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Abstract: - We present here some algorithms for data table reordering to give it more informative form. All 
these algorithms are Monotone System algorithms and have been created in our department within several 
years. Main aim of these algorithms is to summarize entire data table with one “average” object called best 
decision (BD) and to open the hidden inner structure of the data table. The BD object is defined here as one that 
gives the maximal value to the weight function. At first we give a review of a computationally simple weight 
function to define BD which does not account for the dependencies between the attributes and we describe a 
method named Scale of Conformity to implement it. We describe several table reordering techniques based on 
that scale. Finally we define a BD as a branch in the decision tree and introduce a weight function that takes 
attribute dependencies into account. We present some examples to demonstrate effectiveness of such 
techniques.  
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1   Introduction 
Data mining approaches like rule-sets [1], decision 
trees [8] and clustering [2] describe data tables with 
structures that are quite comprehensive put not as 
compact as traditional descriptive statistics – mean, 
median, mode. Traditional descriptive statistics 
however are calculated independently for every 
attribute and don’t account for correlations between 
values of different attributes. “Average” object 
composed from values calculated independently for 
each attribute might not exist in the data table at all. 

In our paper we will discuss at first the task of 
representing the data table with one “average” row 
that we call the best decision (BD) and describe a 
method named Scale of Conformity to implement it. 
The concept of the BD is inspired by decision trees 
[8]  and monotone systems theory [4, 5, 7]. It was 
first described in [3], however it was not presented to 
a wider international audience. In contrast to the 
Quinlan’s ID3 algorithm [8], we are not interested in 
the entire decision tree but only in the one branch of 
it – the best decision. On the scale of conformity [10] 
we define BD and review its shortcomings. Then we 
describe several data table reordering techniques 
(minus technique, plus technique, mixed technique) 
which have been created in our department using the 
scale of conformity as a weight function and also the  
monotone systems theory. We discuss the results of 
described methods and describe how to build a 
monotone system to the given data table. After that 

we give our definition for the BD for dependent 
attributes case. We present also an algorithm that 
uses the concept of a potential to prune the search-
space as described in [3]. 

 
 

2   Problem Formulation 
BD was originally intended as a formal way to select 
one from possibly conflicting recommendations of 
experts [3]. It is however applicable to any table 
containing discrete data as a way to describe it with 
one “average” row. We present a computationally 
simple (O(MN) operations) but quite effective scale 
of conformity approach [10] and review its 
shortcomings. Then we describe several data table 
reordering techniques using the scale to discover 
typical and fuzzy parts of the data (data mining task). 
After that we present another best decision approach 
on decision trees. 

 
 

2.1 Best Decision Measured by the Scale of 
Conformity 

The problem of finding the BD can be defined in 
many ways. We will use so-called scale of 
conformity [10]. Conformity as a measure for an 
object is calculated by a transformation where 
instead of the attribute value we use its frequency 
(so-called frequency transformation). For every row 
in the data table we calculate the sum of all attribute-
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value frequencies. This sum is the conformity weight 
for that row. The greater the conformity of a row the 
more typical its attribute values for the data table are. 
According to that principle the row with the greatest 
conformity becomes BD.  

 
 

2.2.   Example of Scale of Conformity 
Table 1. Initial data table and its frequency table 

 A1 A2 A3 A4 A5 W(O) 
O1 1 2 2 2 2 12 
O2 2 1 2 1 1 20 
O3 2 1 2 1 1 20 
O4 1 1 2 1 2 16 
O5 2 2 1 2 1 14 
O6 2 1 1 1 1 18 

Attribute's 
value       

1 2 4 2 4 4  
2 4 2 4 2 2  

 
Weights of objects (rows) are in the last column 

W(Oi). For example: W(O1)=2+2+4+2+2=12 
As we see, rows 2 and 3 are the BD-s. 
 
