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Abstract. We present an algorithm which is able to adjust a set of data with unknown characteristics. The algorithm is 
based on the simple notion that a sufficiently large set of examples will adequately embody the essence of a 
numerically expressible phenomenon, on the one hand, and, on the other, that it is possible to synthesize such essence 

via a polynomial of the form In
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the values 0 or 1 depending on whether the corresponding monomial is adequate. In order to determine the 
adequateness of the monomial in case we resort to a genetic algorithm which minimizes the fitting error of the 
candidate polynomials. We analyze a set of selected data sets and find the best approximation polynomial. We compare 
our results with those stemming from multi-layer perceptron networks trained with the well known backpropagation 
algorithm (BMLPs). We show that our Genetic Mutivariate Plynomials (GMPs) compare favorably with the 
corresponding BMLPs without the “black box” characteristic of the latter; a frequently cited disadvantage. We also 
discuss the minimization (genetic) algorithm (GA). 
  
Keywords. Multivariate approximation, multi-layered perceptron networks, genetic algorithms. 

1 Introduction 
Machine learning has been tackled in the past using 
(with remarkable success) the so-called Neural 
Networks (NNs). These statistical algorithms have the 
undeniable advantage of being able to adjust a set of 
data with unknown characteristics. Networks of simple 
computational elements called “perceptrons” have been 
shown to be able to compute an arbitrary function from 
a sufficiently large set (sample) of examples 
(elements). In particular, well behaved (typically 
continuous) functions are known to be amenable to 
optimal representation (in terms of statistical learning 
theory [VV95]) by a multi-layered perceptron network 
(typically trained with the “backpropagation” 
optimization algorithm) with no more than three layers 
(BMLPs) [SH99]. However, two often cited 
disadvantages of these algorithms are a) The number of 
neurons in the hidden layer has to be estimated 
heuristically and b) The resulting BMLP has no 
explanatory properties (i.e. it looks like a “black box” 

to the user and does not lend itself to simple rule 
extraction). To ameliorate these shortcomings, 
alternative neural network (NN) paradigms have been 
explored; for instance Radial Basis Function Networks 
(RBFs) and Support Vector Machines (SVMs). In both 
of these latter cases the architecture is dictated by the 
method itself and does not have to be estimated. In 
both RBFs and SVMs, however, the problem is 
transferred elsewhere. In RBFs we are faced with 
having to find the most adequate function centers while 
in SVMs we have to determine the regularization 
parameter “C”. On the other hand, both RBFs and 
SVMs still retain the black box characteristic of most 
NNs. The power of NNs, in general, resides in the 
proper combination of “simple” computing elements 
(the “neurons”) in a network which is, basically, and 
embodiment of the “divide-and-conquer” principle. In 
BMLPs the neurons are called “perceptrons” and, 
simply put, are summation elements whose output is 
post-processed by a non-linear (typically sigmoid) 
function such as )xe1/(1 −+  (the logistic function ) or 

)xex)/(exex(e −+−−  (tanh: the hyperbolic tangent 
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function)1. These functions are usually called the 
activation functions. For further reference, we will 
index the linear, logistic and tanh functions with the 
numbers 1, 2 and 3 respectively. Each of the inputs to 
any given perceptron is weighted in such a way that the 
concerted interaction of the elements of the NN yields 
an output which mimics the desired function. In figure 
1 we show an example of a BMLP. 
 

Fig. 1.  A Multi-Layered Perceptron Network 
 
This BMLP has 6 inputs, 4 intermediate (hidden) units 
and one output. In addition to the input neurons 
corresponding to each of the input variables a so-called 
bias neuron is included. The bias neuron relieves the 
designer from having to individually determine the 
threshold for each neuron. Its input is usually set to 
“+1”. We denote the number of neurons in the input 
layer with “I”, the number of neurons in the hidden 
layer with “H” and those in the output layer with “O”. 
Therefore, there are C = H(I+O+1)+O connections in 
any three (as here) layered perceptron network; one 
weight corresponds to each one of the connections. A 
BMLP is “given” a set of n input values (a vector X 
= )x,...,(x n1 ) and a set of output values (a vector Y = 
(y1,…,yp)2).  The process of “training” a BMLP 
consists of finding the C values of the weights such 
that the NN, given X, outputs a value as similar to the 
original values of Y as possible according to a 
predefined error measure3. Furthermore, it is usual to 
impose the further requirement that the BMLP is 
trained with the so-called training set while minimizing 

                                                           
1 Another typical choice is the linear function y = x. Other, 
more exotic, choices (such as Gaussian functions and the 
like) are possible but we do not consider them here. 
2 In what follows we assume that |Y | = 1. 
3 Typically, the error measure corresponds to the least 
squares norm. 

the approximation error for a data set which the NN 
does not “see” (which we call the test set). This last 
condition is aimed at providing generalization 
properties to the resulting NN: i.e. the trained NN 
should also synthesize the phenomenon under analysis 
outside the limited range of the known data. To this 
effect the original data set is split by randomly leaving 
out of the original sample a given percentage of 
elements which constitute the (smaller) test set; the 
remaining elements constitute the (larger) training set4. 
The process of validating the generalization properties 
of the NN may be improved upon by trying out 
different combinations of training-test sets and is 
usually referred to as cross-validation5. 

