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Abstract: - We present a hypothetical approach to support existing methods in dealing with combinatorial 
complexity and describe the application of said approach to some typical combinatorial problems and 
techniques. 
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“Glory to God who created difficult  
unnecessary and unnecessary difficult.” 
Grigory Skovoroda (1722-1794) 

 
1   Introduction 
Analyzing the history of Artificial Intelligence (AI) 
shows that current achievements in the field are less 
impressive than was expected during the “romantic 
period”, when the AI sphere was created. There are a 
several reasons for this state, which are out of the 
scope of this paper, but one of the most important is 
the combinatorial complexity of AI problems. 
Because of combinatorial complexity currently we 
only have decisions for relatively small dimensions 
for many AI problems and far from the dimensions of 
real large-scale problems needed for industrial 
applications. Many AI problems are from the class of 
so called NP-complete problems [1] and till now it is 
an open question whether or not NP = P? This 
question is one of the seven problems, which were 
declared year 2000 as Millennium Prize Problems by 
The Clay Mathematics Institute of Cambridge, 
Massachusetts [2]. 
To overcome combinatorial complexity there have 
been proposed a multitude of approaches: operational 
research methods, constraint programming 
techniques, randomized algorithms, genetic 
algorithms, neural networks, etc. 
Despite of great achievements in these fields till now 
decisions of large-scale combinatorial problems 
remain problematic. At the same time a lot of 
practical applications (DNA-sequencing, bio-
informatics, data mining, statistical physics, etc.) 
currently are needing decision of combinatorial 
problems for huge (in limit infinite for statistical 
physics) number of dimensions. 
 So, the question is: what would be the way to 
support existing methods in dealing with 
combinatorial complexity? 

2   What is a possible way? 
Let us look at the paradigm of statistical mechanics. 
The ideal gas law formula is: 

TRVP ·· =  
 
Here P is pressure, V is the volume of the gas, R is 
gas constant and T is temperature. 
This law is precise despite the fact that the objects 
(molecules) are stochastic. 
The precision of the law is due to the tremendous 
number of objects in the analyzed system, which 
implies that the system exhibits a regular behavior in 
average. 
So the paradigm of statistical mechanics is:  
 

Stochastic → Deterministic 
 
Imagine deciding large-scale combinatorial problems 
inversely to the statistical mechanics paradigm. It 
means that we will treat deterministic data just the 
other way around - as stochastic data and will try to 
predict the deterministic combinatorial decision by 
statistical categories (e.g. by the prediction of 
distribution density for the elements participation in 
the optimal solution). Distribution density does not 
depend on permutation of sample elements and 
therefore it would be possible to cut down drastically 
the computational complexity of combinatorial 
problems. So, the proposed paradigm is: 
 

Deterministic → Stochastic 
 
But what are we paying for decreasing complexity by 
such a paradigm? We are losing the ordering of our 
initial data and as a result we are losing the ordering 
of data in the decision, because in this case our 
decision will also be described in statistical 
categories. However such knowledge about the 
distribution of the optimal decision could help us to 
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reduce the search space of the problem by dividing 
initial data into two groups: a group of initial data 
which are relevant for the optimal decision and a 
group of data which are irrelevant for the optimal 
decision. More over, knowledge about the 
distribution density for elements of the optimal 
decision could support us in creating algorithms for 
finding an optimal (suboptimal) combinatorial 
problem solution. 
 
 
3   Applying the paradigm to TSP 
The proposed paradigm was applied for deciding the 
Traveling Salesman Problem (TSP) [3]. The reason 
for using TSP as benchmark is its NP completeness 
and the fact that all NP complete problems could be 
transformed one to another in polynomial time [1]. 
The TSP is stated as follows [4]:  Given a finite 
number of “cities” along with the cost of travel 
between each pair of them, find the cheapest way of 
visiting all cities and returning to the starting point. 
Although it seems to be quite simple, solving it is 
very computationally expensive. As no polynomial 
time algorithm has been discovered, the only way to 
obtain the best solution is by calculating all possible 
routes. If we have a map with N cities, the number of 
possible routes will be N!. For example solving the 
problem for 30 cities, using a computer with 109 adds 
per second, would take over 8 · 1015 years.   
As was shown in [3] for the general (asymmetric) 
case of TSP, it is possible to predict for a given TSP 
weight matrix (matrix of all distances between cities) 
the distribution density for the elements of weight 
matrix which will participate in optimal decision.  
For light left tail TSP weight matrixes distributions it 
will be Rayleigh distribution: 
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For heavy left tail TSP weight matrixes distributions 
the optimal decision distribution will be γ-
distribution: 
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Methods for finding parameters of these distributions 
by a given asymmetric TSP weight matrix, 
calculating a prediction of the optimal tour length, its 
variance, and asymptotic behavior analysis for the 
predicted TSP optimal weight decision and its 
variance are also presented in [3].  
The result of this research provides an opportunity to 
reduce drastically the search space for solving 

asymmetric TSPs. For example, for the dimension of 
the problem n = 1000 we can delete nearly 99% of 
the elements of the weight matrix as irrelevant for the 
optimal decision.  For the dimension n = 10000 
nearly 99.9 % of the elements can be deleted, etc. 
After such a pruning according to predicted optimal 
decision distribution we can determine the 
probabilities for the remaining elements of the weight 
matrix to be included in the optimal decision to 
support finding an optimal TSP solution. 
 
 
4   How could these results be used? 
Now let us look shortly on possible usage of these 
results. 
 
 
4.1 Open TSP problems 
In [4] the following open theoretical TSP problems 
were formulated. 
 
Problem 13 
Establish that: 
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),...,( 1 nUUT  – The length of the shortest path. 

nUU ,...,1  – Uniformly distributed random variables 
on the unit square. 

