

Some algorithms for data table (re)ordering using Monotone Systems

LEO VÕHANDU, REIN KUUSIK, ANTS TORIM, EIK AAB, GRETE LIND
Department of Informatics

Tallinn University of Technology
Raja 15, 12618 Tallinn

ESTONIA

Abstract: - We present here some algorithms for data table reordering to give it more informative form. All
these algorithms are Monotone System algorithms and have been created in our department within several
years. Main aim of these algorithms is to summarize entire data table with one “average” object called best
decision (BD) and to open the hidden inner structure of the data table. The BD object is defined here as one that
gives the maximal value to the weight function. At first we give a review of a computationally simple weight
function to define BD which does not account for the dependencies between the attributes and we describe a
method named Scale of Conformity to implement it. We describe several table reordering techniques based on
that scale. Finally we define a BD as a branch in the decision tree and introduce a weight function that takes
attribute dependencies into account. We present some examples to demonstrate effectiveness of such
techniques.

Key-Words: - Data table, Data mining, Monotone systems theory, Decision tree, Best decision, Algorithms

1 Introduction
Data mining approaches like rule-sets [1], decision
trees [8] and clustering [2] describe data tables with
structures that are quite comprehensive put not as
compact as traditional descriptive statistics – mean,
median, mode. Traditional descriptive statistics
however are calculated independently for every
attribute and don’t account for correlations between
values of different attributes. “Average” object
composed from values calculated independently for
each attribute might not exist in the data table at all.

In our paper we will discuss at first the task of
representing the data table with one “average” row
that we call the best decision (BD) and describe a
method named Scale of Conformity to implement it.
The concept of the BD is inspired by decision trees
[8] and monotone systems theory [4, 5, 7]. It was
first described in [3], however it was not presented to
a wider international audience. In contrast to the
Quinlan’s ID3 algorithm [8], we are not interested in
the entire decision tree but only in the one branch of
it – the best decision. On the scale of conformity [10]
we define BD and review its shortcomings. Then we
describe several data table reordering techniques
(minus technique, plus technique, mixed technique)
which have been created in our department using the
scale of conformity as a weight function and also the
monotone systems theory. We discuss the results of
described methods and describe how to build a
monotone system to the given data table. After that

we give our definition for the BD for dependent
attributes case. We present also an algorithm that
uses the concept of a potential to prune the search-
space as described in [3].

2 Problem Formulation
BD was originally intended as a formal way to select
one from possibly conflicting recommendations of
experts [3]. It is however applicable to any table
containing discrete data as a way to describe it with
one “average” row. We present a computationally
simple (O(MN) operations) but quite effective scale
of conformity approach [10] and review its
shortcomings. Then we describe several data table
reordering techniques using the scale to discover
typical and fuzzy parts of the data (data mining task).
After that we present another best decision approach
on decision trees.

2.1 Best Decision Measured by the Scale of
Conformity

The problem of finding the BD can be defined in
many ways. We will use so-called scale of
conformity [10]. Conformity as a measure for an
object is calculated by a transformation where
instead of the attribute value we use its frequency
(so-called frequency transformation). For every row
in the data table we calculate the sum of all attribute-

Proceedings of the 5th WSEAS Int. Conf. on Artificial Intelligence, Knowledge Engineering and Data Bases, Madrid, Spain, February 15-17, 2006 (pp417-422)

value frequencies. This sum is the conformity weight
for that row. The greater the conformity of a row the
more typical its attribute values for the data table are.
According to that principle the row with the greatest
conformity becomes BD.

2.2. Example of Scale of Conformity
Table 1. Initial data table and its frequency table

 A1 A2 A3 A4 A5 W(O)
O1 1 2 2 2 2 12
O2 2 1 2 1 1 20
O3 2 1 2 1 1 20
O4 1 1 2 1 2 16
O5 2 2 1 2 1 14
O6 2 1 1 1 1 18

Attribute's
value

1 2 4 2 4 4
2 4 2 4 2 2

Weights of objects (rows) are in the last column

W(Oi). For example: W(O1)=2+2+4+2+2=12
As we see, rows 2 and 3 are the BD-s.

3 Data table reordering techniques
using the scale of conformity
We present here several reordering techniques called
minus technique, plus technique, mixed technique.
All they apply Monotone System Theory [7] and as a
weight function they all use conformity.