 

3   Data table reordering techniques 
using the scale of conformity 
We present here several reordering techniques called 
minus technique, plus technique, mixed technique. 
All they apply Monotone System Theory [7] and as a 
weight function they all use conformity. 

 
 

3.1 Building a Monotone System on a data 
table 

Let us have a data table X(N,M), where every 
element Xij can have a discrete value from range 
hj=0,1,...,Kj-1. 

1. Choose a suitable weight function π(Xij). 
2. Choose activities applicable to elements (‘+’ or 

‘-‘) and a rule to recalculate weights.  
3. Applicable activity (‘+’ or ‘-‘) and the rule for 

recalculation of weights together have to guarantee 
the system to be monotone. I.e. if we apply an 
activity (‘+’ or ‘-‘) to an element a ∈ X it causes the 
weight πX(b) of all elements b ∈ X which are 
connected to a, to change in the same direction (‘+’ 
increases, ‘-‘ decreases the weight). If a and b are not 
connected then the weight does not change. 

 
 

3.2   Minus technique 
“Minus technique” is a simple method to order a 
N*M data matrix [10]. Below we will shortly 
describe the algorithm. First we order the rows and 
then the columns. (To reorder the columns we can 
transpose the matrix and use the same algorithm 
again.) As a result of ordering we can easily see 
typical and fuzzy parts of the data. 

Assume that we have a data matrix X(N, M), 
i=1,…,N, j=1,…,M. Every element Xij has a discrete 
value from an interval [1,K]. 

 
Algorithm: 
S1. Calculate frequencies FT(t,j) for every attribute’s 

values t=1,2,…,Kj in columns j, where j=1,…,M  
S2. For every row i=1,2,…,N find the sums 

(weights) W(i) = Σ FT(t, j), j=1,…,M 
S3. Find R = min W(i); remember i 
S4. Eliminate row i from the matrix 
S5. If there are yet rows in the matrix then goto S1 

else to S6 
S6. Reorder matrix rows in the order of elimination 
S7. End 

 
 

3.3   Example (of the minus technique) 
To demonstrate that algorithm we are using data 
from table 1.  
Table 2. Order of elimination of rows (6 iterations) 

 It1 It2 It3 It4 It5 It6 
O1 12      
O2 20 19 17 14 10  
O3 20 19 17 14 10 5 
O4 16 13 13    
O5 14 12     
O6 18 18 15 13   

 
Table 3. Order of elimination of attributes (5 
iterations) 

 A1 A2 A3 A4 A5 
It1 12 20 16 20 18 
It2  18 14 18 18 
It3  16  16 14 
It4  12  12  
It5    6  
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Table 4. Meanings of attributes’ values 

attribute \ value 1 2 
A1 gender Female Male 
A2 has a flat Yes No 
A3 education Higher Secondary 
A4 activeness Yes No 
A5 has a car Yes No 

 
Table 5. Reordered data matrix 

 A1 A3 A5 A2 A4 W(Oi) 
O1 1 2 2 2 2 12 
O5 2 1 1 2 2 12 
O4 1 2 2 1 1 13 
O6 2 1 1 1 1 13 
O2 2 2 1 1 1 10 
O3 2 2 1 1 1 5 

W(Aj) 12 14 14 12 6  
 
Those object conformity values at the moment of 

elimination are written to the  orders of reordered 
table data table. As we can see, the reordered data 
matrix is more informative and is easier to interpret. 

 
 

3.4   Plus technique 
“Plus technique” is another simple method for N*M 
data matrix ordering [6, 10]. Below we will shortly 
describe the algorithm and give a short example. Its 
complexity is O(N2M) operations. First we order the 
rows and then the columns. As a result we can again 
easily see typical and fuzzy parts of the data matrix.  

Assume that we have a data matrix X(N, M), 
i=1,…,N, j=1,…,M. Every element Xij has a discrete 
value from an interval [1,K].  

