

 Machine Learning with Genetic Multivariate Polynomials

ANGEL FERNANDO KURI-MORALES

Departamento de Computación
Instituto Tecnológico Autónomo de México

Río Hondo No. 1
México 01000, D.F.

MÉXICO

Abstract. We present an algorithm which is able to adjust a set of data with unknown characteristics. The algorithm is
based on the simple notion that a sufficiently large set of examples will adequately embody the essence of a
numerically expressible phenomenon, on the one hand, and, on the other, that it is possible to synthesize such essence

via a polynomial of the form In
InV

1D

01I

nD

0nI
...D1

I1VI1...InCI1...Inµ...)nV,...,1F(V ∑
=

∑
=

= where the
I1...In

µ may only take

the values 0 or 1 depending on whether the corresponding monomial is adequate. In order to determine the
adequateness of the monomial in case we resort to a genetic algorithm which minimizes the fitting error of the
candidate polynomials. We analyze a set of selected data sets and find the best approximation polynomial. We compare
our results with those stemming from multi-layer perceptron networks trained with the well known backpropagation
algorithm (BMLPs). We show that our Genetic Mutivariate Plynomials (GMPs) compare favorably with the
corresponding BMLPs without the “black box” characteristic of the latter; a frequently cited disadvantage. We also
discuss the minimization (genetic) algorithm (GA).

Keywords. Multivariate approximation, multi-layered perceptron networks, genetic algorithms.

1 Introduction
Machine learning has been tackled in the past using
(with remarkable success) the so-called Neural
Networks (NNs). These statistical algorithms have the
undeniable advantage of being able to adjust a set of
data with unknown characteristics. Networks of simple
computational elements called “perceptrons” have been
shown to be able to compute an arbitrary function from
a sufficiently large set (sample) of examples
(elements). In particular, well behaved (typically
continuous) functions are known to be amenable to
optimal representation (in terms of statistical learning
theory [VV95]) by a multi-layered perceptron network
(typically trained with the “backpropagation”
optimization algorithm) with no more than three layers
(BMLPs) [SH99]. However, two often cited
disadvantages of these algorithms are a) The number of
neurons in the hidden layer has to be estimated
heuristically and b) The resulting BMLP has no
explanatory properties (i.e. it looks like a “black box”

to the user and does not lend itself to simple rule
extraction). To ameliorate these shortcomings,
alternative neural network (NN) paradigms have been
explored; for instance Radial Basis Function Networks
(RBFs) and Support Vector Machines (SVMs). In both
of these latter cases the architecture is dictated by the
method itself and does not have to be estimated. In
both RBFs and SVMs, however, the problem is
transferred elsewhere. In RBFs we are faced with
having to find the most adequate function centers while
in SVMs we have to determine the regularization
parameter “C”. On the other hand, both RBFs and
SVMs still retain the black box characteristic of most
NNs. The power of NNs, in general, resides in the
proper combination of “simple” computing elements
(the “neurons”) in a network which is, basically, and
embodiment of the “divide-and-conquer” principle. In
BMLPs the neurons are called “perceptrons” and,
simply put, are summation elements whose output is
post-processed by a non-linear (typically sigmoid)
function such as)xe1/(1 −+ (the logistic function) or

)xex)/(exex(e −+−− (tanh: the hyperbolic tangent

Proceedings of the 5th WSEAS Int. Conf. on Artificial Intelligence, Knowledge Engineering and Data Bases, Madrid, Spain, February 15-17, 2006 (pp36-42)

function)1. These functions are usually called the
activation functions. For further reference, we will
index the linear, logistic and tanh functions with the
numbers 1, 2 and 3 respectively. Each of the inputs to
any given perceptron is weighted in such a way that the
concerted interaction of the elements of the NN yields
an output which mimics the desired function. In figure
1 we show an example of a BMLP.

