
Towards Multi-Layer Perceptron as an Evaluator Through Randomly
Generated Training Patterns

JANIS ZUTERS

Department of Computer Science
University of Latvia

Raina bulv. 19, Riga, LV-1050
LATVIA

Abstract: - Multi-layer perceptron (MLP) is widely used, because many problems can be reduced to
approximation of functions. Pattern evaluation, which is discussed in this article, belongs to this range of
problems. MLP manages function approximation problems quit well, however an important prerequisite is a
uniformly distributed set of training patterns. Unfortunately, such a set is not always available. In this article,
the use of randomly generated additional training patterns is examined to see whether this improves the training
result in cases, when just “positive” patterns are available.

Key-Words: - Learning process, Multi-layer perceptron, Randomly generated patterns, Pattern evaluation

1 Introduction
The problem of pattern evaluation can be simply
solved with a multi-layer perceptron. We just have to
design a network that approximates the unknown
evaluation function f(⋅) [1]:
)(xfd = , (1)
where the vector x is the input and the vector d is the
output.

We are given the set of labeled examples
(training patterns) Τ:
 { }n

iii dx 1),(==Τ (2)
The function F(⋅) describing the input-output

mapping actually realized by the network should be
close enough to f(⋅) in a Euclidean sense over all
inputs:
 ε<−∀)()(xfxFx , (3)
where ε is a small positive number.

Such problems are perfect candidates for
supervised learning, int. al. MLPs.

A problem arises if we have no set of patterns
adequately representing f(⋅).

[2] describes such a case with solving a
timetabling problem via a genetic algorithm (GA),
where a neural network is intended to be a part of the
fitness function within GA in order to support the
evaluation (rating) of solutions (timetables). The idea
is to train the network on existing (i.e., valid) school-
timetables, thus obtaining the network, which is able
to evaluate timetables. Unfortunately for this
approach we have no “bad” or “not very good”
examples of timetables, so the available training set
is incomplete, and the evaluation should be done as

some kind of similarity computation between the
candidate timetable and valid timetables. Figure 1
shows the schema of GA-based timetabling, where
the timetable evaluation should be partially
committed to a neural network.

1. Generating the
initial set of
timetables

Set of
unrated

timetables

4. Choice of
timetables

to be modified
and reproduction

5. Modification
of reproduced

timetables
(mutation)

3. Selecting
timetables

2. Rating
timetables

(fitness function)

Termination condition
satisfied

Set of
timetables

Hard constraints Soft constraints

Fig. 1. The schema for GA in timetabling [2]

In this article the author examines a method of

organizing a learning process (LP) through adding
randomly generated training patterns (TPs) to the
training set. The method is proposed in order to
compensate for the lack of a complete training set.

Proceedings of the 5th WSEAS Int. Conf. on Artificial Intelligence, Knowledge Engineering and Data Bases, Madrid, Spain, February 15-17, 2006 (pp254-258)

2 Learning Process of a Neural
Network

The ability of the network to learn from its
environment and to improve its performance through
learning is the property of primary significance for
neural networks. [1]

The two aspects of the learning process are to be
distinguished:
1. Learning algorithm (LA). LAs differ

significantly among various neural network
models.

2. Organization of the LP.
The latter encompasses the way in which TPs are

passed to the network and correspondingly, to the
LA. Usually the LP is arranged in epochs. An epoch
is one sweep through all the patterns in the training
set, presenting them to the network, i.e. the LA.

Provided that the set of training patterns Τ is
available (see (2)), the LP can be generally described
as follows (Fig. 2):

% Τ - set of training patterns
do
 p := fetch the first pattern from Τ
 do
 operate the learning algorithm on p
 p := fetch the next pattern from Τ
 while p is available
while the stopping criterion not met

Fig. 2. A learning process

Fetching of patterns can differ in terms of
sequence – some LAs require random order, others
do not.

3 Organization of the Learning
Process with Incomplete Available
Training Set

3.1 The Problem
Let’s explore the following problem: Compute the
extent of similarity between a given alphanumeric
symbol and a fixed set of alphanumeric symbols Τ.

