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Abstract: - In modern imaging systems that use thermal or infrared detectors, it is necessary to control the 
system temperature with accuracy, in order to avoid variations in the response of the detector. In this work, we 
propose a solution based on the implementation of the Kalman filter to correct the signal drift in a focal plane 
array (FPA), which consists of a mosaic of 16x16 of Lead Selenide (PbSe) infrared detectors. We show that the 
Kalman filter-based solution improves other existing design methods. The performance of the proposed method 
is demonstrated by simulated and real data. 
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1 Introduction 
PbSe is a photoconductive detector sensitive to the 
radiation in the spectral range of 4,5 microns, MID-
IR, [1], [2]. When this kind of detector is used, it is 
necessary to control its temperature  with accuracy 
in order to avoid signal drift in the response of 
detector due to thermal unstability. For this 
purpose, a thermoelectrical cooler based on Peltier 
effect, and a temperature controller (based on 
Proportional-Integral-Derivative (PID) regulator 
algorithm) are used. Nevertheless, in a low cost 
system, it is necessary to avoid the hardware 
associated to the temperature control, as well as to 
use low power circuitry. 
The  proposed technique in this work avoids the 
drift due mainly to the thermal unstability in IR low 
cost systems, and is based on Kalman filtering [3]. 
The performance of the proposed algorithm is 
analyzed by using real infrared and simulated data. 
The block diagram of the system is presented in 
Figure 1: 
 
 
 
 
 
 
 
 
 

 
 
 

Fig. 1. Block diagram 
 

 
The rest of the paper is organized as follows. The 
problem formulation is given in Section 2. In 
Section 3, the Kalman filter is derived. In Section 
4, the proposed technique is applied to simulated 
data. In Section 5, the technique is applied to real 
infrared data, and its performance is evaluated. The 
conclusions are given in Section 6. 
 
 
2. Problem formulation 
In IR detectors without temperature control, output 
signal of analog-digital converter in Figure 1 tends 
to drift temporally as a result of variations in the 
temperature of detector and the package. To 
observe this phenomenon, let us present an 
example: we have captured 64 sets of 1000 samples 
of real data, with a sample period of 1 ms, and the 
mean value  of  each set of data was calculated. 
Figure 2 depicts the drift of the signal. 
 
 
 
 
 
 
 
 

 
 
 
 
 

Fig.2 Drift of signal 
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One possible technique to correct the drift of the 
signal is by using a reference detector in order to 
cancel the drift of the rest of detectors in the FPA. 
However, the thermal variation does not affect in 
the same way to all detectors, so it is no possible to 
get a full satisfactory cancellation of the drift, just 
as is presented  in Figure 3 : 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

Fig. 3. Drift correction 
 

Therefore, a more sophisticated  technique is 
needed when accurate correction is required. In this 
work, the proposed algorithm to cancel the drift of 
each detector is a Kalman filtering-based, and its 
performance is studied in section 3. 
 
 
3. The Kalman filter 
The solution to the problem of correcting the drift 
of the signal of a detector  proposed in this work is 
based on the Kalman filter, as is presented in 
Figure 1. The Kalman filtering is used in 
applications with nonstationary processes, [3], [4], 
as in the case of the temporal randomly drift. This 
filter is derived following the general procedure 
given in ref. [3], [4]. The derivation can be outlined 
in four main steps: derivation of the predictor 
estimate of the state vector, derivation of the 
predictor estimate of the observation vector, 
derivation of the Kalman gain, and derivation of a 
recursive equations for the error covariance matrix. 
Given the observations [ ]y n  in presence of 

Johnson noise, [ ]v n , i.e., [ ] [ ] [ ]y n z n v n= + , the 

filter must estimate the signal drift, [ ]z n , in order 
to cancel it. 
 