Fig. 1. A Multi-Layered Perceptron Network

This BMLP has 6 inputs, 4 intermediate (hidden) units
and one output. In addition to the input neurons
corresponding to each of the input variables a so-called
bias neuron is included. The bias neuron relieves the
designer from having to individually determine the
threshold for each neuron. Its input is usually set to
“+1”. We denote the number of neurons in the input
layer with “I”, the number of neurons in the hidden
layer with “H” and those in the output layer with “O”.
Therefore, there are C = H(I+O+1)+O connections in
any three (as here) layered perceptron network; one
weight corresponds to each one of the connections. A
BMLP is “given” a set of n input values (a vector X
=)x,...,(x n1) and a set of output values (a vector Y =
(y1,…,yp)2). The process of “training” a BMLP
consists of finding the C values of the weights such
that the NN, given X, outputs a value as similar to the
original values of Y as possible according to a
predefined error measure3. Furthermore, it is usual to
impose the further requirement that the BMLP is
trained with the so-called training set while minimizing

1 Another typical choice is the linear function y = x. Other,
more exotic, choices (such as Gaussian functions and the
like) are possible but we do not consider them here.
2 In what follows we assume that |Y | = 1.
3 Typically, the error measure corresponds to the least
squares norm.

the approximation error for a data set which the NN
does not “see” (which we call the test set). This last
condition is aimed at providing generalization
properties to the resulting NN: i.e. the trained NN
should also synthesize the phenomenon under analysis
outside the limited range of the known data. To this
effect the original data set is split by randomly leaving
out of the original sample a given percentage of
elements which constitute the (smaller) test set; the
remaining elements constitute the (larger) training set4.
The process of validating the generalization properties
of the NN may be improved upon by trying out
different combinations of training-test sets and is
usually referred to as cross-validation5.

Finding the weights of an arbitrary BMLP may
be seen as a combinatorial problem. Let us take the NN
of figure 1, as an example. There we have I = 6, H = 4
and O =1, that is C = 33. If we assume that every
weight is expressed with an 80 bit binary number (as in
the floating point unit of a typical Pentium processor)
we need 33 x 80 = 2640 bits to express the values of
the trained NN. To find the very best combination,
therefore, we would need to exhaustively try out 22640
combinations. This is a huge number (close to (103)264
= 10792 combinations). To have a feeling of its
enormity, consider that the estimated number of
elementary particles in the observable universe is 1080;
thus, we would need close to 10 times the number of
elementary particles in the universe merely to store the
possible solutions if we were able to assign one of the
possible sets of trained neuron weights to every
particle! It is, indeed, a tribute to the efficiency of the
backpropagation algorithm that the task of finding an
adequate set of weights (W) of size C is routinely
performed in a modern computer in a few seconds
[BB92].

Given the above, therefore, we may see that a
properly trained BMLP represents the synthetic
representation of the data sample. We may, then,
“replace” a large sample set by a) A description of the
architecture of the NN (for instance (6,4)), b) A
specification of the activation functions (for instance
(1, 2, 1)) and c) W. In the example, therefore, the
vector F = [(6,4); (1,2,1); W] which consists of 38
numbers will, in principle, adequately synthesize the
information of the data sample. Not only that but, if we
consider the cross-validation process to be valid, the

4 We assume, hereinafter, that 75% of the simple elements
are assigned to the training set and the remaining elements to
the test set.
5 We shall adhere to the simplest form of cross-validation as
described above.

Proceedings of the 5th WSEAS Int. Conf. on Artificial Intelligence, Knowledge Engineering and Data Bases, Madrid, Spain, February 15-17, 2006 (pp36-42)

same set will represent the observed phenomenon even
for data beyond the sample.

It seems, then, that having to somehow
(typically with heuristics) determine “H” and being
unable to establish an explicit expression of the
synthesizing function is a small price to pay for such a
powerful tool. However, there is an alternative and
viable tool (GMP) which is free of both shortcomings
and is the main topic of this paper. In what follows we
give a brief account of the GMP algorithm’s principles
and its behavior in a set of selected problems. In part 2
we describe the algorithm; in part 3 we describe
experiments allowing us to compare BMLPs with
GMPs; in part 4 we discuss their relative characteristics
and offer our conclusions. Finally, in section 5 we offer
our conclusions and point out to future lines of
research.