In order to solve this problem, we need to design
a similarity function for the fixed set Τ:
 { }1..0: →ΑΤh (4)
where Τ⊂Α is a set of alphanumeric symbols.

This problem is the same as the one discussed in
Section 1, just replacing patterns of symbols with
timetables.

To solve this problem we could face the 2
following sub-problems.

Sub-problem 1 (extremely important with
timetable evaluation within GA). Determine the
criterion of similarity between 2 patterns (e.g., how
close are symbols ‘B’ and ‘8’).

Sub-problem 2 (assuming that the problem is
being solved using a neural network trained just on
positive patterns). Overcome the lack of a complete
training set.

The author proposes adding randomly generated
patterns to the training set to try to solve such
problems.

3.2 Unsuccessful Attempts
The first idea was to examine the Kohonen network.
The competition principle based on comparison
between neurons seemed very promising – just to
replace “winner takes it all” to “everyone takes as
much as deserved according to gained evaluation”.
Unfortunately various attempts crashed – the
Kohonen network did the clusterization well, still it
was unable to find out the evaluation of assigning a
pattern to some cluster.

3.3 The Proposed Method – Training MLPs
with Randomly Generated Patterns

The second idea, which yielded results, was to use
additional training patterns along with available
ones. By this approach we have to choose the
random rate τ∈{0..1}, which denotes the proportion
of the use of randomly generated patterns. The
proposed supervised learning method can be
described as follows (see Figure 3):

% Τ - set of positive training patterns
% τ - the random rate {0..1}
% s - size of the training set
% determining the size of an epoch (s2 ≥ s):
s2 := s / (1 - τ)
do
 for i := 1 to s2 do
 rnd := get random value from interval 0..1
 if rnd < τ then
 p := generate random pattern
 d := 0
 else
 p := choose a pattern from Τ in random
 d := 1
 operate the learning algorithm on [p, d]
while the stopping criterion not met
Fig. 3. A supervised learning process with additional

randomly generated training patterns

Proceedings of the 5th WSEAS Int. Conf. on Artificial Intelligence, Knowledge Engineering and Data Bases, Madrid, Spain, February 15-17, 2006 (pp254-258)

The proposed method was tested through the
experimentation described below.

4 Description of the Experimentation
The goal of the experimentation was to examine a
method proposed by the author for organizing the LP
by adding randomly generated TPs (solving
problems like the problem, described in Section 3.1).
The goal of each experiment is to obtain a neural
network that could be used for evaluation of patterns,
i.e., one, which realizes the similarity function (4).

4.1 Describing the Learning Process of the
Experimentation

The classic MLP with the backpropagation learning
algorithm was used in the experimentation along
with the author’s proposed learning method (See Fig.
3).

The core MLP operating and training algorithm is
briefly shown as follows [3].

Propagation function:

 ∑
=

=
n

i
ijij owNET

0
, (5)

where NETj is propagation value of the neuron j; wij
– the ith weight of the neuron j (wj0 – bias of the
neuron j); oi – the ith input signal of the neuron j (o0 =
1).

Activation function:
)(jj NETo ϕ= , (6)
where oj – output value of the neuron j; ϕ(⋅) –
logistic activation function.

The general weight correction rule:
 ijji ow ηδ=∆ , (7)
where ∆wji – correction of the ith weight of the
neuron j; η – learning rate; δj – local gradient of the
neuron j (not specified in this paper); oi – the ith input
signal of the neuron j.

4.2 Architecture of Neural Networks Used in
Experiments

In computer experiments neural networks of the
classic MLP architecture were used:

• Size of the input signal – 1280.
• 1 hidden layer with 3, 5, or 7 neurons.
• 1 neuron in the output layer.
• Networks operate as described above: see

(5), (6), (7).

Logistic function was used as an activation

function with the gain
⎭
⎬
⎫

⎩
⎨
⎧∈

20
,

15
,

10
mmmγ , where m –

number of neuron inputs.