Finding the weights of an arbitrary BMLP may 
be seen as a combinatorial problem. Let us take the NN 
of figure 1, as an example. There we have I = 6, H = 4 
and O =1, that is C = 33. If we assume that every 
weight is expressed with an 80 bit binary number (as in 
the floating point unit of a typical Pentium processor) 
we need 33 x 80 = 2640 bits to express the values of 
the trained NN. To find the very best combination, 
therefore, we would need to exhaustively try out 22640 
combinations. This is a huge number (close to (103)264 
= 10792 combinations). To have a feeling of its 
enormity, consider that the estimated number of 
elementary particles in the observable universe is 1080; 
thus, we would need close to 10 times the number of 
elementary particles in the universe merely to store the 
possible solutions if we were able to assign one of the 
possible sets of trained neuron weights to every 
particle! It is, indeed, a tribute to the efficiency of the 
backpropagation algorithm that the task of finding an 
adequate set of weights (W) of size C is routinely 
performed in a modern computer in a few seconds 
[BB92]. 

Given the above, therefore, we may see that a 
properly trained BMLP represents the synthetic 
representation of the data sample. We may, then, 
“replace” a large sample set by a) A description of the 
architecture of the NN (for instance (6,4)), b) A 
specification of the activation functions (for instance 
(1, 2, 1)) and c) W. In the example, therefore, the 
vector F = [(6,4); (1,2,1); W] which consists of 38 
numbers will, in principle, adequately synthesize the 
information of the data sample. Not only that but, if we 
consider the cross-validation process to be valid, the 

                                                           
4 We assume, hereinafter, that 75% of the simple elements 
are assigned to the training set and the remaining elements to 
the test set. 
5 We shall adhere to the simplest form of cross-validation as 
described above. 
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same set will represent the observed phenomenon even 
for data beyond the sample. 

It seems, then, that having to somehow 
(typically with heuristics) determine “H” and being 
unable to establish an explicit expression of the 
synthesizing function is a small price to pay for such a 
powerful tool. However, there is an alternative and 
viable tool (GMP) which is free of both shortcomings 
and is the main topic of this paper. In what follows we 
give a brief account of the GMP algorithm’s principles 
and its behavior in a set of selected problems. In part 2 
we describe the algorithm; in part 3 we describe 
experiments allowing us to compare BMLPs with 
GMPs; in part 4 we discuss their relative characteristics 
and offer our conclusions. Finally, in section 5 we offer 
our conclusions and point out to future lines of 
research. 

2 Genetic Multivariate Polynomials 
The problem discussed in the introduction may be 
recast in terms of finding and explicit algebraic 
expression of the form 

In
InV

1D

01I

nD

0nI
...D1

I1VI1...InC...)nV,...,1F(V ∑
=

∑
=

=    (1) 

In equation (1) the set of coefficients in (1) (which we 
denote as C’) may be considered to roughly replace W 
in F with the advantage of yielding an explicit 
mathematical relationship between the independent 
variables X and the dependent variable Y. This 
approximation problem has been the subject of many 
studies in the past and it has been pretty much solved 
except for certain practical issues. First of all, we have 
to contend with the fact that the cardinality of C’ 
(which we denote as γ ’) is large enough as to make it 
unwieldy for all except the simplest cases. Consider the 
NN of figure 1 once again. The Di’s are the largest 
allowed degrees for the monomials of (1). If we 
assume that Di = 5 for all i we can easily calculate that  
γ ’ = 66 = 46,656. This means, first of all, that we need 
at least 46,656 elements in the sample. Secondly, if we 
assume that every floating point number uses 8 bytes (a 
typical representation for double precision numbers in 
a common high level language) then the simple storage 
of a hypothetical solution will require 373,248 bytes. 
Thirdly, and most importantly, the usual numerical 
methods with which these approximations are normally 
tackled imply the solution of systems of linear 
equations of similar order. Such systems inevitably 
lead to numerical instability which, in fact, renders the 