3.1 Building a Monotone System on a data
table

Let us have a data table X(N,M), where every
element Xij can have a discrete value from range
hj=0,1,...,Kj-1.

1. Choose a suitable weight function π(Xij).
2. Choose activities applicable to elements (‘+’ or

‘-‘) and a rule to recalculate weights.
3. Applicable activity (‘+’ or ‘-‘) and the rule for

recalculation of weights together have to guarantee
the system to be monotone. I.e. if we apply an
activity (‘+’ or ‘-‘) to an element a ∈ X it causes the
weight πX(b) of all elements b ∈ X which are
connected to a, to change in the same direction (‘+’
increases, ‘-‘ decreases the weight). If a and b are not
connected then the weight does not change.

3.2 Minus technique
“Minus technique” is a simple method to order a
N*M data matrix [10]. Below we will shortly
describe the algorithm. First we order the rows and
then the columns. (To reorder the columns we can
transpose the matrix and use the same algorithm
again.) As a result of ordering we can easily see
typical and fuzzy parts of the data.

Assume that we have a data matrix X(N, M),
i=1,…,N, j=1,…,M. Every element Xij has a discrete
value from an interval [1,K].

Algorithm:
S1. Calculate frequencies FT(t,j) for every attribute’s

values t=1,2,…,Kj in columns j, where j=1,…,M
S2. For every row i=1,2,…,N find the sums

(weights) W(i) = Σ FT(t, j), j=1,…,M
S3. Find R = min W(i); remember i
S4. Eliminate row i from the matrix
S5. If there are yet rows in the matrix then goto S1

else to S6
S6. Reorder matrix rows in the order of elimination
S7. End

3.3 Example (of the minus technique)
To demonstrate that algorithm we are using data
from table 1.
Table 2. Order of elimination of rows (6 iterations)

 It1 It2 It3 It4 It5 It6
O1 12
O2 20 19 17 14 10
O3 20 19 17 14 10 5
O4 16 13 13
O5 14 12
O6 18 18 15 13

Table 3. Order of elimination of attributes (5
iterations)

 A1 A2 A3 A4 A5
It1 12 20 16 20 18
It2 18 14 18 18
It3 16 16 14
It4 12 12
It5 6

Proceedings of the 5th WSEAS Int. Conf. on Artificial Intelligence, Knowledge Engineering and Data Bases, Madrid, Spain, February 15-17, 2006 (pp417-422)

Table 4. Meanings of attributes’ values

attribute \ value 1 2
A1 gender Female Male
A2 has a flat Yes No
A3 education Higher Secondary
A4 activeness Yes No
A5 has a car Yes No

Table 5. Reordered data matrix

 A1 A3 A5 A2 A4 W(Oi)
O1 1 2 2 2 2 12
O5 2 1 1 2 2 12
O4 1 2 2 1 1 13
O6 2 1 1 1 1 13
O2 2 2 1 1 1 10
O3 2 2 1 1 1 5

W(Aj) 12 14 14 12 6

Those object conformity values at the moment of

elimination are written to the orders of reordered
table data table. As we can see, the reordered data
matrix is more informative and is easier to interpret.

3.4 Plus technique
“Plus technique” is another simple method for N*M
data matrix ordering [6, 10]. Below we will shortly
describe the algorithm and give a short example. Its
complexity is O(N2M) operations. First we order the
rows and then the columns. As a result we can again
easily see typical and fuzzy parts of the data matrix.

Assume that we have a data matrix X(N, M),
i=1,…,N, j=1,…,M. Every element Xij has a discrete
value from an interval [1,K].

Algorithm:
S1. Calculate frequencies FT(t,j) for every attribute’s

values t=1,2,…,Kj in columns j, where j=1,…,M
S2. For every row i=1,2,…,N find the sums

(weights) W(i) = Σ FT(t, j), j=1,…,M
S3. Find R = max W(i); remember i
S4. Eliminate row i from the matrix
S5. Increase frequencies of the eliminated row i

elements by one:
FT(t,j):= FT(j,t)+1

S6. If there are yet rows in the matrix then goto S2
else to S7

S7. Reorder matrix rows in the order of elimination
S8. End

To reorder the columns we can transpose the

matrix and use the described algorithm again.

