
A Petri Net Simulator for Self-organizing Systems 

DIANXIANG XU1, PRITI BORSE1, KARL ALTENBURG2, KENDALL NYGARD1 

1Department of Computer Science 
2Department of Accounting and Information Systems 

North Dakota State University 
Fargo, ND 58105 

United States of America 
 

Abstract: - Self-organizing systems have the general property that the primitive elements that comprise the system 
interact in order to achieve emergent global properties.  We describe an extended Petri net simulation architecture 
for such systems that is based on interacting agents that carry out autonomous actions, yet collaborate with each 
other in structured ways.  There is no central controlling entity.  The approach was motivated by an application to 
mission planning for unmanned air vehicles (UAVs), but is applicable to more general agent-oriented systems. 

 
Key-Words: - Agent, Petri nets, Simulation, UAV, Self-organizing, swarm 

 
1   Introduction 
Considerable research has been directed at the 
implementation of self-organizing systems [2,10].  We 
consider systems that have constituent units that 
respond to stimuli from each other and their 
environment over time to induce a unified 
functionality.  These properties are not directly 
imposed by one or even a few controlling elements, 
but rather are epiphenomena that emerge naturally 
through their interactions.  In the worlds of insects, 
birds, mammals, and other animals, emergent 
properties are commonly observed in the form of 
flocks, swarms, herds, schools, and packs, all of which 
are considered to be organized by low-level actions 
and behaviors. We report on a architecture designed to 
simulate systems comprised of heterogeneous 
individuals with multiple sensors that detect signals 
which trigger reactive actions that produce structured 
activity for the group as a whole.   

The work is primarily motivated by military projects 
that have the need for rapid prototyping of simulations 
of systems of cooperating Unmanned Air Vehicles 
(UAVs) [1,4,8,11].  This requires that the simulator 
support higher-level constructs that can be easily 
assembled to specify a newly devised mission 
scenario.  A related motivation is connected with the 
needs of NASA projects involving space missions that 
would use small swarming space vehicles with solar 
sails to catalog the asteroid belt [7].   

Validation of self-organizing systems is notoriously 
difficult, which motivates the development of a 
simulator design aimed at realizing the benefits of a 
software engineering formal method.  Benefits include 
the ability to keep track of individual behaviors, track 
mission goals, prove the correctness of system 
properties, and ensure that unforeseen outcomes will 
not happen, and check for errors.  We demonstrate that 
a suitably extended Petri net based architecture can 
provide the desired properties.   
  The architecture that we present is based upon Petri 
nets.   Using high-level Colored Petri nets, we are able 
to formulate the low-levels controls associated with 
sense/act cycles at the individual vehicle level.  To 
realize the effects of UAV behaviors on the simulation 
environment, we also extend the basic Petri net 
operations by associating computational procedures 
with transitions.  
 
2   Motivation  
There are two high-level needs that motivate the 
design of the simulator.  First, it is desirable for the 
design to be flexible enough to conveniently support a 
variety of UAV missions in which the cooperative 
control of the vehicles is accomplished through a local 
sensing/reaction paradigm.  Second, the approach 
should support the advantages of a formal model.   
 

Proceedings of the 5th WSEAS Int. Conf. on Artificial Intelligence, Knowledge Engineering and Data Bases, Madrid, Spain, February 15-17, 2006 (pp31-35)