2 Genetic Multivariate Polynomials
The problem discussed in the introduction may be
recast in terms of finding and explicit algebraic
expression of the form

In
InV

1D

01I

nD

0nI
...D1

I1VI1...InC...)nV,...,1F(V ∑
=

∑
=

= (1)

In equation (1) the set of coefficients in (1) (which we
denote as C’) may be considered to roughly replace W
in F with the advantage of yielding an explicit
mathematical relationship between the independent
variables X and the dependent variable Y. This
approximation problem has been the subject of many
studies in the past and it has been pretty much solved
except for certain practical issues. First of all, we have
to contend with the fact that the cardinality of C’
(which we denote as γ ’) is large enough as to make it
unwieldy for all except the simplest cases. Consider the
NN of figure 1 once again. The Di’s are the largest
allowed degrees for the monomials of (1). If we
assume that Di = 5 for all i we can easily calculate that
γ ’ = 66 = 46,656. This means, first of all, that we need
at least 46,656 elements in the sample. Secondly, if we
assume that every floating point number uses 8 bytes (a
typical representation for double precision numbers in
a common high level language) then the simple storage
of a hypothetical solution will require 373,248 bytes.
Thirdly, and most importantly, the usual numerical
methods with which these approximations are normally
tackled imply the solution of systems of linear
equations of similar order. Such systems inevitably
lead to numerical instability which, in fact, renders the

said methods ineffectual. Finally, fitting a relatively
large set of data under the least squares error measure
leads to Hilbert matrices which are known to be
particularly sensitive to rounding errors. In other
words, even though it is theoretically possible to solve
the approximation problem even for large samples, in
practice it is both impossible and impractical to do so
with the usual methods. If we had a computer of
infinite numerical precision and unlimited storage we
could solve equation (1) trivially. But, this not being
the case, we will replace the approach outlined by
equation (1) by another one in which we retain the
form (an algebraic polynomial) of the solution while
removing the need for a large γ ’ by introducing a set
of constants µ as shown in equation (2).

In
InV

1D

01I

nD

0nI
...D1

I1VI1...InC
I1...In

µ...)nV,...,1F(V ∑
=

∑
=

= (2)

The elements of µ determine whether a given
monomial in (2) is to be included in the purported
polynomial solution. For this reason we must establish
a priori the cardinality of µ . Obviously we want to
have a manageable number of coefficients (we denote
the set of coefficients in (2) as C and its cardinality as
γ) so that we do not longer need to contend with the
problems derived from large storage needs. Assuming
we are able to determine the best γ monomials we are
still faced with the fact that large samples lead to large
unmanageable systems of equations. Therefore, we will
replace the least squares (or L2) norm with the less
usual (but well known) minimax (or Chebyshev or

∞
L

norm). In so doing we will avoid the need to solve
large systems of equations and get around the inherent
precision problems. The minimax norm is not as
popular as least squares because it is more sensitive to
outliers6 and because the approximation algorithms are
slower. In our case, where the sample is assumed to
have unknown characteristics, it is impossible to
determine what “atypical” means. It would then seem
that the first objection is not easy to sustain. The
second one is valid but we have developed methods
which diminish this inconvenience. In what follows we
give a brief account of the principles behind the
minimax multivariate approximation algorithm. Once
this is done we will discuss the genetic algorithm
which allows us to determine C for a given γ .

6 When an element of the sample is outside of the “typical”
trend of the whole it is called an “outlier”.

Proceedings of the 5th WSEAS Int. Conf. on Artificial Intelligence, Knowledge Engineering and Data Bases, Madrid, Spain, February 15-17, 2006 (pp36-42)

2.1 The Ascent Algorithm
The algorithm to approximate the sample under the
minimax norm is based on three observations: a) The
approximation coefficients of a minimax set M of size
m are uniquely determined by finding the adequate
signs of the errors for the elements of the set, b) If a
larger set N of size n has elements outside the minimax
solution it is always possible to exchange one of the
elements in M by an element in N such that the
minimax condition is still met for the new M and c)
Continuing exchanges will eventually lead to a target
set M which satisfies the minimax norm for all
elements in N.
 In what follows we denote with F(X) the
function which is able to fully minimize the error

|iy)i(iF|maxφε −= X . Xi denotes the value of the

th-i independent variable vector and yi the value of
the th-i dependent variable. The original data set is
found in matrix X of dimension s1)(n ×+ ; n is the
number of independent variables and s the number of
elements in the sample. In order to find the
approximator of (2) we map the vectors of X to a
higher dimensional space yielding matrix V of

dimensions sp× where)id(1n
1iΠp +

=
= . Let us

arbitrarily select a sub-matrix of V of size mm× (call
it V’) where m = p+1. Then we solve the following
system.

