
A New Algorithm for Arabic Optical Character Recognition

Omar Al-Jarrah

Samer Al-Kiswany
B

Mohamed Fraiwan

Hani Khasawneh

Department of Computer Engineering
Jordan University of Science and Technology

P.O. Box 3030
Irbid 2211
JORDAN

Abstract: - In this paper we present a new approach for designing an Optical Character Recognition (OCR)
system for Arabic Alphabet. Our approach addresses mere text images; using customized techniques. We have
divided the problem at hand into three phases: preprocessing and line extraction, segmentation, and character
recognition. Extensive histogram and thresh-holding were considered in line extraction, image filtering and
noise reduction. Main line algorithm was proposed for segmentation, and a neural network was used for
character recognition. The segmentation algorithm is based on a new and novel idea that exploits the nature of
the Arabic language. It introduces the concept of the main line to tokenize the text, and it generates a set of 33
different tokens that represent the 28 Arabic characters and their different shapes and variation. The system
generates tokens from the text and compares them with the reference tokens. Experimental results illustrate the
effectiveness of the system using different font types and sizes with an average recognition rate of 87%.

Key-Words: - Optical Character Recognition, Arabic Alphabet, Image Processing, Character Recognition,
Segmentation, Neural Networks Classifier.

1 Introduction
Optical character recognition systems are key stones
in many applications. Without the advances in OCR
systems, a considerable set of applications are
almost impossible. The applications of the OCR
system range from stand-alone applications to an
integral component in more complex systems. An
example of the first is the scanner related software
that construct a text file from a scanned page, thus
reducing a considerable amount of time that were
going to be spent in writing. An example of the later
is the OCR systems found in PDAs. In addition,
OCR is used to facilitate the design of the check
reading machines that is used in banks to fasten
check processing time, and it is used by highway
patrol for reading car plates.
The OCR systems can be broadly categorized into
two categories: on-line and off-line OCR systems. In
the online OCR, the recognition is performed at the
time of writing, as it is the case in PDAs. While,
offline OCR deals with scanned images. Online
OCR systems are often provided with assistance and
background information that guides their operation,
such as the starting and the ending points of the

character. Furthermore, online systems usually
facilitate writing separate characters, not complete
words.
A number of researchers attempted to provide
efficient OCR solutions. Despite the attractive
performance found in online OCR system [4][13],
the adopted approaches cannot be directly used in
offline OCR systems due to the dependency of such
systems on the online nature of writing. However,
a few number of researchers addressed offline OCR
systems for Arabic language. The Arabic language
poses a unique OCR challenges (section 3.1
addresses Arabic language properties in details),
making most of the techniques proposed for English
or other languages inefficient. Hence, a number of
new approaches attempted to present efficient OCR
solutions for Arabic language.
A remarkable approach was adopted in the Word
Level Arabic Recognition WLAR OCR system [1].
In WLAR OCR, instead of trying to recognize every
character separately, the word level recognition was
proposed. The WLAR computes a vector of image-
morphological features on the input word image.
This vector is matched next against a precompiled
database of vectors from lexicon of Arabic words.

Proceedings of the 5th WSEAS Int. Conf. on Artificial Intelligence, Knowledge Engineering and Data Bases, Madrid, Spain, February 15-17, 2006 (pp211-224)

Vectors from the database with the highest match
score are returned as hypotheses for the unknown
image.
Despite the effectiveness of the WLAR in avoiding
single-character errors when recognized separately,
it achieved overall inadequate level of accuracy.
Since the WLAR depended on extracting a set of
features which depended on the location and size of
the feature, so differences in stroke width, height or
presence of noise can make difference between the
presence and absence of a feature. This becomes
especially true when the input words differ in only
one character, or even one dot (e.g. recognizing
 The authors stated that increasing .((روج) and (زوج)
the recognition performance beyond 65% proved to
be difficult.
Another deficiency imposed by the word level
recognition, is the introduction of the new phrases
and words into the language, which is common in
scientific writing. The WLAR system will not be
able to recognize them correctly. Also, since the
word level recognition depended on a database of
word’s features, the system will be totally dependant
on the language, and it will need an expensive
training to be used in another language. For example
the Arabic and the Farsi written languages use the
same characters, but their dictionaries are totally
different.
In the Arabic Text Recognition System proposed in
[2], the authors introduced the over-segmentation
approach. In their system, the input image is firstly
preprocessed to segment the input image into lines
of text; these lines of texts are segmented into
atomic segments, such that no atomic segment could
be larger than any single character. These atomic
segments are combined into groups (combined
segments). The combined segments are processed by
neural network classifier to recognize them, and
finally in the last stage, the text line is constructed
again in Unicode text.
Although the over-segmentation presented
promising results, it imposes a considerable
overhead. The over-segmentation stage will produce
too many atomic segments which are either ignored
if small, or combined into combined segment. The
number of the combined segment before recognition
is considerable high, for example one word (رتبت) of
four characters will produce 12 atomic segments
combined latter into 7 combined segments.
To boost the recognition system accuracy, in [5] the
authors presented an Arabic character recognition
system that is mainly composed of three recognition
systems; namely: Over-segmentation, Sliding neural
network system, and whole word recognition
system. The three systems are operated in parallel on