3.5 Example (of the plus technique)
To demonstrate that technique we are using data
from table 1.

Table 6. Order of elimination of rows (objects) (6
iterations)

 It1 It2 It3 It4 It5 It6
O1 12 13 14 14 17 19
O2 20
O3 20 25
O4 16 19 22 24
O5 14 16 18 21 21
O6 18 22 26

Table 7. Order of elimination of columns (attributes)
(5 iterations)

 A1 A2 A3 A4 A5
It1 12 20 16 20 18
It2 14 18 26 22
It3 16 20 26
It4 16 24
It5 18

Table 8. Reordered data matrix

 A2 A4 A5 A3 A1
O2 1 1 1 2 2 20
O3 1 1 1 2 2 25
O6 1 1 1 1 2 26
O4 1 1 2 2 1 24
O5 2 2 1 1 2 21
O1 2 2 2 2 1 19

 20 26 26 24 18

In our case reordering results are the same for

minus and plus techniques. In general it does not
have to be so.

3.6 Mixed technique
It is a new technique not presented earlier. It uses
minus technique to find a “teacher” as the closest
row (column) to the eliminated one.

Algorithm starts like minus technique:
S1. Calculate frequencies FT(t,j) for every attribute’s

values t=1,2,…,Kj in columns j, where j=1,…,M
S2. For every row i=1,2,…,N find the sums

(weights) W(i) = Σ FT(t, j), j=1,…,M
S3. Find R = min W(i); remember i
S4. Eliminate row i from the matrix

Proceedings of the 5th WSEAS Int. Conf. on Artificial Intelligence, Knowledge Engineering and Data Bases, Madrid, Spain, February 15-17, 2006 (pp417-422)

S5. If there are yet rows in the matrix then goto S6
else to S12

After the first iteration it continues like plus-
technique:

S6. Nullify the frequency table FT
S7. Increase frequencies of the eliminated row i

elements by one:
FT(t,j):= FT(j,t)+1

S8. For every row i=1,2,…,N find the sums
(weights) W(i) = Σ FT(t, j), j=1,…,M

S9. Find R = max W(i); remember i
S10. Eliminate row i from the matrix
S11. If there are yet rows in the matrix then goto S7

else to S12
S12. Reorder matrix rows in the order of elimination
S13. End

3.7 Example (of mixed technique)
Table 9. Order of elimination of rows

 It1 It2 It3 It4 It5 It6
O1 12
O2 20 1 4 9
O3 20 1 4
O4 16 3
O5 14 2 2 4 6 9
O6 18 0 2 6 10

Table 10. Order of elimination of columns

 A1 A2 A3 A4 A5
It1 12 20 16 20 18
It2 2 2 2 0
It3 4 8 4
It4 6 8
It5 10

Table 11. Final reordered table

 A1 A2 A4 A5 A3
O1 1 2 2 2 2 12
O4 1 1 1 2 2 3
O3 2 1 1 1 2 4
O2 2 1 1 1 2 9
O6 2 1 1 1 1 10
O5 2 2 2 1 1 9
 12 2 8 8 10

Mixed technique always finds the closest member

(row or column) to the just eliminated one. For this
reason the reordered table is very interesting, it
shows so called “evolutionary” way of
developing/changing the “teacher”. We can see the
main changes in that way.

To use described reordering methods there are no
serious problems if the number of rows and columns
is small (tens or hundreds of attributes and objects).
If the data matrix is huge then it is harder to see the
patterns and it means that we need some other
methods for pattern mining.

3.8 Best decision using attribute
dependencies

Conformity scale approach does not take into
account the dependencies between the attributes.
That can lead to situations where the best decision
does not feel intuitively appropriate. Let’s examine
the following example. Let us have a data table T:

Table 12. Example.

 A1 A2 A3 A4 A5 A6 A7
O1 1 1 1 1 3 3 3
O2 1 1 1 2 3 3 3
O3 1 1 1 2 2 2 2
O4 2 2 2 1 2 2 2
O5 2 2 2 1 2 2 2

In our example the number of rows | T | is five.

We denote the set of attributes in the table T by AT
and the set of possible values for an attribute a by
Dom(a). In our example AT = {A1, A2,..., A7} and
Dom(A1) = {1, 2}. We call pair (a, v) where a is an
element of AT and v is an element of Dom(a)
element of decision. For each element (a, v) we can
calculate its frequency πT ((a, v)) in data table T.