 

3.1 Filter equations 
 
The output signal of ADC in Fig. 1 can be written 
as: 

[ ] [ ] [ ]y n z n v n= + .              (1) 

The drift signal to estimate is, in this case, [ ]z n  , 

and [ ]v n is zero mean Gaussian noise, i.e., the 

noise in the in the observations. Because [ ]z n  is a 
signal with slow temporal variations, we adopt a 
model for this process  follows: 
 
[ ] [ ] [ ] [ ]1 1z n z n n w nα= − + − + ,               (2) 

 
where [ ]1z n −  is a process that models the offset 

of [ ]y n , i.e., a constant value obtained in the 

calibration process, and [ ]nα is a process which 
we use to model the slow drift of the signal around 
the calibration point; in this way, we model the 
drift [ ]z n as the composition of two process, a 

constant [ ]1z n −  and a ramp [ ]nα ; besides, 

[ ]w n  is a noise process to model the errors in the 

estimate of [ ]z n . The covariance matrix of [ ]w n  
is: 

[ ]WQ n = 1 2

3 4

w w
w w
 
 
 

 ,                                          (3) 

where: 
 

[ ]( )2
1w E z n=  ,  covariance  of [ ]z n                (4) 

 

[ ]( )2
4w E nα=  , covariance of [ ]nα                (5) 

 
[ ] [ ]( )2 3w w E z n nα= =  ,      cross-correlation of 

[ ]z n  and  [ ]nα .                    (6) 
   
State equation: 
 

[ ] [ ]
[ ]

[ ]
[ ] [ ]11 1

10 1
z n z n

X n w n
n nα α

   − 
= = +     −    

        (7) 

[ ] [ ] [ ] [ ]1 1X n A n X n w n= − − +                      (8) 
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Observation equation: 

[ ] ( ) [ ]
[ ]

1 0
z n

y n
nα

 
=  

 
 + [ ]v n                             (9)  

[ ] [ ] [ ] [ ]y n C n X n v n= +                           (10) 
 
According to the theory of the Kalman filter in [3], 
the algorithm is implemented as follows: 
 
Initial conditions of the algorithm: 

[ ] [ ]{ }0 | 0 0 0z E z
∧

= =               (11) 

[ ]0 | 0 0α
∧

=                                                        (12) 

[ ] [ ] [ ]{ } 1 0
0 | 0 0 0

0 1
P E X X  

= =  
 

              (13) 

Iterations for n=1,2, ......    

[ ] [ ] [ ]| 1 1 1 | 1x n n A n x n n
∧ ∧

− = − − −               (14) 

[ ] [ ] [ ]| 1 1 | 1 1 | 1z n n z n n n nα
∧ ∧ ∧

− = − − + − −      (15) 

[ ] [ ]| 1 1 | 1n n n nα α
∧ ∧

− = − −                            (16) 
 

[ ] [ ] [ ] [ ] [ ]| 1 1 1| 1 1H
wP n n A n P n n A n Q n− = − − − − +         (17) 

 

[ ] [ ] 1 2

3 4

1 1 1 0
| 1 1| 1

0 1 1 1
w w

P n n P n n
w w
    

− = − − +    
      

       (18) 

[ ] [ ] [ ] [ ] [ ] [ ] [ ] 1
| 1 | 1H H

vK n P n n C n C n P n n C n Q n
−

 = − − +       (19) 

 
Kalman gains: 

[ ] ( ) [ ]
1

21

2

1 1
| 1 1 0 | 1

0 0 v

k
P n n P n n

k
σ

−
      

= − − +      
            (20) 

[ ] [ ] [ ] [ ] [ ] [ ]| | 1 | 1x n n x n n k n y n C n x n n
∧ ∧ ∧ = − + − −        (21) 

[ ] [ ] [ ] [ ]1| | 1 | 1z n n z n n k y n z n n
∧ ∧ ∧ = − + − −  

     (22) 

[ ] [ ] [ ] [ ]2| | 1 | 1n n n n k y n z n nα α
∧ ∧ ∧ = − + − −  

     (23) 

[ ] [ ] [ ] [ ]| | 1P n n I k n C n P n n = − −        (24) 

 
We assume that noise [ ]w n   in Eq. (2)  is smaller 

than noise in the observations, [ ]v n , in Eq. (1), so 

the estimates of [ ]z n , [ ]z n , are reliable.  
 