said methods ineffectual. Finally, fitting a relatively 
large set of data under the least squares error measure 
leads to Hilbert matrices which are known to be 
particularly sensitive to rounding errors. In other 
words, even though it is theoretically possible to solve 
the approximation problem even for large samples, in 
practice it is both impossible and impractical to do so 
with the usual methods. If we had a computer of 
infinite numerical precision and unlimited storage we 
could solve equation (1) trivially. But, this not being 
the case, we will replace the approach outlined by 
equation (1) by another one in which we retain the 
form (an algebraic polynomial) of the solution while 
removing the need for a large γ ’ by introducing a set 
of constants µ  as shown in equation (2). 
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The elements of µ  determine whether a given 
monomial in (2) is to be included in the purported 
polynomial solution. For this reason we must establish 
a priori the cardinality of µ . Obviously we want to 
have a manageable number of coefficients (we denote 
the set of coefficients in (2) as C and its cardinality as 
γ ) so that we do not longer need to contend with the 
problems derived from large storage needs. Assuming 
we are able to determine the best γ  monomials we are 
still faced with the fact that large samples lead to large 
unmanageable systems of equations. Therefore, we will 
replace the least squares (or L2) norm with the less 
usual (but well known) minimax (or Chebyshev or 

∞
L  

norm). In so doing we will avoid the need to solve 
large systems of equations and get around the inherent 
precision problems. The minimax norm is not as 
popular as least squares because it is more sensitive to 
outliers6 and because the approximation algorithms are 
slower. In our case, where the sample is assumed to 
have unknown characteristics, it is impossible to 
determine what “atypical” means. It would then seem 
that the first objection is not easy to sustain. The 
second one is valid but we have developed methods 
which diminish this inconvenience. In what follows we 
give a brief account of the principles behind the 
minimax multivariate approximation algorithm. Once 
this is done we will discuss the genetic algorithm 
which allows us to determine C for a given γ . 

                                                           
6 When an element of the sample is outside of the “typical” 
trend of the whole it is called an “outlier”. 
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2.1 The Ascent Algorithm 
The algorithm to approximate the sample under the 
minimax norm is based on three observations: a) The 
approximation coefficients of a minimax set M of size 
m are uniquely determined by finding the adequate 
signs of  the errors for the elements of the set, b) If a 
larger set N of size n has elements outside the minimax 
solution it is always possible to exchange one of the 
elements in  M by an element in N such that the 
minimax condition is still met for the new M and c) 
Continuing exchanges will eventually lead to a target 
set M which satisfies the minimax norm for all 
elements in N. 
 In what follows we denote with F(X) the 
function which is able to fully minimize the error  

|iy)i(iF|maxφε −= X . Xi  denotes the value of the 

th-i  independent variable vector and yi the value of 
the th-i dependent variable. The original data set is 
found in matrix X of dimension s1)(n ×+ ; n is the 
number of independent variables and s the number of 
elements in the sample. In order to find the 
approximator of (2) we map the vectors of X to a 
higher dimensional space yielding matrix V of 

dimensions sp×  where )id(1n
1iΠp +

=
= . Let us 

arbitrarily select a sub-matrix of V of size mm×  (call 
it V’) where m = p+1. Then we solve the following 
system. 

   (3) 
Denoting the approximation error for the i-th vector as 

iε  and the largest absolute such error as θε we may 

define θεiηiε = ; clearly, θεiηiε ≤ . We also denote 

the elements of row i column j of (3) as ijδ  and the i-th 

cofactor of the first column as iκ . From Cramer’s rule 
we immediately have 

                       (4) 

To minimize θε  we have to maximize the denominator 

of (4). This is easily achieved by a) Selecting the 
maximum value of the iη ‘s and b) Making the signs of 

the iη ‘s all equal to the signs of the iκ ‘s. Obviously 

the iη ‘s are maximized iff  iη  = 1 for i=1,…,m which 

translates into the well known fact that the minimax fit 
corresponds to approximation errors of the same 
absolute size. On the other hand, to achieve (b) we 
must simply set the signs of iη ‘s  to those of  the 

cofactors. Making )(sign iκσ =i , system (3) is simply 
re-written as 

                 (5) 
 
Once having all the elements in (5) it suffices to solve 
this system to obtain, both, the value of θε  and the 

coefficients c1,…,cm which best fit the elements of X in 
the minimax sense. To obtain the coefficients for the 
whole sample we apply the following algorithm. 
 