Table 13. Frequencies.

Attribute’s
value A1 A2 A3 A4 A5 A6 A7

1 3 3 3 3 0 0 0
2 2 2 2 2 3 3 3
3 0 0 0 0 2 2 2

Each object (row) in the data table is a set of

elements:
O = { (a1, v1), (a2, v2),..., (an, vn)}

Objects weight according to the scale of

conformity is sum of its elements frequencies:
W(O)=πT ((a1, v1))+πT ((a2, v2))+...+πT ((an, vn)) (1)

Table 14. Weights of objects in the scale of conformity.

 A1 A2 A3 A4 A5 A6 A7 W(O)
O1 3 3 3 3 2 2 2 18

Proceedings of the 5th WSEAS Int. Conf. on Artificial Intelligence, Knowledge Engineering and Data Bases, Madrid, Spain, February 15-17, 2006 (pp417-422)

O2 3 3 3 2 2 2 2 17
O3 3 3 3 2 3 3 3 20
O4 2 2 2 3 3 3 3 18
O5 2 2 2 3 3 3 3 18

Table 15. The best decision (by the scale of
conformity).

(O3) 1 1 1 2 2 2 2

We can see that the object identified as the best

decision is not very typical, as there is only one
instance of it. In this case the scale of conformity
approach does not seem trustworthy. That kind of
result was caused by not taking into account the
dependencies between the attributes. How should we
behave when we assume mutual dependency
between the attributes? Below we describe a suitable
approach. We present its result (the best decision) to
show the difference.

Table 16. The best decision (by another approach)

(O4,
O5)

2 2 2 1 2 2 2

Previous methods defined certain ordering for a

data set. We now describe a novel method that
summarizes data table with one row of the table
called best decision (like arithmetic mean
summarizes set of numbers).

Concept of the best decision as described here
was first formulated in [3] and described in detail in
[9]. Decision can be described as one branch in a
decision tree. Element of the decision (node of
decision tree) is an attribute-value pair (a, v). First
element defines a sub-table, second element defines
a sub-table of the sub-table and so on. Informally,
weight of a decision is sum of rows over those
recursive sub-tables. Formal definition follows.

We denote the data table T after the selection of
an element (a, v) by T \ (a, v) and define it as a sub-
table of T that contains all the rows of T where value
of an attribute a equals v and all the columns of T
except the column a.
Table 17. Initial data table T

 A1 A2 A3 A4 A5
O1 1 2 2 2 2
O2 2 1 2 1 1
O3 2 1 2 1 1
O4 1 1 2 1 2
O5 2 2 1 2 1
O6 2 1 1 1 1

For example if T is Table 17 then T \ (A2, 1) is:
Table 18. T \ (A2, 1)

 A1 A3 A4 A5
O2 2 2 1 1
O3 2 2 1 1
O4 1 2 1 2
O6 2 1 1 1

Definition 1. Let M be the number of columns in

table T. Ordered set IT = 〈 (a1, v1), (a2, v2), ... ,(an,
vn) 〉 that contains n elements from table T and
where no attribute ai occurs twice is a decision. If n
=M then IT is a complete decision, if n < M then
IT is a partial decision.

One complete decision for Table 17 is 〈(A1, 2),

(A3, 1), (A5, 2), (A4, 1), (A2, 1)〉.

Definition 2. For a decision IT = 〈 (a1, v1), (a2,

v2),..., (an, vn) 〉 we define its weight W(IT) as
follows:

frequency of the element FT((a1, v1)) : number

of rows where attribute a has value v.

W(IT) = FT((a1, v1)) + W(I \ (a1, v1) T \ (a1, v1)), if M > 1
W(IT) = FT(a1, v1), if M = 1 (2)

For Table 17:
W(〈(A1, 2), (A3, 1), (A5, 2), (A4, 1), (A2, 1)〉) = 4

+ 2 + 2 + 1 + 1 = 10-

Definition 3. The best decision for the table T is a

decision IT, with greatest weight. That is, for any
decision I´T in table T the condition W(IT) ≥ W(I´T)
holds. We denote the best decision for the table T by
bIT.

The best decision and its weight for Table 17 is,
W〈 (A2, 1), (A4, 1), (A5, 1), (A1,2), (A3,2)〉 = 4

+ 4 + 3 + 3 + 2 = 16.

