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Abstract: - The temporal structure of wind was investigated by means of temporal correlations of 10-min wind 
time series measured over a period of one year (2004). The Hurst exponent (H), one of a number of methods to 
identify the existence of long-range correlations in experimental data, has been applied to quantify self-similarity 
scaling and correlations in the mesoscale temporal range. The Hurst exponent can be calculated by several 
different algorithms, each of which has particular advantages and disadvantages. One of these methods is via 
Structure Functions (SF’s) that has not yet been widely used in wind time series. In this work, SF method has 
been used in measured wind fluctuation for each month of the studied year. The results point out a multiscaling 
or scaling behavior, depending on the month analyzed, from 10 minutes till 3 hours, approximately, with a 
significant anti-persistence character. 
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1   Introduction 
Many time series show pronounced cyclic trends. For 
example, daily temperature data follow an annual 
cycle whose magnitude overwhelms other 
fluctuations; rainfall data in many areas undergoes a 
similar annual cycle of similar magnitude as well as 
wind velocity data (w)[11]. 
 
For most practical applications, such as engineering 
and meteorology one mainly distinguishes between 
large scale variations such as diurnal, weekly and 
seasonal changes and variations on small scales often 
referred to as atmospheric turbulence or gustiness [4]. 
The existence of a mesoscale gap as proposed by Van 
der Hoven [21], which divides micro, and macro 
scales in a more rigorous way has strongly been 
debated in recent years [6, 13]. 
 
The study of w is aimed at greenhouse control 
(heating and ventilation), since wind velocity 
influences both types of control. Wind increases heat 
losses in winter nights, so it is of interest to regulate 
the heating as a function of wind-speed (w). With 
respect to ventilation, the opening of the windows 
must be reduced with high values of wind velocity 
[9]. This kind of relationship makes the identification 
of patterns in the wind’s behavior very interesting. It 
is therefore desirable to compare the wind speed on a 
given date to the average of the wind speed on that 
date [1, 2, 19]. 
 

In the last few decades there has been an increasing 
recognition that multiplicative cascades combined 
with multiscaling analysis represent extremely useful 
tools for characterizing a variety of geophysical 
signals [3, 5, 19, 20]. 
 
Cascade model generate signals by dividing an 
interval assigned a single value into an integer 
number of parts, and assigning each new interval a 
new value, usually some random ratio of the initial 
value. This process is then iterated on each new 
interval, and so on. The resulting data can be 
described by the multifractal formalism [7, 8] and can 
be characterized with the use of multiscaling analysis, 
which determines the dependence of the statistical 
moments on the resolution with which the data are 
examined [15]. In some way, Frich and Parisi [7] 
introduced the idea to understand many geophysical 
time series data as a chaotic process. 
 
A stochastic fractal representation of wind-speed was 
introduced by Schmitt et al. [17] via the notion of 
universal multifractals [12]. Their idea is to represent 
time series as a realization of a Levy process and 
parameterize it via its codimension function. Whether 
or not there is a “universal multifractal model” 
remains a relevant topic of search [e.g., 11, 13, 14]. 
Even though reasonable looking simulations having 
intermittency, as found in wind-speed and rainfall, 
may be obtained a demand for reliable predictions 
has been growing lately [18]. 
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This type of analysis has important implications on 
the understanding of wind-speed patterns and shows 
this variable to be more heterogeneous than is usually 
modeled. The aim of this work is to study the 
multifractal nature of this series and to fully 
characterize the dynamical system that supports it. In 
this way, it is possible to simulate at high resolution 
(interval of 10 minutes) monthly wind-speed 
fluctuations series. 
 
 
2   Multifractal Analysis 
 
 
2.1. Structure Function 
For nonstationary processes, w(t), with stationary 
increments, the Structure Function (M) of order q is 
defined as the q-th moment of the increments of w(t) 
by the follow equation: 
 

q
iiq twtwM )()()( τττ +−+≡   (1) 

 
Where i denotes the ith data point, and  denotes 
the ensemble average. Structure Functions are 
generalized correlation functions, which is 
particularly evident from Eq. (1) for the case of q=2. 
In general, q may be any real number not just 
integers, and can even be negative. However, there 
are divergence problems inherent to the negative-
order exponent so that computations are best 
restricted to positive real number [5]. If the process 
w(t) is scale-invariant and self-similar or self-affine 
over some range of time lags 21 τττ ≤≤ , then the 
qth-order structure function is expected to scale as: 
 