 
Algorithm: 
S1. Calculate frequencies FT(t,j) for every attribute’s 

values t=1,2,…,Kj in columns j, where j=1,…,M  
S2. For every row i=1,2,…,N find the sums 

(weights) W(i) = Σ FT(t, j), j=1,…,M 
S3. Find R = max W(i); remember i 
S4. Eliminate row i from the matrix 
S5. Increase frequencies of the eliminated row i 

elements by one: 
FT(t,j):= FT(j,t)+1 

S6. If there are yet rows in the matrix then goto S2 
else to S7 

S7. Reorder matrix rows in the order of elimination 
S8. End 

 
To reorder the columns we can transpose the 

matrix and use the described algorithm again. 
 

3.5   Example (of the plus technique) 
To demonstrate that technique we are using data 
from table 1.  

 
Table 6. Order of elimination of rows (objects) (6 
iterations) 

 It1 It2 It3 It4 It5 It6 
O1 12 13 14 14 17 19 
O2 20      
O3 20 25     
O4 16 19 22 24   
O5 14 16 18 21 21  
O6 18 22 26    

 
Table 7. Order of elimination of columns (attributes) 
(5 iterations) 

 A1 A2 A3 A4 A5 
It1 12 20 16 20 18 
It2 14  18 26 22 
It3 16  20  26 
It4 16  24   
It5 18     

 
Table 8. Reordered data matrix 

 A2 A4 A5 A3 A1  
O2 1 1 1 2 2 20 
O3 1 1 1 2 2 25 
O6 1 1 1 1 2 26 
O4 1 1 2 2 1 24 
O5 2 2 1 1 2 21 
O1 2 2 2 2 1 19 

 20 26 26 24 18  
 
In our case reordering results are the same for 

minus and plus techniques. In general it does not 
have to be so.  

 
 

3.6   Mixed technique 
It is a new technique not presented earlier. It uses 
minus technique to find a “teacher” as the closest 
row (column) to the eliminated one.  

 
Algorithm starts like minus technique: 
S1. Calculate frequencies FT(t,j) for every attribute’s 

values t=1,2,…,Kj in columns j, where j=1,…,M  
S2. For every row i=1,2,…,N find the sums 

(weights) W(i) = Σ FT(t, j), j=1,…,M 
S3. Find R = min W(i); remember i 
S4. Eliminate row i from the matrix 
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S5. If there are yet rows in the matrix then goto S6 
else to S12 

After the first iteration it continues like plus-
technique: 

S6. Nullify the frequency table FT 
S7. Increase frequencies of the eliminated row i 

elements by one: 
FT(t,j):= FT(j,t)+1 

S8. For every row i=1,2,…,N find the sums 
(weights) W(i) = Σ FT(t, j), j=1,…,M 

S9. Find R = max W(i); remember i 
S10. Eliminate row i from the matrix 
S11. If there are yet rows in the matrix then goto S7 

else to S12 
S12. Reorder matrix rows in the order of elimination 
S13. End 

 
 

3.7   Example (of mixed technique) 
Table 9. Order of elimination of rows 

  It1 It2 It3 It4 It5 It6 
O1 12           
O2 20 1 4 9     
O3 20 1 4       
O4 16 3         
O5 14 2 2 4 6 9 
O6 18 0 2 6 10   

 
Table 10. Order of elimination of columns 

  A1 A2 A3 A4 A5 
It1 12 20 16 20 18 
It2   2 2 2 0 
It3     4 8 4 
It4     6   8 
It5     10     

 
Table 11. Final reordered table 

  A1 A2 A4 A5 A3   
O1 1 2 2 2 2 12 
O4 1 1 1 2 2 3 
O3 2 1 1 1 2 4 
O2 2 1 1 1 2 9 
O6 2 1 1 1 1 10 
O5 2 2 2 1 1 9 
  12 2 8 8 10   
 
Mixed technique always finds the closest member 

(row or column) to the just eliminated one. For this 
reason the reordered table is very interesting, it 
shows so called “evolutionary” way of 
developing/changing the “teacher”. We can see the 
main changes in that way. 