4.3 Available Set of Training and Testing

Patterns
The networks were tested on black and white images
of a size 32 × 40 pixels with black hand-written
digits and capital Latin letters depicted on a white
background (Fig. 4). The number of pattern (symbol)
types was n=36 (10 digits + 26 letters). Let’s denote
the set of pattern types as Γ0. The number of variants
for each pattern type was v=4. So, the total size of
the set of available patterns Τ0 were n×v = 144. As
we have 4 different variants of each symbol (i.e.,
four rows of patterns), then for each experiment, one
of the rows served as the test set, the other three – as
the training set.

Fig. 4. A subset of the set of available patterns Τ0

4.4 Course of a single experiment
A total of 1,250 experiments were conducted. Each
experiment involves the designation, training, and
testing one MLP.
1. Create a new MLP according to the description

in Section 4.2.
2. Choose from Τ0, at random, three rows of

available patterns (Fig. 4) as a candidate set of
training patterns Τ0A⊂Τ0, so those of the
remaining row would be a test set Τ0B⊂Τ0.

3. Choose at random the “random rate” τ among
values {0, 0.2, 0.5, 0.7, 0.9}. τ=0 means that the
network is trained just on selected patterns
without use of randomly generated ones.

4. Choose at random the amount of pattern types c
among values {1, 2, 4} in the training set.

5. Select pattern types at random for the training set
from 36 available digits and letters: Γ={q1, q2, ...,
qc}⊂Γ0. As three rows of four available figures
serve for training, the chosen pattern types
represent s = c × 3 patterns, so the training set

Proceedings of the 5th WSEAS Int. Conf. on Artificial Intelligence, Knowledge Engineering and Data Bases, Madrid, Spain, February 15-17, 2006 (pp254-258)

would consist of s patterns: Τ={p1, p2, ...,
ps}⊂Τ0A.

6. Train the network using the author’s proposed
method (Section. 3.3) until 100 epochs are
passed or the total error of output neurons
decreases under ε=0.1.

7. Random patterns were generated as black and
white images of a size of 32 × 40 pixels, with
proportion of black at 0.17-0.35 (also chosen at
random).

8. Test the trained network on the set of test
patterns Τ0B and record the outputs, thus forming
the experimental results.

The goal of an experiment – to obtain a network that
is able to evaluate input patterns Τ0B (represents Γ0)
with respect to a fixed set Γ, i.e. realizes a version of
the similarity function hΓ.

5 Analysis of the Proposed Training
Method

Sub-problem 2 (Section 3.1) is stated to determine
the criterion of similarity between two patterns. In
this case (analyzing the training method), such a
criterion should be obtained by external means, and
the similarity function that is based on it would then
serve as a benchmark to measure the quality of the
solution.

5.1 A Questionnaire Method to Obtain the
Similarity Criterion

As there exist no manifest formal criteria in terms of
similarity between two patterns, human opinion was
chosen as a criterion. A survey was arranged, and
eight respondents were asked to evaluate pairs of
symbols (a total of 630 pairs – each of 36 symbols
with each of the rest) with the mark between 0 and 1
(with a minimum step of 0.1), where 1 means –
“very similar”, but 0 – “absolutely different” (Fig.
5). All the respondents rated most of pairs as 0.

As the average result of all respondents, the
similarity measure for two patterns g(⋅,⋅) was
obtained:
 { }1..0: 00 →Γ×Γg (8)

To reduce the computation, the function g(⋅,⋅)
was simplified in a manner so that the following 2
equations hold true:
 1),(:0 =Γ∈∀ iigi (9)
),(),(:, 0 ijgjigji =Γ∈∀ (10)

Fig. 5. An excerpt of an inquiry form used in the

survey

Now we can define the similarity function with
respect to Γ:
),(max)(ijgih

j Γ∈Γ = , (11)

where Γ⊂Γ0 – the set of pattern types, representing
the training set, and i∈Γ0 – the pattern type. The
introduced similarity function represents the average
evaluation of all respondents with respect to Γ.

5.2 Representing the Similarity by the

Similarity Sequence
Unfortunately, it was impossible to examine
experimental results through comparing them
directly to the values yielded by the similarity
function. That was because of disparate absolute
output values among experiments. There was a need
for a different notion of the similarity function.

