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Abstract: - Multi-layer perceptron (MLP) is widely used, because many problems can be reduced to 
approximation of functions. Pattern evaluation, which is discussed in this article, belongs to this range of 
problems. MLP manages function approximation problems quit well, however an important prerequisite is a 
uniformly distributed set of training patterns. Unfortunately, such a set is not always available. In this article, 
the use of randomly generated additional training patterns is examined to see whether this improves the training 
result in cases, when just “positive” patterns are available. 
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1 Introduction 
The problem of pattern evaluation can be simply 
solved with a multi-layer perceptron. We just have to 
design a network that approximates the unknown 
evaluation function f(⋅) [1]: 
 )(xfd = , (1) 
where the vector x is the input and the vector d is the 
output. 

We are given the set of labeled examples 
(training patterns) Τ: 
 { }n

iii dx 1),( ==Τ  (2) 
The function F(⋅) describing the input-output 

mapping actually realized by the network should be 
close enough to f(⋅) in a Euclidean sense over all 
inputs: 
 ε<−∀ )()( xfxFx , (3) 
where ε is a small positive number. 

Such problems are perfect candidates for 
supervised learning, int. al. MLPs. 

A problem arises if we have no set of patterns 
adequately representing f(⋅). 

[2] describes such a case with solving a 
timetabling problem via a genetic algorithm (GA), 
where a neural network is intended to be a part of the 
fitness function within GA in order to support the 
evaluation (rating) of solutions (timetables). The idea 
is to train the network on existing (i.e., valid) school-
timetables, thus obtaining the network, which is able 
to evaluate timetables. Unfortunately for this 
approach we have no “bad” or “not very good” 
examples of timetables, so the available training set 
is incomplete, and the evaluation should be done as 

some kind of similarity computation between the 
candidate timetable and valid timetables. Figure 1 
shows the schema of GA-based timetabling, where 
the timetable evaluation should be partially 
committed to a neural network. 
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Fig. 1. The schema for GA in timetabling [2] 

 
In this article the author examines a method of 

organizing a learning process (LP) through adding 
randomly generated training patterns (TPs) to the 
training set. The method is proposed in order to 
compensate for the lack of a complete training set. 
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2 Learning Process of a Neural 
Network 

The ability of the network to learn from its 
environment and to improve its performance through 
learning is the property of primary significance for 
neural networks. [1] 

The two aspects of the learning process are to be 
distinguished: 
1. Learning algorithm (LA). LAs differ 

significantly among various neural network 
models. 

2. Organization of the LP. 
The latter encompasses the way in which TPs are 

passed to the network and correspondingly, to the 
LA. Usually the LP is arranged in epochs. An epoch 
is one sweep through all the patterns in the training 
set, presenting them to the network, i.e. the LA. 

Provided that the set of training patterns Τ is 
available (see (2)), the LP can be generally described 
as follows (Fig. 2): 
 
% Τ - set of training patterns 
do 
 p := fetch the first pattern from Τ 
 do 
  operate the learning algorithm on p 
  p := fetch the next pattern from Τ 
 while p is available  
while the stopping criterion not met 

Fig. 2. A learning process 
 

Fetching of patterns can differ in terms of 
sequence – some LAs require random order, others 
do not. 

 
 

3 Organization of the Learning 
Process with Incomplete Available 
Training Set 

3.1 The Problem 
Let’s explore the following problem: Compute the 
extent of similarity between a given alphanumeric 
symbol and a fixed set of alphanumeric symbols Τ. 

In order to solve this problem, we need to design 
a similarity function for the fixed set Τ: 
 { }1..0: →ΑΤh  (4) 
where Τ⊂Α is a set of alphanumeric symbols. 

This problem is the same as the one discussed in 
Section 1, just replacing patterns of symbols with 
timetables. 

To solve this problem we could face the 2 
following sub-problems. 

Sub-problem 1 (extremely important with 
timetable evaluation within GA). Determine the 
criterion of similarity between 2 patterns (e.g., how 
close are symbols ‘B’ and ‘8’). 

Sub-problem 2 (assuming that the problem is 
being solved using a neural network trained just on 
positive patterns). Overcome the lack of a complete 
training set. 

The author proposes adding randomly generated 
patterns to the training set to try to solve such 
problems. 

 
 

3.2 Unsuccessful Attempts 
The first idea was to examine the Kohonen network. 
The competition principle based on comparison 
between neurons seemed very promising – just to 
replace “winner takes it all” to “everyone takes as 
much as deserved according to gained evaluation”. 
Unfortunately various attempts crashed – the 
Kohonen network did the clusterization well, still it 
was unable to find out the evaluation of assigning a 
pattern to some cluster. 