In this way, we impose the next  condition: 
2

1 Vw σ  , 1 4w w= .                                      (25) 

Besides, we assume that [ ]z n  and [ ]nα  are 

uncorrelated, i.e.    2 3 0w w= = . In simulation and 

implementation of the filter,  8
1 10w −= . In this 

way, it is allowed a small error in the model of 
variation of [ ]z n  process, i.e., a few distrust in the 
estimates is assumed, in the case of the drift does 
not match to the  model in Eq. (2).  
 
 
4. Simulations 
In order to show the performance of our approach, 
we have tested it in two different set of data. First, 
we have simulated the behavior of the Kalman 
filter by means of synthetic data. The generated 
input signal consists of four different signals: a  
constant signal of value 30, a signal with slow drift, 
modeled as 20000 samples of a sinusoidal with low 
frequency and  amplitude 10, a ramp signal with 
slope 0.5, and finally, a zero mean Gaussian noise 
with standard deviation 0.5. In addition, we have 
modeled two point targets at different instants. 
 Figure 4 (a) depicts the original signal, Figure 4 (b) 
depicts the estimated signal, and Figure 4 (c) shows 
the corrected signal. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 4. Simulation of  Kalman filter 

 
As observed in Figure 4, results obtained  in the 
filter performance are satisfactory, because drift is 
estimated and canceled in a reliable way, whereas 
the targets are perfectly recovered. 
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 On the other hand, in Figure 5 the effect of 
variation of  raised time of estimate [ ]z n  is 
presented. In this case, the drift signal is modeled 
as a step function. We consider different values of 
the noise variance in the observations, 2

Vσ . 
 
 
 
 
 
 
 
 
 
 

 
 

Fig. 5. Estimate of drift 
 

In Figure 5, it is observed that the raised time is 
increased with the noise variance in the 
observations; this effect is due to the distrust of the 
observations when 2

Vσ  increases, so the filter takes 
a long time to reach the final value. Also, an 
oscillation in the amplitude of the estimate is 
observed, because we suppose in the simulation 
that 1 4 0w w= = . Thus, we assume the model in 
Eq. (2) correct, but this model is unmatched to the 
step function. To avoid the oscillation, a 
value 8

1 10w −=  or less is valid. 
 
 
5. Experiments with real data 
We have extended the experiments with synthetic 
data, thus the Kalman filter was implemented and 
applied to real data. Figure 6 shows the infrared 
camera used in our experiments. In the 
experiments, we have used a room temperature 
FPA of 16x16 detectors.  
 
 
 
 
 
 
 
 
 
 

 
Fig. 6. Camera used in the experiments with real data 

In order to show the performance of our approach, 
we have tested it  in two different set of data. In the 
first set of data, we have tested the behavior of the 
Kalman filter with the signal of one detector of the 
FPA when no target is present. The  input signal 
consists of 4253 samples, with a sample period of 1 
ms. 
Figure 7 (a) depicts the original signal and  the 
estimated signal when the parameters of the filter 
were: 

[ ]( )2 5 varV v nσ = , [ ]( ) 6
1 4 var 10w w w n −= = = , 

2 3 0w w= = .  

In all experiments, we use [ ]( )var v n  as an 

estimate of the variance of [ ]v n , calculated after 
the calibration of the camera, from 1000 first 
samples of signal, because we assume that no drift 
is present and the signal [ ]y n  consists of the noise 

in the observations.  
 
 
 
 
 
 
 
 
 
 
 
Figure 7 (b) depicts the original signal and  the 
estimated signal, but in this case the parameters of 
the filter were: 

[ ]( )2 5 varV v nσ = , [ ]( ) 8
1 4 var 10w w w n −= = =  

 
 
 
 

 
 
 
 
 

 
 
Figure 7 (c) depicts the original signal and  the 
estimated signal, when the parameters of the filter 
were: 

[ ]( )2 5 varV v nσ = , [ ]( ) 10
1 4 var 10w w w n −= = =
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In Figures 7 (a), (b), (c), it is observed that in the 
case of no target is present, results obtained in the 
performance of the filter are satisfactory, i.e., the 
drift is well estimated with parameters of the filter 

6 8 10
1 4 10 , 10 , 10w w − − −= =  . 