To use described reordering methods there are no 
serious problems if the number of rows and columns 
is small (tens or hundreds of attributes and objects). 
If the data matrix is huge then it is harder to see the 
patterns and it means that we need some other 
methods for pattern mining.  

 
 

3.8   Best decision using attribute 
dependencies  

Conformity scale approach does not take into 
account the dependencies between the attributes. 
That can lead to situations where the best decision 
does not feel intuitively appropriate. Let’s examine 
the following example. Let us have a data table T: 

 
Table 12. Example. 

 A1 A2 A3 A4 A5 A6 A7 
O1 1 1 1 1 3 3 3 
O2 1 1 1 2 3 3 3 
O3 1 1 1 2 2 2 2 
O4 2 2 2 1 2 2 2 
O5 2 2 2 1 2 2 2 

 
In our example the number of rows | T | is five. 

We denote the set of attributes in the table T by AT 
and the set of possible values for an attribute a by 
Dom(a). In our example AT  = {A1, A2,..., A7} and 
Dom(A1) = {1, 2}. We call pair (a, v) where a is an 
element of AT  and v  is an element of Dom(a) 
element of decision. For each element (a, v) we can 
calculate its frequency πT ((a, v)) in data table T. 

 
Table 13. Frequencies. 

Attribute’s 
value A1 A2 A3 A4 A5 A6 A7 

1 3 3 3 3 0 0 0 
2 2 2 2 2 3 3 3 
3 0 0 0 0 2 2 2 

 
Each object (row) in the data table is a set of 

elements: 
O = { (a1, v1), (a2, v2),..., (an, vn)} 
 
Objects weight according to the scale of 

conformity is sum of its elements frequencies: 
W(O)=πT ((a1, v1))+πT ((a2, v2))+...+πT ((an, vn))  (1) 

 
Table 14. Weights of objects in the scale of conformity. 

 A1 A2 A3 A4 A5 A6 A7 W(O) 
O1 3 3 3 3 2 2 2 18 
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O2 3 3 3 2 2 2 2 17 
O3 3 3 3 2 3 3 3 20 
O4 2 2 2 3 3 3 3 18 
O5 2 2 2 3 3 3 3 18 

 
Table 15. The best decision (by the scale of 
conformity). 

(O3) 1 1 1 2 2 2 2 

 
We can see that the object identified as the best 

decision is not very typical, as there is only one 
instance of it. In this case the scale of conformity 
approach does not seem trustworthy. That kind of 
result was caused by not taking into account the 
dependencies between the attributes. How should we 
behave when we assume mutual dependency 
between the attributes? Below we describe a suitable 
approach. We present its result (the best decision) to 
show the difference. 

 
Table 16. The best decision (by another approach) 

(O4, 
O5) 

2 2 2 1 2 2 2 

 
Previous methods defined certain ordering for a 

data set. We now describe a novel method that 
summarizes data table with one row of the table 
called best decision (like arithmetic mean 
summarizes set of numbers). 

Concept of the best decision as described here 
was first formulated in [3] and described in detail in 
[9]. Decision can be described as one branch in a 
decision tree. Element of the decision (node of 
decision tree) is an attribute-value pair (a, v). First 
element  defines a sub-table, second element defines 
a sub-table of the sub-table and so on. Informally, 
weight of a decision is sum of rows over those 
recursive sub-tables. Formal definition follows. 