 
 

3.3 The Proposed Method – Training MLPs 
with Randomly Generated Patterns 

The second idea, which yielded results, was to use 
additional training patterns along with available 
ones. By this approach we have to choose the 
random rate τ∈{0..1}, which denotes the proportion 
of the use of randomly generated patterns. The 
proposed supervised learning method can be 
described as follows (see Figure 3): 
 
% Τ - set of positive training patterns 
% τ -  the random rate {0..1} 
% s - size of the training set 
% determining the size of an epoch (s2 ≥ s):  
s2 := s / (1 - τ) 
do 
 for i := 1 to s2 do 
  rnd := get random value from interval 0..1 
  if rnd < τ then 
   p := generate random pattern 
   d := 0 
  else  
   p := choose a pattern from Τ in random 
   d := 1 
  operate the learning algorithm on [p, d] 
while the stopping criterion not met 
Fig. 3. A supervised learning process with additional 

randomly generated training patterns 
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The proposed method was tested through the 
experimentation described below. 

 
 

4 Description of the Experimentation 
The goal of the experimentation was to examine a 
method proposed by the author for organizing the LP 
by adding randomly generated TPs (solving 
problems like the problem, described in Section 3.1). 
The goal of each experiment is to obtain a neural 
network that could be used for evaluation of patterns, 
i.e., one, which realizes the similarity function (4). 

 
 

4.1 Describing the Learning Process of the 
Experimentation 

The classic MLP with the backpropagation learning 
algorithm was used in the experimentation along 
with the author’s proposed learning method (See Fig. 
3). 

The core MLP operating and training algorithm is 
briefly shown as follows [3]. 

Propagation function: 

 ∑
=

=
n

i
ijij owNET

0
, (5) 

where NETj is propagation value of the neuron j; wij 
– the ith weight of the neuron j (wj0 – bias of the 
neuron j); oi – the ith input signal of the neuron j (o0 = 
1). 

Activation function: 
 )( jj NETo ϕ= , (6) 
where oj – output value of the neuron j; ϕ(⋅) – 
logistic activation function. 

The general weight correction rule: 
 ijji ow ηδ=∆ , (7) 
where ∆wji – correction of the ith weight of the 
neuron j; η – learning rate; δj – local gradient of the 
neuron j (not specified in this paper); oi – the ith input 
signal of the neuron j. 

 
 

4.2 Architecture of Neural Networks Used in 
Experiments  

In computer experiments neural networks of the 
classic MLP architecture were used: 

• Size of the input signal – 1280. 
• 1 hidden layer with 3, 5, or 7 neurons. 
• 1 neuron in the output layer. 
• Networks operate as described above: see 

(5), (6), (7). 

Logistic function was used as an activation 

function with the gain
⎭
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⎩
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mmmγ , where m –

number of neuron inputs. 
 
 
4.3 Available Set of Training and Testing 

Patterns 
The networks were tested on black and white images 
of a size 32 × 40 pixels with black hand-written 
digits and capital Latin letters depicted on a white 
background (Fig. 4). The number of pattern (symbol) 
types was n=36 (10 digits + 26 letters). Let’s denote 
the set of pattern types as Γ0. The number of variants 
for each pattern type was v=4. So, the total size of 
the set of available patterns Τ0 were n×v = 144. As 
we have 4 different variants of each symbol (i.e., 
four rows of patterns), then for each experiment, one 
of the rows served as the test set, the other three – as 
the training set. 
 

 

 

 

  
Fig. 4. A subset of the set of available patterns Τ0 

 
 

4.4 Course of a single experiment 
A total of 1,250 experiments were conducted. Each 
experiment involves the designation, training, and 
testing one MLP. 
1. Create a new MLP according to the description 

in Section 4.2. 
2. Choose from Τ0, at random, three rows of 

available patterns (Fig. 4) as a candidate set of 
training patterns Τ0A⊂Τ0, so those of the 
remaining row would be a test set Τ0B⊂Τ0. 

3. Choose at random the “random rate” τ among 
values {0, 0.2, 0.5, 0.7, 0.9}. τ=0 means that the 
network is trained just on selected patterns 
without use of randomly generated ones. 

4. Choose at random the amount of pattern types c 
among values {1, 2, 4} in the training set. 

5. Select pattern types at random for the training set 
from 36 available digits and letters: Γ={q1, q2, ..., 
qc}⊂Γ0. As three rows of four available figures 
serve for training, the chosen pattern types 
represent s = c × 3 patterns, so the training set 
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would consist of s patterns: Τ={p1, p2, ..., 
ps}⊂Τ0A. 

6. Train the network using the author’s proposed 
method (Section. 3.3) until 100 epochs are 
passed or the total error of output neurons 
decreases under ε=0.1. 

7. Random patterns were generated as black and 
white images of a size of 32 × 40 pixels, with 
proportion of black at 0.17-0.35 (also chosen at 
random). 

8. Test the trained network on the set of test 
patterns Τ0B and record the outputs, thus forming 
the experimental results. 

The goal of an experiment – to obtain a network that 
is able to evaluate input patterns Τ0B (represents Γ0) 
with respect to a fixed set Γ, i.e. realizes a version of 
the similarity function hΓ. 

 
 

5 Analysis of the Proposed Training 
Method 

Sub-problem 2 (Section 3.1) is stated to determine 
the criterion of similarity between two patterns. In 
this case (analyzing the training method), such a 
criterion should be obtained by external means, and 
the similarity function that is based on it would then 
serve as a benchmark to measure the quality of the 
solution. 

