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Abstract: - We investigate the convergence behavior of the normalized least mean square (NLMS) algorithm in the
structure of a linear transversal filter. At the n-th iteration, the traditional NLMS transversal filter generates the n-th
output signal by using linear convolution of the n-th input vector and the n-th coefficient vector. Based on this result,
the n-th coefficient vector is updated to the n + 1-th coefficient vector. We attempt a refined filtering (RF) approach
to the NLMS transversal filter, to generate another output signal by linear convolution of the n-th input vector and
the n + 1-th coefficient vector. Theoretical analysis and computer simulation demonstrate the effectiveness of the RF
technique.
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1 Introduction

For the last several decades, adaptive filtering techniques
have attracted considerable attention in many applica-
tion areas of signal processing. As the filter structure, a
transversal filter has been used due to the simplicity of
its structure. As the adaptation technique of the coeffi-
cients, the least mean square (LMS) algorithm [1] is the
most popular due to its efficiency and robustness against
numerical computation.

The normalized LMS (NLMS) algorithm is one of
the modified versions of the LMS algorithm. The NLMS
adaptation scheme is implemented as follows:

yn = XT
n Cn, (1)

en = dn − yn, (2)

Cn+1 = Cn + ∇n (3)

= Cn +
µ

XT
n Xn + β

enXn, (4)

where Xn = [xn, xn−1, . . . , xn−M+1]T is the input vec-
tor at the n-th iteration, T denotes transpose, Cn =
[c0(n), c1(n), . . . , cM−1(n)]T is the filter coefficient vec-
tor, yn is the output signal, en is the error signal, dn is
the desired signal, µ is the step-size to control the con-
vergence, and β is a small positive real constant to avoid
division by zero. It is known that advantages of the

NLMS algorithm over the LMS algorithm are mainly
potentially-faster speed of convergence [2] and stability
for the following known range of the step-size:

0 < µ < 2. (5)

The NLMS algorithm requires a small increase of com-
putation to the LMS algorithm. Thus, the NLMS al-
gorithm is often used rather than the LMS algorithm
and several modified NLMS algorithms have been in-
troduced [3, 4, 5].

It is also known that for µ = 1 and β = 0, the NLMS
algorithm works to minimize ‖Cn+1 − Cn‖2 where ‖ ·
‖2 denotes the squared Euclidean norm, subject to the
constraint [1]:

dn = XT
n Cn+1. (6)

Using the updated coefficient vector and the current
input vector, we consider to obtain another output and
error signals as

ypn = XT
n Cn+1, (7)

epn = dn − ypn, (8)

respectively, after the traditional operations of (1)-(4).
We call the operations of (7) and (8) the refined filtering
(RF) technique in this paper. From the constraint of (6),
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epn is obviously equivalent to zero for µ = 1 and β = 0.
However, no papers have reported the behavior of epn

for µ �= 1.
In this paper, we theoretically analyze the perfor-

mance of the NLMS transversal filter using the RF tech-
nique for several settings of µ. We also study an effect
of β on the improvement degree provided by using the
RF technique.

The remainder of this paper is organized as follows.
In Section 2, we clarify the effect of the RF technique.
We compare the derived result with some simulation re-
sults in Section 3. Section 4 concludes this paper.

2 Analysis

We theoretically show the effectiveness of the RF tech-
nique. Substituting (3) into (7) and using (1), we rewrite
ypn as

ypn = XT
n (Cn + ∇n)

= XT
n Cn + XT

n ∇n

= yn + XT
n ∇n. (9)

From (4), we have

XT
n ∇n =

µ

XT
n Xn + β

enXT
n Xn

= µenαn (10)

where

αn =
XT

n Xn

XT
n Xn + β

. (11)

Substitution of (10) into (9) and use of (2) yield

ypn = yn + µenαn

= yn + µαn(dn − yn)
= yn + µαndn − µαnyn

= µαndn + (1 − µαn)yn. (12)

We here substitute (12) into (8) and use (2). The epn is
then rewritten as

epn = dn − (µαndn + (1 − µαn)yn)
= dn − µαndn − (1 − µαn)yn

= (1 − µαn)dn − (1 − µαn)yn

= (1 − µαn)(dn − yn)
= (1 − µαn)en. (13)

From this result, we obtain

|epn|2 = (1 − µαn)2|en|2. (14)

ALE
Cn

vn

+
-

+

sn

yn

en

+

+
+ xn

z−D

Figure 1: Block diagram of the NLMS transversal en-
hancer.

Let us assume

αn ≈ 1 (15)

because β is a small positive constant. Equation (14) is
then reexpressed as

|epn|2 ≈ (1 − µ)2|en|2. (16)

We here focus on that µ must be set in the range of (5).
Then we obtain

(1 − µ)2 < 1. (17)

From (16) and (17), therefore, |epn|2 is obviously less
than |en|2.

3 Computer Simulations

We test the NLMS transversal filter algorithm using the
RF technique in the scenario of adaptive line enhance-
ment [6].