)()( q
qq CM ζττ =     (2) 

 
where Cq can be a function of τ  which varies more 
slowly than any power of τ , and )(qζ  is the 
exponent of the structure function. )(qζ  is a 
monotonically non-decreasing function of q if w(t) 
has absolute bounds [8, 14]. Therefore, a hierarchy of 
exponents can be defined using )(qζ : 
 

q
q
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Where H(q) is the Hurst exponent (or self-similarity 
scaling exponent) [5]. Calculation of H(q) allows the 
straightforward identification of persistence, or long-

time correlation, as well as the 
stationary/nonstationary and monofractal/multifractal 
nature of the data [13]. Following the original work 
of Hurst [10], 15.0 << H  indicates persistence, 
while 5.0=H  indicates an uncorrelated random 
process, and 5.00 << H  can be taken to indicate 
anti-correlation. Stationary processes have scale -
independent increments and 0)()( ≡= qHqζ , due to 
the invariance under translation. Processes with a 
linear )(qζ  (or a constant H(q)) are non-stationary 
and monofractal, otherwise they are non-stationary 
and multifractal. 
 
In this case the value of q varies from 1 to +12 with 
an increment of 1. The numbers of points used in 
each regression line, obtained from Eq. (2) taking 
natural logarithms, for a fixed q to estimate )(qζ was 
always 9 points. 
 
 
2.2. Power Spectra 
In the analysis of real data, the statistics of the time 
series w(t) play a crucial role. As discussed by several 
authors [5], non-stationary scale -invariant, self 
similar processes are expected to have power spectra, 

)(ωS  that exhibit power law scaling as: 
 

βωω −∝)(S      (4) 
 
According to the Wiener-Khinchine theorem [16], the 
second order structure function is in Fourier duality 
with the power spectrum. Thus the relation between 
β  and H(q=2) for a monofractal process is given by: 
 
 31)2(21 <+==< qHβ    (5) 
 

Since β  and 
)2(

)(
=qH
qζ

 are independently computed 

from the power spectrum and structure function from 
the same data, Eq. (5) can be used to verify any 
assumptions of a nonstationary self-similar process 
with stationary increments. In contrast, for a 
stationary self-similar processed, the Wiener-
Khinchine theorem relates β  with H(q=2) as: 
 
 11)2(21 <−==<− qHβ    (6) 
 
 
2.3. Data 
Data used in this study was acquired from the 
climatic station of the Dpto. de Producción Vegetal: 
Botánica y Protección de Cultivos, placed in the 
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experimental fields of the Agricultural School of 
Madrid. Every ten minutes, the station recorded mean 
values of the wind velocity in m/s. This data was 
kindly furnished by Prof. Jose Luis García, from 
Polytechnic University of Madrid, Department of 
Rural Engineering. We used times series data from 
2004 (Fig. 1). Thus we handle in each yearly analysis 
a series of 105.408 data points, and in the monthly 
analysis a minimum of 4.176 values (February) and a 
maximum of 4.464. 

Figure 1. Wind velocity time series during March and 
April of 2004. 
 
 
3   Results and Discussion 
 
The determination of )(qζ  was done for each month 
separately. In Fig. 2 the results for February of 2004 
year are showed. This month presented the worst 
case of the months studied. For q=2 only the first 
nine points showed a linear pattern, but for higher q 
values the number of points that followed an straight 
line was lower. 
 
Because the aim of this study was to compare the 
structure presented in the time series, the analysis 
was done with the same methodology in the 
regression analysis, taking nine points, as it was the 
optimal case for almost of the time series. 
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Figure 2. Structure Functions (M) for q= 2, 4, 6, 8, 10 and 
12 for February of 2004. The arrow indicates the selected 
range to calculate the slope. 

 
The )(qζ  and H(q) functions are showed in Fig. 3 for 
three moths that represent all the cases found. 
 
February shows a different behavior from the other 
months, however the q values used are much higher 
that it is normally found in the literature. July shows a 
clear multiscaling pattern that can be checked with 
the power spectrum obtained for this month (figure 
4). Based in this plot β can be obtained given a value 
of 1.81, in accordance with the H(q=2) estimated. 
 
The last case showed is December. It has an anti-
persistent character but the almost H(q) constant value 
reveal a fractal nature and not multifractal. 
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Figure 4. Power spectrum(S(ω)) of wind fluctuations 
corresponding to July of 2004. 
 
 
4   Conclusion 
 
Over the last ten years there has been evident in the 
literature a growing interest in fractal and multifractal 
analysis of time series including winds. 
 
In terms of modeling wind time series, and the 
processes they reflect, it is important that we have 
means of usefully characterizing this multiscale 
heterogeneity, being one of them Structure Functions. 
Base on this modeling characterization and 
simulation of wind fluctuations can be possible and 
realistic. 
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Figure 3. )(qζ  and the corresponding H(q) function for three different months of 2004. Dot lines correspond to a )(qζ  function when H(q) is constant with a 
value of 0.5 (random process). 
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