2.2 Exchange Algorithm 
1. Set 1i ← . 
2. Select an arbitrary subset (of size m) of rows of 
matrix V; this set is called Mi. 
3. Determine the signs of iε  which maximize the 

denominator of (4). 
4. Solve the system of (5). Denote the resulting 
polynomial by Pi. 
5. Calculate iMi|)iyiPmax(|ε ∉∀−=ϕ  

6. If θφ εε ≤  end the algorithm; the coefficients of Pi  
are those which best approximate V in the minimax 
sense.  
7. Set 1ii +← . 
8. Exchange the row corresponding to θε  for the one in 

Mi which preserves it sign and makes iθ1iθ )(ε)(ε >+ . 
9. Go to step 4. 

  
The exchange algorithm will end as long as the 
consecutive systems of (5) satisfy Haar’s condition 
while, on the other hand, the cost of its execution (in 
flops) is O(m6). There are implementation issues which 
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allow us to apply this algorithm even in the absence of 
Haar’s conditions and reduce its costs to O(m2) the 
interested reader is referred to [KU99]. 
 
2.3 Genetic Algorithm 
One of the basic reasons to choose the minimax norm 
is that the Exchange Algorithm is not dependent on the 
origin of the elements in V. We decided them to be 
monomials of a full polynomial but it makes no 
difference to the Exchange Algorithm whether the vi 
are gotten from a set or monomials or they are 
elements of arbitrary data vectors. This is important 
because the number of monomials in (3) grows 
geometrically. One way to avoid the problem of such 
coefficient explosion is to define a priori γ  and then to 
properly select which of the γ ’ possible ones these will 

be. There are ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
γ
γ'

 possible combinations of 

monomials and even for modest values of γ  an 
exhaustive search is out of the question. This 
optimization problem may be tackled using a genetic 
algorithm as follows. 

The genome is a binary string of size γ ’. 
Every bit in it represents a monomial. If the bit is ‘1’ it 
means that the corresponding monomial remains while, 
if it is ‘0’, such monomial is not to be considered. This 
simple strategy corresponds to determining the values 
of µ  in equation (2). All one has to ensure is that the 
number of 1’s is equal to | µ |. Assume, for example, 
that v = (v1, v2, v3) and that d1 = 1, d2 = 2 and d3 = 2; 
if | µ | = 6 the genome 110000101010000001 
corresponds to the polynomial in (6). 
 
P(v1,v2,v3)=C000+C001v3+C020(v2)2+C022(v2)2(v3)2+… 

C112v1v2(v3)2+C122V1(v2)2(v3)2                              (6) 
 
 It is well known that an elitist GA will 
converge to a global optimum [GR94]. It has also been 
shown that a variation called Vasconcelos’ GA shows 
superior behavior on a wide range of functions [KU02]. 
VGA uses a) Deterministic parenthetical selection, b) 
Annular crossover, c) Uniform mutation. All results 
reported here are based on VGA’s application (for a 
detailed discussion see [KV98]). 
 Therefore, the initial population of the VGA is 
generated randomly. It consists of a set of strings of 
length γ ’ in which there are only γ  1’s. Then the 
GA’s operators are applied as usual. The fitness 

function of the GA is the minimax error as per the 
exchange algorithm. This error is minimized and, at the 
end of the process, the polynomial exhibiting the 
smallest fit error is selected as the approximant for the 
data sample. This polynomial is called a “Genetic 
Multivariate Polynomial” (GMP). 
 The learning machine methodology outlined 
for the BMLPs in section (1) is, in fact, independent of 
the learning algorithm and here we replace the NN with 
a GMP. In the next section we discuss the results of 
applying this methodology with, both, BMLPs and 
GMPs. 
 
3 Experiments 
In this section we report on different sets of data which 
were a) Normalized to the interval [0,1] and b) Split 
into two random partitions accounting for 75%-25% of 
the data, respectively. We trained, both, a BMLP and a 
GMP. Then we chose the BMLP/GMP whose behavior 
was optimal for the test data set, i.e. the one with the 
best generalization properties. In what follows we 
describe the different experiments. 
 
3.1 Experiment 1: Time Series 
An experimental time series data consisting of a 13× 90 
matrix was considered. This data correspond to the 
historical behavior of an airline during an 11 year 
period. The corresponding graph is shown in figure 2. 
  

 
Fig. 2. Graph for time series 

 
3.2 Experiment 2: Neural Network I 
We considered a 2-1 architecture for a BMLP. We 
generated a 3x100 matrix as follows: Columns C1 and 
C2 were randomly filled in with uniform numbers in 
[0,1]. Column C3 was calculated by simulating a 
BMLP whose inputs correspond to the values of C1 
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and C2 and whose output was calculated by using a 
logistic activation function for the weights 
corresponding to those of table 1. 
 