Our definition for the best decision has several

interesting properties:
• It takes into the account dependencies between

the attributes.
• Row described by the best decision is guaranteed

to exist in data table.
• The order of elements in the best decision is

significant and informative. First (attribute, value)
pairs represent greater part of the weight than
later elements and describe frequent and
correlated (attribute, value) pairs. In the scale of

Proceedings of the 5th WSEAS Int. Conf. on Artificial Intelligence, Knowledge Engineering and Data Bases, Madrid, Spain, February 15-17, 2006 (pp417-422)

conformity approach that information is not
always available.

• Best decision represents a branch in the decision
tree [8]. It can be thought of as representing
properties of a typical row in the order of
importance.

3.8.1 Brute-force algorithm
A brute-force algorithm for the depth-first search can
be described as follows. An efficient algorithm is
described in [9]. Recursive function BestDecision
has three parameters: table (or sub-table) T, current
best decision bI and partial decision under
construction I. It returns the decision with the
greatest weight from two options:
• The best decision that can be constructed by

extending partial decision I with elements form
the table T. That is always I + bIT.

• Current best decision bI.
Call for the first level of recusion has the form

BestDecision (T, 〈〉, 〈〉) and we assume that P(〈〉) = 0.

BestDecision(T, bI, I):
(End of recursion) If M = 1:
 Find (a, v) with greatest FT ((a, v))
 If P(I +〈(a, v)〉) > P(bI), then set bI ← I +〈(a, v)〉
(Recursion) If (M > 1):
 For each (a, v) in T:
 Set bI ← BestDecison(T \ (a, v)), bI, I +〈(a, v)〉)

(Return) Return the decision bI

4 Conclusion
We presented some methods developed by our group
in several years to find the best representative of data
table and to discover typical and fuzzy parts of the
data (data mining task). They are very simple to
implement and effective to use. Data table reordering
methods give to the researcher more preliminary
information to define work hypothesis, and to test
them for example with bootstrapping methods.
Results we get are not something abstract and
separated from data, we can see them always and
they are “close” to our data.

References:
[1] Cohen, W. W. Fast effective rule induction.

Machine Learning: Proceedings of the Twelfth
International Conference, 1995, pp. 115-123.

[2] Kaufman, L. and Rousseeuw, P. Finding groups
in data: An Intorduction to cluster analysis.
NewYork: Wiley, 1990.

[3] Kuusik, R. Application of Theory of Monotonic
Systems for Decison Trees Generation.
Transactions of Tallinn Technical University, No.
705, 1989, pp. 47-58.

[4] Kuusik, R., Lind, G. Generator of Hypotheses –
an Approach of Data Mining Based on Monotone
Systems Theory. International Journal of
Computational Intelligence, vol.1, 2004, pp.
49-53

[5] Kuusik, R., Lind, G., Võhandu, V. Data mining:
pattern mining as a clique extracting task.
Proceedings of the Sixth International
Conference on Enterprise Information Systems,
Vol. 2, Porto, Portugal, April 14-17, 2004, pp.
519-522

[6] Kuusik, R., Lind, G., Võhandu, V. Frequent
pattern mining as a clique extracting task. The 8th
World Multi-Conference on Systemics,
Cybernetics and Informatics, July 18-21, 2004 -
Orlando, Florida, USA, SCI 2004 Proceedings,
Vol. IV, pp.425-428.

[7] Mullat, I. Extremal Monotone Systems.
Automation and Remote Control, No 5, 1976, pp.
130-139 (in Russian)

[8] Quinlan, J. R. Induction of Decision Trees,
Machine Learning, (1), 1986, pp. 81-106

[9] Torim, A., Kuusik, R. Problem and Algorithms
for Finding the Best Decision, In WSEAS
Transactions on INFORMATION SCIENCE and
APPLICATIONS, Issue 9, Volume 2, September
2005, pp. 1462-1470

[10] Võhandu, L., Fast Methods in Exploratory Data
Analysis. In Transactions of TTU, No 705, 1989,
pp. 3-13

Proceedings of the 5th WSEAS Int. Conf. on Artificial Intelligence, Knowledge Engineering and Data Bases, Madrid, Spain, February 15-17, 2006 (pp417-422)

