006 (pp429-435)

Figure 3 Nodes workload in Grid environment

Our experiments showed the average waiting

time and make-span time of all jobs We define
crossover rate (Pc) is 0.9, mutation rate (Pm) is 0.9
and 1,000 generation with 10,000 populations for
our experiments.
Figure 4, 5 shows the average waiting time and
make-span time by using genetic algorithm with
multi-object.

Figure 4 Average waiting time of all jobs in Grid
environment

5.00E-02

6.00E-02

7.00E-02

8.00E-02

9.00E-02

1.00E-01

1.10E-01

1 32 63 94 125 156 187 218 249 280 311 342 373 404 435 466 497 528 559 590 621 652 683 714 745 776 807 838 869 900 931 962 993

Generation

Fi
tn

es
s

Figure 5 Make-span time of all jobs in Grid
environment

7 Conclusion

We have studied the job scheduling problem for
Grid environment as a combinatorial prediction and
optimization. Several observations are in order.
1. We have proposed a intelligence scheduling in
Grid environment and used it for our algorithm by
using genetic algorithm with multi-objective.
2. We used jobs workload from the Standard
Workload Archive [18] on space-sharing
mechanism. We show that the proposed model
captures the jobs characterization of real workload in
three different classifications. This model can be
used to our algorithm for simulating and evaluating
scheduling policies for simulating Grid environment.
3. Many scheduling algorithms for Grid environment
depend on static information provided by the
Standard Workload Archive [18] and the different
performance nodes in Grid, simulating by us. We
observe that this information is often unreliable.
However, it is a useful way.
4. The experiment results on the waiting time and the
makespan have shown that the scheduling using our
algorithm can allocate the best results.
5. The results provided here suggest that the
researcher look forward to new method for such
problems should consider combine them with their
method.

8 Future Work

We conclude the interesting topic problems are
in order.
1. Our simulation environment will include critical
parameters, such as submit time, Grid network cost,
job migrations overhead, fault tolerance.
2. We plan to investigate the swarm intelligence
mechanism, such as ant colony algorithm for Grid
scheduling.
3. We will include a more complex characterization of
the constraints for Grid scheduling and will improve
the complexity problems in Grid environment.

9 Acknowledgements

We would like to thank Suan Dusit
Rajabhat University for supported us.

References:
[1] Foster I, Kesselman C, Tuecke S. The anatomy

of the Grid: Enabling scalable virtual

1.00E+04
1.10E+04
1.20E+04
1.30E+04
1.40E+04
1.50E+04
1.60E+04
1.70E+04
1.80E+04
1.90E+04

1 32 63 94 125 156 187 218 249 280 311 342 373 404 435 466 497 528 559 590 621 652 683 714 745 776 807 838 869 900 931 962 993

Generation

Fitness

Nodes Utilization (%)

0

0.2

0.4

0.6

0.8

1

1.2

1 24 47 70 93 116 139 162 185 208 231 254 277 300 323 346 369 392 415 438 461 484
Nodes

C
PU

 U
til

iz
at

io
n

Proceedings of the 5th WSEAS Int. Conf. on Artificial Intelligence, Knowledge Engineering and Data Bases, Madrid, Spain, February 15-17, 2006 (pp429-435)

organizations. International Journal of
Supercomputer Applications 2001.

[2] I. Foster and C. Kesselman, Eds., The Grid 2:
Blueprint for a New Computing Infrastructure.
San Francisco, CA: Morgan Kaufmann, 2004.

[3] M. Parashar, J. Browne, Conceptual and
Implementation Models for the Grid.

[4] Global Grid Forum [Online]. Available:
http://www.gridforum.org.

[5] ArshadAli, Ashiq Anjum, Julian Bunn, R.
Cavanaugh, Frank van Lingen, R. McClatchey,
Muhammad Atif Mehmood, H. Newman, C.
Steenberg, M. Thomas, I. Willers.
PREDICTING THE RESOURCE
REQUIREMENTS OF A JOB SUBMISSION.

[6] Y. Gao, H. Rong, Joshua Zhexue Huang.
Adaptive grid job scheduling with genetic
algorithms.

[7] V. Di Martino, M. Mililotti, Schduling in a Grid
computing environment using Genetic
Algorithms, Proceeding of the International
Parallel and Distributed Processing Symposium,
2002.

[8] M. Aggarwal, Robert D., Kent and Alioune
Ngom, Genetic Algorithm Based Scheduler for
Computational Grids, Proceeding of the
International Symposium on High Performance
Computing System and Applications, 2005.

[9] V. Di Martino, M. Mililotti, Sub optimal
scheduling in a grid using genetic algorithms,
Parallel computing, 2004.

[10] U. Fissgus, Scheduling Using Genetic
Algorithms.

[11] Y. Zhang, H. Ranke, J.E. Moreira, A.
Sivasubramaniam, An integrated approach to
parallel scheduling using gang-scheduling,
backfilling and migration, in: Lecture Notes in
Computer Science, Vol. 2221, Springer, Berlin,
2001, pp. 133-158.
[12] O. Beaumont, A. Legrand, Y. Robert, Optimal

algorithms for scheduling divisible workloads on
heterogeneous systems, in: Proceedings of the
International Parallel and Distributed Processing
Symposium, 2003.

[13] H. Casanova, A. Legrand, D. Zagorodnov, F.
Berman, Heuristics for scheduling parameter
sweep applications in Grid environments, in:
Heterogeneous ComputingWorkshop 2000, IEEE
Computer Society Press, 2000, pp. 349–363.

[14] Parallel Workloads Archive.
http://www.cs.huji.ac.il/labs/parallel/workload/,
Juni 2004.

[15] J. Jann, P. Pattnaik, H. Franke, F. Wang, J.
Skovira, and J. Riordan. Modeling of Workload
in MPPs. In D. Feitelson and L. Rudolph, editors,

IPPS’97 Workshop: Job Scheduling Strategies
for Parallel Processing, pages 94–116. Springer–
Verlag, Lecture Notes in Computer Science
LNCS 1291, 1997.

[16] C. Ernemann, B. Song, and R. Yahyapour.
Scaling of Workload Traces. In D. G. Feitelson,
L. Rudolph, and U. Schwiegelshohn, editors, Job
Scheduling Strategies for Parallel Processing: 9th
International Workshop, JSSPP 2003 Seattle,
WA, USA, June 24, 2003, volume 2862 of
Lecture Notes in Computer Science (LNCS),
pages 166–183. Springer-Verlag Heidelberg,
October 2003.

[17] Thomas L. Casavant, Taxonomy of Scheduling
in General-Purpose Distributed Computing
Systems, IEEE Transactions on Software
Engineer, Februart,1988.

[18] D.E. Goldberg, Genetic Algorithms in Search,
Optimization, and Machine Learning. Reading,
Mass.: Addison-Wesley, 1989.

[19] J.J. Holland, Adaptation in Natural and
Artificial Systems. Ann Arbor, Mich.: Univ. of
Michigan Press, 1975.

[20] M. Negnevitsky, Artificial Intelligence: A
guide to intelligent system, Addison-Wesley,
2002.

[21] Goldberg D.E, Genetic Algorithm in Search,
Optimization, and Machine Learning, Addison-
Wesley, Reading, MA. 1989.

Proceedings of the 5th WSEAS Int. Conf. on Artificial Intelligence, Knowledge Engineering and Data Bases, Madrid, Spain, February 15-17, 2006 (pp429-435)