),...,( 1 nUUVarT  – Variance for the length of the 
shortest path. 

)1,0(N  – Normal distribution with mathematical 
expectation 0 and standard deviation 1. 
 
As it was shown in [3] the length of the shortest path 
S can be represented as the sum of n independent 
probabilistic values of Rayleigh distribution with 
known mathematical expectation MX and variance 
DX. By the central limit theorem it follows: 
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Problem 16 
Establish that the variance of the TSP converges, i.e. 
show that in dimension 2 we have 

CUUVarT n →),...,( 1 , where C  is some positive 
constant. 

nUU ,...,1  – Uniformly distributed random variables 
on the unit square. 

),...,( 1 nUUVarT  – Variance for the length of the 
shortest path. 
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It was shown in [3] that for the case of the points 
distributed randomly and uniformly on the unit 
square there is the convergence of the variance and 
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4.2 Statistical physics 
Based on an analysis of experimental results, Percus 
et al [5] propose the hypothesis that for the case of n 
points, distributed randomly and uniformly in a unit 
square (Euclidean case), there is a limit for variance  

)(2
ELσ  of the optimal tour length EL , where 
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 “...the variance remains relatively constant... and in 
our Euclidean study σ being approximately half of 
0.59 value” [5]. 
As it follows from Problem 16: 
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In statistical physics the optimal decision of the TSP 
is precisely equivalent to finding the system’s lowest-
energy state. Therefore an opportunity to find in the 
general case the distribution function of the optimal 
TSP decision for the given distribution function of 
the initial state of the system could be theoretically 
interesting. 
 
 
4.3 Genetic algorithms 
In genetic algorithms one of the main problems is 
detecting and avoiding local minimums. In [6] by 
introducing the concept of Oracle, which is predicted 
distribution density for TSP optimal decision, an 
approach was proposed to detect and avoid local 
minimums. By Oracle it is possible to know the 
expected length of the optimal route and its variance. 
This information is used for evaluating whether we 
have found an appropriate solution or we have to 
keep on searching. Local minimums are detected by 
counting the number of generations that have been 
created without improving a best solution, which is 
sufficiently far from the one predicted by Oracle. 
When this number reaches a certain quantity, it 
means that we are in a local minimum and we have to 
act accordingly. The way of skipping a local 
minimum is going back in the evolution and trying to 
evolve in a different direction. This was 
accomplished by mutating a whole population 
enough so it does not get back to the same solution 
we had in the local minimum, but not so much that 
we loose all the evolution we had already performed. 

One more problem of genetic algorithms is 
generating the initial population. 
Starting from a sufficiently good initial population 
can save a lot of evolution time, as well as facilitating 
the genetic algorithm to deliver better quality 
solutions. Our task was to create an efficient and 
quick way to create initial population members. We 
were using the optimal decision distribution predicted 
by Oracle as a guide that can lead us to solutions 
looking quite similar to the optimal path.  
We came up with the idea of sorting each node’s 
neighbors by predicted Oracle distance density 
distribution. Then, when it comes to choose the next 
node in the path, we pick an unvisited neighbor with 
a probability that is directly proportional to its 
distance expected density. In this way, distances with 
an insignificant density will not be picked unless the 
rest of the neighbors have been visited already. This 
method reminds of the nearest-neighbor algorithm 
[7], but introduces a pseudo-random factor and 
considers the expected distance density in the final 
path instead of the distance itself. We call this 
method most-probable-neighbor algorithm. Fig.1 
represents the outstanding performance of the new 
algorithm, which, in addition, was not as time 
consuming as preliminary attempts. For each TSP 
size from 10 to 500, we calculated the average total 
length of initial population members, both generated 
randomly and using the most-probable-neighbor 
algorithm. As we can see, the members of initial 
populations generated by this new method are much 
closer to the optimal route than the solutions provided 
by genetic algorithms before implementing this 
improvement, even after performing genetic 
algorithms’ evolution through a huge number of 
generations. This will allow us to start the evolution 
process from a point where it would have taken an 
enormous amount of time to get to applying 
mutations. 
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By combining techniques for avoiding of local 
minimums and generation of initial population, the 
final algorithm was proposed. If we take a look at the 
different distribution densities we have obtained, we 
will be able to notice how each time they get closer to 
the optimal decision distribution density predicted by 
Oracle, as shown in Fig. 2. 
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4.4 Constraint programming 
Constraint programming is a very powerful and 
flexible technique for deciding combinatorial 
problems [8]. But for some combinatorial problems 
(and TSP in particular) target optimization function is 
loosely connected with decision variables, so it is not 
a trivial task to define proper constraints for them. 
This is the reason why the decision of such kind of 
problems by a constraint programming approach is 
restricted to not so big dimensions (for TSP in 
particular it is restricted to dimensions of a few 
hundreds [9]). 
Using the proposed approach it would be possible not 
only to define proper constraints but also to filter 
initial data for relevant and irrelevant parts to reduce 
the search space of the problem. 
 
 
5   Conclusion 
There are different opportunities to use the proposed 
approach to support solving of large-scale 
combinatorial problems. 
One way is to transform a NP-complete problem to 
TSP, finding a solution (optimal or suboptimal) in the 
TSP statement with support of the proposed paradigm 
and then transforming this decision back to the initial 
problem (it is possible to do quickly because all NP-
complete problems are transformable one to another 
in polynomial time). 
Another opportunity could be transforming the NP-
complete problem to TSP, finding the distribution 
density for the optimal decision in the TSP statement 

by the proposed approach and then transforming this 
distribution or its parameters (mathematical 
expectation, variance, confidence intervals, etc.) back 
to the initial task in order to reduce the search space 
for solving the problem. 
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