We denote the data table T after the selection of 
an element (a, v) by T \ (a, v) and define it as a sub-
table of T that contains all the rows of T where value 
of an attribute a equals v and all the columns of T 
except the column a.  
Table 17. Initial data table T 

 A1 A2 A3 A4 A5 
O1 1 2 2 2 2 
O2 2 1 2 1 1 
O3 2 1 2 1 1 
O4 1 1 2 1 2 
O5 2 2 1 2 1 
O6 2 1 1 1 1 

 

For example if  T is Table 17 then  T \ (A2, 1) is: 
Table 18. T \ (A2, 1) 

 A1 A3 A4 A5 
O2 2 2 1 1 
O3 2 2 1 1 
O4 1 2 1 2 
O6 2 1 1 1 

 
Definition 1. Let M be the number of columns in 

table T.  Ordered set   IT = 〈 (a1, v1), (a2, v2), ... ,(an, 
vn) 〉  that contains n elements from table T and 
where no attribute ai  occurs twice is a decision. If  n 
=M  then IT   is a complete decision, if n <  M  then 
IT   is a partial decision. 

 
One complete decision for Table 17 is 〈(A1, 2), 

(A3, 1), (A5, 2), (A4, 1), (A2, 1)〉. 
 
Definition 2. For a decision IT = 〈 (a1, v1), (a2, 

v2),..., (an, vn) 〉  we define its weight W(IT) as 
follows: 

 
frequency of the element  FT((a1, v1)) :  number 

of rows where attribute a has value v.  
 

W(IT) = FT((a1, v1)) + W(I \ (a1, v1) T \ (a1, v1)), if M > 1 
W(IT) = FT(a1, v1), if M = 1        (2) 

 
For Table 17:  
W(〈(A1, 2), (A3, 1), (A5, 2), (A4, 1), (A2, 1)〉 ) = 4 

+ 2 + 2 + 1 + 1 = 10- 
 
Definition 3. The best decision for the table T is a 

decision IT, with greatest weight. That is, for any 
decision I´T  in table T the condition W(IT) ≥ W(I´T) 
holds. We denote the best decision for the table T by 
bIT. 

 
The best decision and its weight for Table 17 is,  
W〈 (A2, 1), (A4, 1), (A5, 1), (A1,2), (A3,2)〉  =  4 

+ 4 + 3 + 3 + 2 = 16. 
 
Our definition for the best decision has several 

interesting properties: 
• It takes into the account dependencies between 

the attributes. 
• Row described by the best decision is guaranteed 

to exist in data table. 
• The order of elements in the best decision is 

significant and informative. First (attribute, value) 
pairs represent greater part of the weight than 
later elements and describe frequent and 
correlated (attribute, value) pairs. In the scale of 
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conformity approach that information is not 
always available. 

• Best decision represents a branch in the decision 
tree [8]. It can be thought of as representing 
properties of a typical row in the order of 
importance.  
 
 

3.8.1   Brute-force algorithm 
A brute-force algorithm for the depth-first search can 
be described as follows. An efficient algorithm is  
described in [9]. Recursive function BestDecision 
has three parameters: table (or sub-table) T, current 
best decision bI and partial decision under 
construction I. It returns the decision with the 
greatest weight from two options: 
• The best decision that can be constructed by 

extending partial decision I with elements form 
the table T. That is always I + bIT.  

• Current best decision bI. 
Call for the first level of recusion has the form 

BestDecision (T, 〈〉, 〈〉) and we assume that P(〈〉) = 0. 
  

BestDecision(T, bI, I): 
(End of recursion) If M = 1: 
    Find (a, v)  with greatest FT ((a, v))  
    If P(I +〈(a, v)〉) > P(bI), then set bI ←  I +〈(a, v)〉 
(Recursion) If  (M > 1): 
    For each (a, v) in T: 
        Set bI ← BestDecison(T \ (a, v)), bI, I +〈(a, v)〉) 

(Return) Return the decision bI 
 
 

4   Conclusion 
We presented some methods developed by our group 
in several years to find the best representative of data 
table and to discover typical and fuzzy parts of the 
data (data mining task). They are very simple to 
implement and effective to use. Data table reordering 
methods give to the researcher more preliminary 
information to define work hypothesis, and to test 
them for example with bootstrapping methods. 
Results we get are not something abstract and 
separated from data, we can see them always and 
they are “close” to our data.  
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