3.1 Adaptive line enhancement

Figure 1 illustrates the configuration of an adaptive line
enhancer (ALE) based on a transversal filter structure.
The sn is a sinusoidal signal, which is mathematically
given by

sn = A sin(2πfn) (18)

where A and f denote the amplitude and frequency of
sn, respectively. The vn is a zero mean additive white
Gaussian noise with variance σ2. Therefore, the noisy
sinusoidal signal, xn, is expressed by

xn = sn + vn. (19)

The ALE uses a delayed noisy sinusoidal signal as the
filter input. The input vector at the n-th iteration is there-
fore expressed by

Xn = [xn−D, xn−D−1, . . . , xn−D−M+1]T . (20)
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Figure 2: Block diagram of the NLMS transversal en-
hancer with the RF technique.

where D is a decorrelation delay. We use xn as the de-
sired signal dn for the ALE at the n-th iteration, which
means

dn = xn. (21)

In the same form as (1)-(4), therefore, the coefficients of
the ALE are adapted as follows.

yn = XT
n Cn,

en = xn − yn,

Cn+1 = Cn + ∇n

= Cn +
µ

XT
n Xn + β

enXn.

Figure 2 shows the configuration of an ALE with
the RF technique. The adaptation of the ALE with the
RF is implemented in the same as the ALE without RF.
We prepare another linear transversal filter for the RF
implementation. After the adaptation of the ALE at the
n-th iteration, Cn+1 is copied from the ALE into the
refined filter and ypn is calculated. The refined output
signal ypn is obtained by

ypn = XT
n Cn+1.

3.2 Results

We draw the conditions of computer simulations in Ta-
ble 1. Figure 3 illustrates the convergence of the NLMS
ALEs with and without the RF technique. From this fig-
ure, the mean square error (MSE) of the NLMS ALEs
with the RF technique is obviously smaller than that
without the RF technique. Let us confirm the property
of (16) discussed in the previous section. The average
of MSE of the NLMS ALEs without the RF technique is

Table 1: Conditions in computer simulations.
filter length M = 12
delay D = 5
sampling frequency 1[Hz]
frequency of sinusoid f = 0.01[Hz]
amplitude of sinusoid A = 1
noise variance σ2 = 1
stable parameter β = 0.01
individual trials 100runs
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Figure 3: Convergence of the NLMS ALEs for µ = 0.5
with and without the RF technique.

2.2805(dB) and that with the RF technique is −3.7345(dB).
Thus, we have

|en|2 = 102.2805/10 = 1.6906, (22)

|epn|2 = 10−3.7345/10 = 0.4232. (23)

The ratio of the two MSEs is then expressed by

|epn|2
|en|2 =

0.4232
1.6906

= 0.2503. (24)

We compare the analysis result (16) with the simu-
lation result (24). We rewrite (16) as

|epn|2
|en|2 ≈ (1 − µ)2. (25)

Substituting µ = 0.5 into (25), we have

|epn|2
|en|2 ≈ (1 − 0.5)2 = 0.25. (26)

Comparison of (24) and (26) obviously suggests the ef-
fectiveness of the RF technique. From (16), we here
describe the degree of improvement provided by the RF
technique in the form of dB as

10 log10(|epn|2) ≈ 10 log10((1 − µ)2|en|2)
≈ 10 log10((1 − µ)2) + 10 log10(|en|2).

(27)
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Figure 4: Convergence of the NLMS ALEs for µ = 0.8
with and without the RF technique.

We further substitute µ = 0.5 into (27). Then, the de-
gree of improvement is given by

10 log10((1 − µ)2) = 10 log10(0.25) = −6.0206(dB).
(28)

Therefore, the setting of µ = 0.5 provides an improve-
ment degree of about −6(dB).

3.3 Effect of β on the improvement degree

We can confirm that there exists a small difference be-
tween (24) and (26). The cause of this phenomenon
could be αn, which is affected by β because if β �= 0,
then αn �= 1. This is discussed here. As shown by (11),
αn is less than 1. In the case of 0 < µ ≤ 1, therefore,

(1 − µ)2 < (1 − µαn)2. (29)

Similarly, in the case of 1 < µ < 2,

(1 − µ)2 > (1 − µαn)2. (30)

In Fig.3, µ = 0.5 was used. We thus consider (29) here.
The simulation result of Fig.3, (24), does not use the
assumption of (15) and therefore is equivalent to (1 −
µαn)2. The analysis result (26) uses the assumption of
(15) and is equivalent to (1−µ)2. By comparing the two
results, we can confirm that (1 − µαn)2 is greater than
(1 − µ)2 in the case of 0 < µ ≤ 1.

3.4 Effect of µ on the improvement degree

We finally consider an effect of µ on the degree of im-
provement given by the RF technique. Figure 4 illus-
trates the convergence of the two NLMS ALEs where
µ = 0.8 is commonly used. From this figure, the MSEs
of the NLMS ALEs with and without the RF technique

are 3.2974(dB) and −10.6601(dB), respectively. There-
fore, the degree of improvement is −13.9574(dB). Com-
parison of Fig.3 with Fig.4 suggests that when µ is set to
a value close to 1, the improvement degree is large. The
theoretical analysis result (27) also suggests the effect of
µ. Assuming (15), the improvement degree is given by

lim
µ→1

10 log10((1 − µαn)2) ≈ −∞. (31)

Hence, we conclude that the improvement degree given
by the RF technique is the greatest for the setting of µ =
1. This property is equivalent to the constraint of (6).

4 Conclusion

We have investigated the convergence behavior of the
NLMS transversal filter algorithm using the RF tech-
nique. Theoretical analysis and computer simulation vi-
sualize that the RF technique always provides a perfor-
mance improvement and that when the step-size is set
to 1, the RF technique provides the greatest of the im-
provement degree.
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