Table 1. Weights of the 2-1 BMLP 
1.4142000000 
3.1416000000 
2.7182800000 
0.5002210000 
-1.1200000000 

 
3.3 Experiment 3: Neural Network II 
We generated a table of dimensions 5x100. The first 
column (C1) was randomly filled in as above; 
C2=sin(C1)cos(C1); C3=sin(C2); C4=tan(C2)sin(C3). 
The dependent variable’s values were calculated as in 
experiment 2 with the weights shown in table 2. 
 

Table 2. Weights for the 4-1 BMLP 
0.710677794 
0.273139125 
0.336020956 
0.173518450 
0.620503227 
0.808716951 
0.754668302 
0.775027323 
0.287502668 
0.794020586 
0.959432104 
0.846120365 
0.140885327 

 
The corresponding graph is shown in figure 3. 
 

 
Fig. 3. Graph for 4-1 BMLP 

 
3.4 Experiment 4: Transcendental Function I 
We generated a table of dimensions 9x100. The first 4 
columns were defined as in experiment 3. The 
remaining columns (C5-C8) were calculated as 

follows: C5=sinh(C1); C6=cosh(C1); C7=tanh(C1); 
C8=sin(C1)cos(C1); C9=(C1)2-2(C2)3+(C2C3C4)-3C5 
-C6C7 -2C2(1-C4) -2C5(1-C6) +2C1(1/(C7C8)). The 
corresponding graph is shown in figure 4. 
 

 
Fig. 4. Graph for Transcendental Function I 

 
3.5 Experiment 5: Transcendental Function II 
A table of dimensions 13x100 was generated. The first 
9 columns were filled in as in experiment 4. The 
remaining 5 columns were calculated as follows. C10 = 
C8/C9; C11 = C8/(C9/C7); C12 = C1+C8C6-C6(C2)3; 
C13 = sin(C2)cos(C4)tan(C6)/(sin(C6)-1/tan(C8)). The 
corresponding graph is shown in figure 5. 
 

 
Fig. 5. Graph for Transcendental Function II 

 
For all five functions we trained both a BMLP and a 
GMP.  
 

Table 3. Coefficients for time series 
φε  0.050929454

C001111000010 2.506630455
C001110110111 51.95542862
C000101000011 0.602721425
C010010100110 4.949337075
C101110100010 -11.57360514
C000010010001 -0.039080933
C110111010110 -77.34324491
C100000000000 0.957983801
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In table 3 we present an example of the coefficients 
gotten from training the GMP for the problem in 
experiment 1. The index of the coefficient denotes the 
degree of the corresponding monomial. There are 12 
indices, one for each independent variable. 

In table 4 we show the characteristics of each 
learning method; in table 5 we show the maximum and 
RMS errors for the test set in both cases. 
 

Table 4. Basic features for BMLP and GMP 

 
Notice that the number of terms ( γ ) for GMPs is of, at 
most, 20. In contrast, the number of connections in the 
BMLPs goes up to 71. Also, the maximum allowed 
degrees for each of the monomials is kept at 2. The 
number between square parentheses indicates the 
maximum degree for any given monomial. 
 

Table 5. Errors for BMLP and GMP 

 
 
Notice that errors for GMPs are smaller in all cases. 
Particularly noteworthy is the case of experiment 4, in 
which BMLP’s maximum error reaches a 16.75%. 
Looking at figure 4 we see a spike which is responsible 
for this large NN error. The GMP, on the other hand, 
does rather well. It was here that we had to increase the 
Di’s to better fit the data. This, in itself, displays the 
advantage of GMPs over NNs: since we are able to 
explicitly determine the causes for the behavior of the 
GMP we are able to modify it accordingly to improve 
its performance. 
 

4 Conclusions 
 
As noted, the polynomials resulting from the training 
process yield an explicit algebraic expression for the 
phenomenon under study. The polynomial expression 
allows, among other things, a) To perform a sensitivity 
analysis of the input variables and b) To easily 
integrate and derive the resulting function. Both of 
these operations are simply not possible when training 
any kind of NN. Furthermore, even in those cases when 
the original data obeys complex relations, a multi-
variate polynomial closely reflects the behavior of the 
function. Although polynomial expressions are 
mathematically limited (for instance, polynomials may 
not reflect discontinuities) in the analyzed cases such 
limitations did not arise even in the presence of 
complex non-linear data. Given the fact that the GMPs 
are gotten independently of the form of the 
approximating function, we may try out combinations 
of more complex basic elements which are not 
restricted as mentioned. In the future we intend to 
explore this alternative. It is reasonable to assume that 
such options will yield even better results. 
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