However, becuase of the drift does not match 
exactly to the model of constants and ramps in Eq. 
(2), we get the estimate of drift with more accuracy 
when   big errors in the model are allowed, i.e., 
when  [ ]( ) 6

1 4 var 10w w w n −= = = , as in the case 

of Fig. 7 (a). Nevertheless, we consider that the 
results are satisfactory with smaller values, 

8
1 10w −= , as in the case of Fig. 7 (b) . 

 
Figure 8 depicts the signal [ ]nα  that models 

ramps in Eq. (2), in two cases, when 6
1 10w −=  and 

8
1 10w −=  

 
 
 
 
 
 
 
 
 
 
 
 
 
As depicted in Figure 8, in the case of 8

1 10w −= , 

[ ]nα is smoother than when 6
1 10w −= ; besides, 

we have calculated the mean value and the standard 
deviation of [ ]nα  in both cases: 

[ ]( )
[ ]( )

8
1

8
1

´ 10

5
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ar 1.42*10
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w

E n
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α
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−
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[ ]( )
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4
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0.005447
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E n

n

α

α

−

−

=

−

=

=

=
 

 
In the second set of data, we have tested the 
behavior of the Kalman filter when a target is 
present. Now a target with a length of 100 samples 
is present.  
Figure 9 (a) depicts the original signal and  the 
estimated signal, and figure 9 (b) shows the 
corrected signal. The parameters of the filter were 

[ ]( )2 5 varV v nσ = , 6
1 4 10w w −= = . 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
As can be observed in Figure 9, when 6

1 10w −=  
because of the errors in the model are high , a part 
of target is cancelled. 
 
Figure 10 (a) depicts the original signal and  the 
estimated signal, and figure 10 (b) shows the 
corrected signal, when the parameters of the filter 
were [ ]( )2 5 varV v nσ = , 8

1 4 10w w −= = . 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 7 (c)  Estimate of drift Samples

Fig. 8 Estimate of [ ]nα  Samples 

6
1 10w −=

 

8
1 10w −=

 

Fig. 9 (a)  Estimate of drift 

Fig. 9 (b)  Corrected signal 
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And, finally, Figure 11 (a) depicts the original 
signal and  the estimated signal, and figure 11 (b) 
shows the corrected signal, when parameters of the 
filter were [ ]( )2 5 varV v nσ = , 10

1 4 10w w −= = . 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
As depicted in Figure 10 and Figure 11, when a 
target is present, good results are achieved, i.e., the 
target is not canceled, if the parameters 1ω  and 4ω  
are 810−  or smaller, 1010− ; thus, we assume that 
the errors in the model in Eq. (2) are small, and the 
filter only estimates a slow drift, so the target is no 
cancelled; moreover, the parameter of the filter, 

2
Vσ , calculated as [ ]( )2 5 varV v nσ =  is big enough 

to avoid transitory oscillations. 
 
 
6. Conclusions 
In this work, the performance of an algorithm for 
the drift correction in IR detectors by using real 
infrared and simulated data is analyzed. In a more 
complex and sophisticated camera, the matrix of 
detectors will be cooled and the temperature 
accuracy controlled. In this way, thermal 
unstability is not significant; nevertheless, the 
Kalman filtering is very useful to correct another 
serious problem of modern imaging systems which 
use a mosaic of detectors: the spatial 
nonuniformity. Each detector in the FPA has a 
photoresponse slightly different from that of its 
neighbors, called Fixed Pattern Noise (FPN). 
Moreover, what makes the nonuniformity problem 
more challenging is the fact that spatial 
nonuniformity drifts slowly in time; thus a one-time 
factory calibration will not provide a permanent 
remedy to the problem. Extern conditions, such as 
the surrounding temperature, variation of amplifier 
gain, and the time-dependence nature of the object 

irradiance, can cause the gain and the offset of each 
detector to drift slowly and randomly in time. The 
task of any nonuniformity correction algorithm is to 
compensate as needed to account for the temporal 
variation in the detectors’ response. The Kalman 
filtering is a powerful tool for the adaptive 
correction of any slow drift in the signal of an 
infrared and thermal imaging system. 
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