 (3)
Denoting the approximation error for the i-th vector as

iε and the largest absolute such error as θε we may

define θεiηiε = ; clearly, θεiηiε ≤ . We also denote

the elements of row i column j of (3) as ijδ and the i-th

cofactor of the first column as iκ . From Cramer’s rule
we immediately have

 (4)

To minimize θε we have to maximize the denominator

of (4). This is easily achieved by a) Selecting the
maximum value of the iη ‘s and b) Making the signs of

the iη ‘s all equal to the signs of the iκ ‘s. Obviously

the iη ‘s are maximized iff iη = 1 for i=1,…,m which

translates into the well known fact that the minimax fit
corresponds to approximation errors of the same
absolute size. On the other hand, to achieve (b) we
must simply set the signs of iη ‘s to those of the

cofactors. Making)(sign iκσ =i , system (3) is simply
re-written as

 (5)

Once having all the elements in (5) it suffices to solve
this system to obtain, both, the value of θε and the

coefficients c1,…,cm which best fit the elements of X in
the minimax sense. To obtain the coefficients for the
whole sample we apply the following algorithm.

2.2 Exchange Algorithm
1. Set 1i ← .
2. Select an arbitrary subset (of size m) of rows of
matrix V; this set is called Mi.
3. Determine the signs of iε which maximize the

denominator of (4).
4. Solve the system of (5). Denote the resulting
polynomial by Pi.
5. Calculate iMi|)iyiPmax(|ε ∉∀−=ϕ

6. If θφ εε ≤ end the algorithm; the coefficients of Pi
are those which best approximate V in the minimax
sense.
7. Set 1ii +← .
8. Exchange the row corresponding to θε for the one in

Mi which preserves it sign and makes iθ1iθ)(ε)(ε >+ .
9. Go to step 4.

The exchange algorithm will end as long as the
consecutive systems of (5) satisfy Haar’s condition
while, on the other hand, the cost of its execution (in
flops) is O(m6). There are implementation issues which

Proceedings of the 5th WSEAS Int. Conf. on Artificial Intelligence, Knowledge Engineering and Data Bases, Madrid, Spain, February 15-17, 2006 (pp36-42)

allow us to apply this algorithm even in the absence of
Haar’s conditions and reduce its costs to O(m2) the
interested reader is referred to [KU99].

2.3 Genetic Algorithm
One of the basic reasons to choose the minimax norm
is that the Exchange Algorithm is not dependent on the
origin of the elements in V. We decided them to be
monomials of a full polynomial but it makes no
difference to the Exchange Algorithm whether the vi
are gotten from a set or monomials or they are
elements of arbitrary data vectors. This is important
because the number of monomials in (3) grows
geometrically. One way to avoid the problem of such
coefficient explosion is to define a priori γ and then to
properly select which of the γ ’ possible ones these will

be. There are ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
γ
γ'

 possible combinations of

monomials and even for modest values of γ an
exhaustive search is out of the question. This
optimization problem may be tackled using a genetic
algorithm as follows.

The genome is a binary string of size γ ’.
Every bit in it represents a monomial. If the bit is ‘1’ it
means that the corresponding monomial remains while,
if it is ‘0’, such monomial is not to be considered. This
simple strategy corresponds to determining the values
of µ in equation (2). All one has to ensure is that the
number of 1’s is equal to | µ |. Assume, for example,
that v = (v1, v2, v3) and that d1 = 1, d2 = 2 and d3 = 2;
if | µ | = 6 the genome 110000101010000001
corresponds to the polynomial in (6).