 
 

5.1 A Questionnaire Method to Obtain the 
Similarity Criterion 

As there exist no manifest formal criteria in terms of 
similarity between two patterns, human opinion was 
chosen as a criterion. A survey was arranged, and 
eight respondents were asked to evaluate pairs of 
symbols (a total of 630 pairs – each of 36 symbols 
with each of the rest) with the mark between 0 and 1 
(with a minimum step of 0.1), where 1 means – 
“very similar”, but 0 – “absolutely different” (Fig. 
5). All the respondents rated most of pairs as 0. 
 

As the average result of all respondents, the 
similarity measure for two patterns g(⋅,⋅) was 
obtained: 
 { }1..0: 00 →Γ×Γg  (8) 

To reduce the computation, the function g(⋅,⋅) 
was simplified in a manner so that the following 2 
equations hold true: 
 1),(:0 =Γ∈∀ iigi  (9) 
 ),(),(:, 0 ijgjigji =Γ∈∀  (10) 

 
Fig. 5. An excerpt of an inquiry form used in the 

survey 
 

Now we can define the similarity function with 
respect to Γ: 
 ),(max)( ijgih

j Γ∈Γ = , (11) 

where Γ⊂Γ0 – the set of pattern types, representing 
the training set, and i∈Γ0 – the pattern type. The 
introduced similarity function represents the average 
evaluation of all respondents with respect to Γ. 

 
 
5.2 Representing the Similarity by the 

Similarity Sequence 
Unfortunately, it was impossible to examine 
experimental results through comparing them 
directly to the values yielded by the similarity 
function. That was because of disparate absolute 
output values among experiments. There was a need 
for a different notion of the similarity function. 

The idea is, instead of the similarity function 
(11), to represent the similarity by the similarity 
sequence with respect to Γ: 
 

n

ii 1=
= χχ , (12) 

where i∈Γ0 determines the type of the pattern; χi 
determines the position of the pattern type in the 
sequence, ordered according to the similarity 
function: 
 jijhih χχ ≤→≤ )()(  (13) 

 
 

5.3 The Proposed Error Function to 
Evaluate The Training Method 

Assume that the result of an experiment is also 
expressed as an ordered sequence of pattern types: 
 

n

ii 1=
= ψψ , (14) 

ordered according to the outputs of the network: 
 jijFiF ψψ ≤→≤ )()(  (15) 
where F(⋅) – the function realized by the neural 
network trained on Γ. 
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Then we can define the sequential error λ(⋅,⋅) as 
difference between positions of two sequences: 

 
( )

n

n

i
ii∑

=

−
= 1

2

),(
ψχ

ψχλ  (16) 

Using the similarity sequence (12) instead of the 
similarity function (11) is acceptable with evaluation 
(fitness) function within a GA, as the fitness function 
is involved in determining, which solutions are to be 
eliminated or to be chosen as parents, and the 
absolute values of the evaluation are not of great 
importance. 

In the next section, the performed experiments 
are examined according to the sequential error λ 
(16). 

 
 

5.4 Analysis of Experimental Results and 
Conclusion 

All the experiments were examined according to the 
sequential error λ and grouped by the number of 
pattern types c in the training set and random rate τ 
(see Section 4.4). The summary of experimental 
results is shown in Table 1. 

 
Table 1. Experimental results as average of the 
sequential error λ, grouped by the number of pattern 
types c and the random rate τ. 

sequential  
error (λ) random rate (τ) number of pattern 

types in Τ (c) 
10.51049 0.5 2 
10.52552 0.9 4 
10.73023 0.5 4 
10.73762 0.7 4 
10.76883 0.2 4 
10.88012 0.5 1 
10.90313 0.2 2 
10.96310 0.7 2 
10.99388 0.7 1 
11.11132 0.2 1 
11.23665 0.9 1 
11.26268 0.9 2 
11.41785 0.0 1 
11.62686 0.0 2 
12.28688 0.0 4 

 
According to the results shown in Table 1, the 

value of λ is nearly 11, i.e., it is a great distance 
away from the “ideal” value of 0. It is just a little 
better than one, which can be acquired by randomly 
generated sequences, which yield the λ value of 
approximately 14. 

To better evaluate the experimental results, the 
similarity sequences, obtained from separate 
respondents, and the total similarity sequence (12) 
also were examined. This was done by comparing 
them in terms of sequential error λ, and the results 
were between 2.82 and 5.99, i.e., also rather far away 
from the “ideal” value. Against that background, the 
acquired results for the proposed training method 
look fairly good. 

Although the improvement is small, we still 
observe the following benefits: 

• There is a noticeable effect of using just 
“positive” patterns in the training set – the 
improvement is small, but stable. 

• The worst results were shown by random 
rate of value 0. This shows the effect of 
using randomly generated patterns in the 
learning process. 

The results encourage the author to continue 
research in order to build a neural network that 
would serve as evaluator of school timetables, one, 
which would be included in a genetic algorithm as a 
part of the fitness function. 
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