 2

2.1  A Flexible Simulator for UAV Missions 
Unmanned Aerial Vehicles (UAVs) have become very 
important systems for modern warfare.  Modern UAVs 
potentially provide a cost effective means of 
conducting a variety of military missions, including 
basic needs such as reconnaissance and suppression of 
enemy air defenses.   Several simulators have been 
developed to evaluate the performance of conducting 
UAV missions with a reactive, behavior-based 
approach to individual and collective intelligence 
[1,4,7,10]. Central to these simulations is the design 
and implementation of the control structure for the 
UAVs. It is highly desirable for the simulation system 
to easily support a wide variety of simulation scenarios 
of the emergent intelligence type.  Example scenarios 
that have been evaluated thus far include the 
following:  i) sweep searching of an area of interest by 
multiple UAVs for reconnaissance purposes, ii) 
persistent patrolling by UAVs of a high-value asset to 
help protect it from an enemy strike, iii) forward air 
controller searching of an area with a vehicle available 
for striking as needed, and iv) sweep searching of a 
geographical area with striking actions decided by an 
explicit decision support model such as a partially 
observable Markovian decision process (POMDP).  
These scenarios, while exhibiting important 
differences, do share a significant number of primitive 
task, such as following waypoints, entering into orbits 
around objects of interest, avoiding collision, and 
maintaining offset distances from neighbors. The need 
to provide the flexibility to accommodate scenario 
differences while still providing infrastructure that 
makes the simulator easy to use is a basic design 
challenge.  The approach using extended Petri nets 
allows generic types of tasks to be developed and 
implemented, essentially forming a library of low-level 
primitives that can be used as components for 
assembling a specific mission.  This maximizes reuse, 
and allows for rapid prototyping of different UAV 
simulations, which is very cost-effective. 
 
 
2.2 Advantages of a Formal Method   

There are several motivations for developing the 
simulation with a formal approach.  A major issue is 
that by their nature, the emergent properties of self-
organizing systems may not be known or understood 
and therefore difficult to test.  The highly distributed 
nature and large number of interacting agents in self-
organizing systems present other testing complications.  
Finally, testing is significantly complicated if the 

agents are imbued with machine learning features that 
modify their capabilities over time.   

Petri nets are an established formalism for 
modeling concurrency, synchronization, and non-
determinism in distributed systems [5]. They provide a 
mathematical tool for reasoning about system 
behaviors, as well as a graphical notation for 
visualization of system modeling and analysis. From 
the outset Petri nets were designed to support testing 
for functional correctness. A Petri net specification can 
readily be tested for deadlock, reachability of states, 
persistence, liveness and boundedness.  In the context 
of simulation of self-organizing UAV systems, these 
formal capabilities of the Petri net representation 
support the following specific kinds of functionalities 
for our application domain: 

• Understanding and predicting emergent 
behaviors 

• Tracking of specific sequences of 
individual UAV actions 

• Tracking mission goals (e.g., destroying 
targets, populating battlefield intelligence 
maps) 

•  Proving correctness of system properties 
• checking for concurrent system execution 

errors, such as race conditions 
  

 
2  The Simulation Architecture 

 A Petri net-based architecture addresses the need for 
generic modeling of UAV controls for task executions 
that follow the reactive, behavior-based approach to 
intelligence. Following Petri net conventions, places 
are nodes that hold tokens that represent system state.  
Arcs connect places to transitions which have both 
input and output places.  When a transition fires, 
tokens are moved from all of its input places to all of 
its output places.   Arcs can have a guard, which is an 
attached Boolean expression which allows a token to 
travel only when the guard evaluates to true.  

We utilize the RENEW [6] software as the Petri net 
tool for implementing the UAV simulator. The key 
feature of RENEW that motivates this choice is 
seamless integration of high-level Petri nets with the 
object-oriented programming language Java.  In 
RENEW, an arc label (a tuple of variables and 
expressions), is written in a general inscription 
language. A transition can fire only if there is a 
substitution of variables in the labels of all of its input 
arcs that evaluates their guard condition to true. Firing 

Proceedings of the 5th WSEAS Int. Conf. on Artificial Intelligence, Knowledge Engineering and Data Bases, Madrid, Spain, February 15-17, 2006 (pp31-35)



 3

a transition removes the tokens that are unified with 
the arc labels and adds new tokens to the output places 
of the transition. The new tokens are constructed in 
terms of the arc labels and the variable substitution. 
Transition firing also executes Java code associated 
with the transition.  RENEW also supports colored 
tokens with a data type that can be tested and 
manipulating. 