P(v1,v2,v3)=C000+C001v3+C020(v2)2+C022(v2)2(v3)2+…

C112v1v2(v3)2+C122V1(v2)2(v3)2 (6)

 It is well known that an elitist GA will
converge to a global optimum [GR94]. It has also been
shown that a variation called Vasconcelos’ GA shows
superior behavior on a wide range of functions [KU02].
VGA uses a) Deterministic parenthetical selection, b)
Annular crossover, c) Uniform mutation. All results
reported here are based on VGA’s application (for a
detailed discussion see [KV98]).
 Therefore, the initial population of the VGA is
generated randomly. It consists of a set of strings of
length γ ’ in which there are only γ 1’s. Then the
GA’s operators are applied as usual. The fitness

function of the GA is the minimax error as per the
exchange algorithm. This error is minimized and, at the
end of the process, the polynomial exhibiting the
smallest fit error is selected as the approximant for the
data sample. This polynomial is called a “Genetic
Multivariate Polynomial” (GMP).
 The learning machine methodology outlined
for the BMLPs in section (1) is, in fact, independent of
the learning algorithm and here we replace the NN with
a GMP. In the next section we discuss the results of
applying this methodology with, both, BMLPs and
GMPs.

3 Experiments
In this section we report on different sets of data which
were a) Normalized to the interval [0,1] and b) Split
into two random partitions accounting for 75%-25% of
the data, respectively. We trained, both, a BMLP and a
GMP. Then we chose the BMLP/GMP whose behavior
was optimal for the test data set, i.e. the one with the
best generalization properties. In what follows we
describe the different experiments.

3.1 Experiment 1: Time Series
An experimental time series data consisting of a 13× 90
matrix was considered. This data correspond to the
historical behavior of an airline during an 11 year
period. The corresponding graph is shown in figure 2.

Fig. 2. Graph for time series

3.2 Experiment 2: Neural Network I
We considered a 2-1 architecture for a BMLP. We
generated a 3x100 matrix as follows: Columns C1 and
C2 were randomly filled in with uniform numbers in
[0,1]. Column C3 was calculated by simulating a
BMLP whose inputs correspond to the values of C1

Proceedings of the 5th WSEAS Int. Conf. on Artificial Intelligence, Knowledge Engineering and Data Bases, Madrid, Spain, February 15-17, 2006 (pp36-42)

and C2 and whose output was calculated by using a
logistic activation function for the weights
corresponding to those of table 1.

Table 1. Weights of the 2-1 BMLP
1.4142000000
3.1416000000
2.7182800000
0.5002210000
-1.1200000000

3.3 Experiment 3: Neural Network II
We generated a table of dimensions 5x100. The first
column (C1) was randomly filled in as above;
C2=sin(C1)cos(C1); C3=sin(C2); C4=tan(C2)sin(C3).
The dependent variable’s values were calculated as in
experiment 2 with the weights shown in table 2.

Table 2. Weights for the 4-1 BMLP
0.710677794
0.273139125
0.336020956
0.173518450
0.620503227
0.808716951
0.754668302
0.775027323
0.287502668
0.794020586
0.959432104
0.846120365
0.140885327

The corresponding graph is shown in figure 3.

Fig. 3. Graph for 4-1 BMLP

3.4 Experiment 4: Transcendental Function I
We generated a table of dimensions 9x100. The first 4
columns were defined as in experiment 3. The
remaining columns (C5-C8) were calculated as

follows: C5=sinh(C1); C6=cosh(C1); C7=tanh(C1);
C8=sin(C1)cos(C1); C9=(C1)2-2(C2)3+(C2C3C4)-3C5
-C6C7 -2C2(1-C4) -2C5(1-C6) +2C1(1/(C7C8)). The
corresponding graph is shown in figure 4.

Fig. 4. Graph for Transcendental Function I

3.5 Experiment 5: Transcendental Function II
A table of dimensions 13x100 was generated. The first
9 columns were filled in as in experiment 4. The
remaining 5 columns were calculated as follows. C10 =
C8/C9; C11 = C8/(C9/C7); C12 = C1+C8C6-C6(C2)3;
C13 = sin(C2)cos(C4)tan(C6)/(sin(C6)-1/tan(C8)). The
corresponding graph is shown in figure 5.