The idea is, instead of the similarity function
(11), to represent the similarity by the similarity
sequence with respect to Γ:

n

ii 1=
= χχ , (12)

where i∈Γ0 determines the type of the pattern; χi
determines the position of the pattern type in the
sequence, ordered according to the similarity
function:
 jijhih χχ ≤→≤)()((13)

5.3 The Proposed Error Function to
Evaluate The Training Method

Assume that the result of an experiment is also
expressed as an ordered sequence of pattern types:

n

ii 1=
= ψψ , (14)

ordered according to the outputs of the network:
 jijFiF ψψ ≤→≤)()((15)
where F(⋅) – the function realized by the neural
network trained on Γ.

Proceedings of the 5th WSEAS Int. Conf. on Artificial Intelligence, Knowledge Engineering and Data Bases, Madrid, Spain, February 15-17, 2006 (pp254-258)

Then we can define the sequential error λ(⋅,⋅) as
difference between positions of two sequences:

()

n

n

i
ii∑

=

−
= 1

2

),(
ψχ

ψχλ (16)

Using the similarity sequence (12) instead of the
similarity function (11) is acceptable with evaluation
(fitness) function within a GA, as the fitness function
is involved in determining, which solutions are to be
eliminated or to be chosen as parents, and the
absolute values of the evaluation are not of great
importance.

In the next section, the performed experiments
are examined according to the sequential error λ
(16).

5.4 Analysis of Experimental Results and
Conclusion

All the experiments were examined according to the
sequential error λ and grouped by the number of
pattern types c in the training set and random rate τ
(see Section 4.4). The summary of experimental
results is shown in Table 1.

Table 1. Experimental results as average of the
sequential error λ, grouped by the number of pattern
types c and the random rate τ.

sequential
error (λ) random rate (τ) number of pattern

types in Τ (c)
10.51049 0.5 2
10.52552 0.9 4
10.73023 0.5 4
10.73762 0.7 4
10.76883 0.2 4
10.88012 0.5 1
10.90313 0.2 2
10.96310 0.7 2
10.99388 0.7 1
11.11132 0.2 1
11.23665 0.9 1
11.26268 0.9 2
11.41785 0.0 1
11.62686 0.0 2
12.28688 0.0 4

According to the results shown in Table 1, the

value of λ is nearly 11, i.e., it is a great distance
away from the “ideal” value of 0. It is just a little
better than one, which can be acquired by randomly
generated sequences, which yield the λ value of
approximately 14.

To better evaluate the experimental results, the
similarity sequences, obtained from separate
respondents, and the total similarity sequence (12)
also were examined. This was done by comparing
them in terms of sequential error λ, and the results
were between 2.82 and 5.99, i.e., also rather far away
from the “ideal” value. Against that background, the
acquired results for the proposed training method
look fairly good.

Although the improvement is small, we still
observe the following benefits:

• There is a noticeable effect of using just
“positive” patterns in the training set – the
improvement is small, but stable.

• The worst results were shown by random
rate of value 0. This shows the effect of
using randomly generated patterns in the
learning process.

The results encourage the author to continue
research in order to build a neural network that
would serve as evaluator of school timetables, one,
which would be included in a genetic algorithm as a
part of the fitness function.

References:
[1] S. Haykin, Neural networks: a comprehensive

foundation, 2nd ed. Prentice-Hall, Inc, 1999.
[2] J. Zuters, An Adaptable Computational Model

for Scheduling Training Sessions, Annual
Proceedings of Vidzeme University College
“ICTE in Regional Development”, 2005, pp. 110-
113.

[3] J. Zuters, An Extension of Multi-Layer
Perceptron Based on Layer-Topology,
Proceedings of the 5th International Enformatika
Conference’05, 2005, pp. 178-181.

Proceedings of the 5th WSEAS Int. Conf. on Artificial Intelligence, Knowledge Engineering and Data Bases, Madrid, Spain, February 15-17, 2006 (pp254-258)