Figure 1 illustrates a low level task net for 
synchronously controlling speed adjustments of 
multiple UAVs.  Associated with place p1 are 
distinguished colored tokens uav1, uav2,… 
representing individual uavs whose speed  is to be 
adjusted from a current value to a value that exceeds 
the value of variable max in increments of y units over 
a simulation time step of x units.  There is a need to 
enforce round robin synchronization of the speed 
adjustment steps, to ensure that no uav is allowed to 
repeatedly adjust its own speed to the max value before 
the others get a chance to adjust theirs.  The arc that 
goes from  p1

 to t3 is an inhibitor that ensures that all of 
the uav tokens in  p1

 will fire one by one in a given 
time step. 

 
Figure 1.  Basic task net for UAV speed control 

 
An important feature of the simulator is that the visual 
animation for a scenario is directly controlled by the 
Petri net.  This is possible through the association of 
Java code segments with transitions in the Petri nets.  
Figure 2 illustrates a more complex task:  controlling 
orbits around a center point at a specified radius in 
preparation for aligning UAV for a subsequent 
searching sweep. 
 

 
 

Figure 2.  Task net for Orbiting  
 

This task net applies at the point where a set of 
UAVs are transitioning from maintaining 
alignment for searching purposes to configuring 
turns and loiter orbits at the end of the search area 
in preparation for another search sweep.  Tracing 
from the top of the figure, the first UAV in the 
group issues a flyby signal to alert the follower 
UAV that the current orbiting position is 
occupied, then begins a loiter orbit.  Follower 
UAVs assume their orbits in turn; until the last 
one senses that it has no follower and sends a 
signal that the formation should commence the 
next sweep.  After completing their orbit in 
process, each UAV begins sweeping.  All of the 
behaviors are entirely local sensing and reacting 
pairs.  By design the model is entirely indifferent 
to the numbers of UAVs in the mission, and 
requires no global communication.  Each UAV in 
the mission is directly controlled by its set of 
inherent Petri task nets.  Task nets have been 
developed for several types of common mission 
tasks, including basic waypoint following, 
tracking a target, releasing a chosen weapon, 
serving as a communication relay, and 
maintaining a patrol posture around an asset.  The 
task nets can also incorporate intelligent decision 
logic, such as choosing between searching and 
striking, and soliciting information from 
neighboring UAVs before choosing a movement 
action.  
 

p1 

p2 

p3 

p4 t1 

t2 

t3 
z = z+x*y 

True z>=max 

False z<max 

Stop 

Send flyby 

Enter orbit 

Orbit 
Transmit 

Continue Quit 

Receive 

Another Orbit 

Flyby 
Quit Continue 

Prepare Quit 

Prepare Quit 
Restart Orbit 

Orbit Orbit 

Another Orbit 

End Task 

Proceedings of the 5th WSEAS Int. Conf. on Artificial Intelligence, Knowledge Engineering and Data Bases, Madrid, Spain, February 15-17, 2006 (pp31-35)



 4

 
4  Benefits of a Formal Method  

The Petri net approach provides a mathematically 
rigorous model for complex self-organizing systems.  
The immediate benefits of the approach concern the 
ability to explore the state space of the model in detail 
through reachability analysis.  Through reachability 
graphs, it is possible to track individual behaviors in 
detail for any given scenario.  Natural extensions 
provide the ability to track larger goals that are 
specified at levels above the task nets themselves.  
These capabilities provide rigorous verification of the 
models in a way that would be impossible with 
empirical testing.  Reachability analysis is often 
characterized as having the disadvantage of being 
susceptible to explosive growth of the state space.  We 
deliberately configure our scenarios so that the 
missions they model are completed in a bounded time 
frame, thus limiting the state space.   

Another benefit realized from the approach is that 
the simulation designs have a precision and discipline 
that is typically absent from more ad hoc approach.  
The graphical nature of the nets makes a scenario easy 
to build as well as supporting the associated precision 
and discipline.  Finally, the Petri net approach provides 
built-in mechanisms for checking for certain types of 
errors that can easily occur in concurrent systems, such 
as race conditions.    