Fig. 5. Graph for Transcendental Function II

For all five functions we trained both a BMLP and a
GMP.

Table 3. Coefficients for time series
φε 0.050929454

C001111000010 2.506630455
C001110110111 51.95542862
C000101000011 0.602721425
C010010100110 4.949337075
C101110100010 -11.57360514
C000010010001 -0.039080933
C110111010110 -77.34324491
C100000000000 0.957983801

Proceedings of the 5th WSEAS Int. Conf. on Artificial Intelligence, Knowledge Engineering and Data Bases, Madrid, Spain, February 15-17, 2006 (pp36-42)

In table 3 we present an example of the coefficients
gotten from training the GMP for the problem in
experiment 1. The index of the coefficient denotes the
degree of the corresponding monomial. There are 12
indices, one for each independent variable.

In table 4 we show the characteristics of each
learning method; in table 5 we show the maximum and
RMS errors for the test set in both cases.

Table 4. Basic features for BMLP and GMP

Notice that the number of terms (γ) for GMPs is of, at
most, 20. In contrast, the number of connections in the
BMLPs goes up to 71. Also, the maximum allowed
degrees for each of the monomials is kept at 2. The
number between square parentheses indicates the
maximum degree for any given monomial.

Table 5. Errors for BMLP and GMP

Notice that errors for GMPs are smaller in all cases.
Particularly noteworthy is the case of experiment 4, in
which BMLP’s maximum error reaches a 16.75%.
Looking at figure 4 we see a spike which is responsible
for this large NN error. The GMP, on the other hand,
does rather well. It was here that we had to increase the
Di’s to better fit the data. This, in itself, displays the
advantage of GMPs over NNs: since we are able to
explicitly determine the causes for the behavior of the
GMP we are able to modify it accordingly to improve
its performance.

4 Conclusions

As noted, the polynomials resulting from the training
process yield an explicit algebraic expression for the
phenomenon under study. The polynomial expression
allows, among other things, a) To perform a sensitivity
analysis of the input variables and b) To easily
integrate and derive the resulting function. Both of
these operations are simply not possible when training
any kind of NN. Furthermore, even in those cases when
the original data obeys complex relations, a multi-
variate polynomial closely reflects the behavior of the
function. Although polynomial expressions are
mathematically limited (for instance, polynomials may
not reflect discontinuities) in the analyzed cases such
limitations did not arise even in the presence of
complex non-linear data. Given the fact that the GMPs
are gotten independently of the form of the
approximating function, we may try out combinations
of more complex basic elements which are not
restricted as mentioned. In the future we intend to
explore this alternative. It is reasonable to assume that
such options will yield even better results.

References
[BB92] Boser, B. E., I.M. Guyon and V. N. Vapnik, “A
training algorithm for optimal margin classifiers”,
Proc. 5th Annual ACM Workshop on Computational
Learning Theory, pp. 144–152, 1992.
[GR94] Rudolph, G., “Convergence Analysis of
Canonical Genetic Algorithms”, IEEE Transactions on
Neural Networks, 5(1):96-101, January, 1994.
[KU98] Kuri, A., "A Universal Eclectic Genetic
Algorithm for Constrained Optimization", 1998,
Proceedings 6th European Congress on Intelligent
Techniques & Soft Computing, EUFIT'98, pp. 518-
522.
[KU99] Kuri, A., A Comprehensive Approach to
Genetic Algorithms in Optimization and Learning.
Theory and Applications, Vol. 1. Instituto Politécnico
Nacional, pp 270, 1999.
[KU02] Kuri, A., A Methodology for the Statistical
Characterization of Genetic Algorithms, Proceedings
of the II Mexican International Congress on Artificial
Intelligence, MICAI 2002, LNAI 2313, pp. 79-88.
[SH99] Haykin, S., “Neural Networks. A
Comprehensive foundation”, 2nd Edition, Prentice
Hall, 1999.
[VV95] Vapnik, V., “The Nature of Statistical
Learning Theory”, Springer-Verlag, 1995.

Proceedings of the 5th WSEAS Int. Conf. on Artificial Intelligence, Knowledge Engineering and Data Bases, Madrid, Spain, February 15-17, 2006 (pp36-42)