 
 

3 Conclusions 
A multi-agent simulation architecture for self-

organizing systems was developed using high level 
Petri nets. The application is motivated by systems of 
cooperative unmanned air vehicles, but readily applies 
to other systems as well.  The low-level task nets that 
are developed facilitate rapid prototyping of alternative 
simulations. The framework provides a rigid formalism 
of visualization for designing and tuning control 
structures of UAV simulations.  
The formalism provides several significant advantages.  
Model verification and testing is possible with 
considerable rigor.  Details of agent behaviors and 
goals reached are available through reachability 
analysis. Debugging of simulated scenarios is 
facilitated through the use of tools that can detect 
deadlock, liveness, and undesired states.   
 
 

References: 

[1] K. Altenburg, J. Schlecht, and K. Nygard. An 
Agent-based Simulation for Modeling 
Intelligent Munitions. In Proc. of the Second 
WSEAS Int. Conf. on Simulation, Modeling 
and Optimization, Skiathos, Greece, 2002. 

[2] E. Bonabeau, M. Dorigo, and G. Theraulaz, 
Swarm Intelligence: From Natural to Artificial 
Systems. Santa Fe Institute Studies in the 
Sciences of Complexity, New York: Oxford 
University Press, 1999. 

[3] R.A. Brooks. A Layered Control System for a 
Mobile Robot. IEEE Journal of Robotics and 
Automation. 2(1): 14-23, 1986.  

[4] N. Huff, A. Kamel, and K. Nygard, An Agent 
Based Framework for Modeling UAVs. In 
Proc. of the 16th International Conference on 
Computer Applications in Industry and 
Engineering (CAINE03), 2003. 

[5] K. Jensen. Coloured Petri Nets:  Basic 
Concepts, Analysis Methods and Practical 
Use. Springer-Verlag, 1992. 

[6] O. Kummer, F. Wienberg, and M. Duvigneau. 
Renew - User Guide (Release 1.6). University 
of Hamburg, September 2002. Available at 
http://www.informatik.uni-hamburg.de/TGI/ 
renew/ 

[7] Lua, Chin A., Altenburg, Karl, and Nygard, 
Kendall E., ANTS with Firefly 
Communication, in Proceedings of the 2005 
International Conference on Artificial 
Intelligence (ICAI), Las Vegas, 2005  

[8] C. Lua, K. Altenburg, and K. Nygard. 
Synchronized Multi-Point Attack by 
Autonomous Reactive Vehicles with Simple 
Local Communication. In Proc. of the IEEE 
Swarm Intelligence Symposium, Indianapolis, 
2003.  

[9] T. Murata. Petri Nets: Properties, Analysis and 
Applications. Proc. of the IEEE, vol.77, no.4, 
pp. 541-580, April 1989. 

[10] G. Di Marzo Serugendo, A. Karageorgos, O. 
F. Rana, and F. Zambonelli, eds., Engineering 
Self-Organising Systems, Nature-Inspired 
Approaches to Software Engineering, vol. 
2977 of Lecture Notes in Computer Science, 
Springer, 2004. 

[11] J. Schlecht, Joseph, K. Altenburg, B. Ahmed, 
and K. Nygard. Decentralized Search by 
Unmanned Air Vehicles using Local 

Proceedings of the 5th WSEAS Int. Conf. on Artificial Intelligence, Knowledge Engineering and Data Bases, Madrid, Spain, February 15-17, 2006 (pp31-35)



 5

Communication. In Proc. of the International 
Conference on Artificial Intelligence, Volume 
II, Las Vegas, 757-762, 2003. 

Proceedings of the 5th WSEAS Int. Conf. on Artificial Intelligence, Knowledge Engineering and Data Bases, Madrid, Spain, February 15-17, 2006 (pp31-35)