the input word, trying to recognize the text without
segmenting or extracting the character. The best
performance obtained from the three subsystems
was around 80% as the authors stated in their paper.
Another technique to boost the performance of the
neural network based character recognition system
is to employ disambiguation rules and robust
spelling correction to enhance the recognition [6].
Hidden Markov Models (HMM) was also used for
optical character recognition [3][8]. These systems
were inspired by continuous speech recognition
(CSR) systems. In [3] the authors presented a
language independent OCR system depending on
the HMM and by utilizing the BBN BYBLOS
continuous speech recognition system [10]. The
presented system was identical to the BYBLOS CSR
system except for the preprocessing and feature
extraction stages.
A remarkable feature of the system presented in [3],
that it is segmentation free. The system does not
segment the image of a line-of-text neither to
characters nor even to words. Instead of
segmentation, the line is divided into a set of
overlapping frames.
In this paper, we present a new and novel Arabic
optical character recognition (AOCR) system. The
system accepts a scanned-page image containing a
set of text lines, and affected by typical noise level.
The system preprocesses the image before the
separate lines are handled to the character extraction
phase. Our approach depends on segmenting the line
into tokens and extracting characters features in
order to recognize the characters and to assemble the
output line of text. A neural network is used to
process the features and to classify them into one of
the characters.
The rest of the paper is organized as follows: in the
second section, we introduce the architecture of the
new AOCR system. The third section is devoted for
introducing the new character recognition, while the
fourth section describes the character recognition
system. The construction of textual output (the
assembly) is presented in the fifth section. In the
sixth section, we present the results of the
experimental study. Finally, we conclude our work
in the seventh section.

2 Arabic optical character recognition
System Architecture
Typical an AOCR program should accept, as an
input, an image containing multiple lines with
reasonable noise which is typically a scanned page
of text. It should achieve reasonable efficiency in

Proceedings of the 5th WSEAS Int. Conf. on Artificial Intelligence, Knowledge Engineering and Data Bases, Madrid, Spain, February 15-17, 2006 (pp211-224)

recognizing the words found in the image, and it

should generate a textual clone of them. To achieve
this broad requirement, we are proposing a new
AOCR system. Our system Architecture is
composed of four main phases, namely:
preprocessing, character extraction, character
recognition, and assembly.
In the preprocessing phase, the input image is
processed in order to reduce the noise found in it,
and to extract a complete line of the text. The role of
the character extraction comes next to segment this
line of text into tokens, and to extract all the
available information. These tokens are processed in
the recognition phase to recognize the set of possible
characters that the token may be one of. Finally in
the assembly phase, all the gathered information
through the previous steps is used to construct the
output textual version line. This architecture is
shown in the figure 1.
In the preprocessing phase, the input image is
subjected to three main processing stages:
thresholding, morphological noise reduction, and
line extraction. A thresholding technique is used to
convert the image from colorful image into binary
image of black background and white text. The
colored input image is subjected to thresholding in
order to compute the suitable intensity (threshold) of
the image to convert it to a binary - Black and White
- image. Our system employs Otsu's [7] algorithm
to create the threshold of the image, handling the
problem of different background colors, and the
presence of multiple regions in the image.

Simple noise symptoms that may be found in binary

images are greatly reduced by the use of
morphological algorithm to remove isolated pixels,
without the removal of dots and punctuation marks.
Finally, line's boundaries in the image were
identified by generating a histogram of the
horizontal lines (i.e. a line of pixels). The histogram
of lines between the text lines will appear as local
minima (the histogram value approaches zero at
these points).

3 Character Extraction
After preprocessing the input image (noise
elimination and line extraction), we end up with an
image containing a single line of text. The image
contains a line of characters with different features
and drawing characteristics. The main goal of the
character extraction phase (as the name implies) is
to segment the line into separate characters and to
extract all the characters distinguishing features.
Extracting a token (a character or part of a character)
is not simple as the reader may assume, especially if
the characters are connected (cursive writing), and
come in different sizes even within the same font
size as the case in Arabic written text. Figure 2
shows an image containing typed Arabic text. Not
only the Arabic written characters are connected to
each other, but also the connection point with
respect to the character comes in different places
(from top, middle, or bottom). This variation in
character drawing from no connection to a

Input
image

Pr

ep
ro

ce
ss

in
g

Character
Extraction

Recognition

Assembly

Output
Text

Fig. 1: System Architecture

Fig. 2: Sample image containing typed Arabic text

Proceedings of the 5th WSEAS Int. Conf. on Artificial Intelligence, Knowledge Engineering and Data Bases, Madrid, Spain, February 15-17, 2006 (pp211-224)

connected in different places makes the extraction
difficult. The following characteristics of the Arabic
written language make the extraction a challenging
problem:
• The Arabic written characters come in

different non proportional sizes in the same
font size, which makes the characters occupy
unpredictable areas within the word.

• The same character can appear in completely
different shapes and sizes within the same
word, making extraction that depend on
certain character features inefficient.

• The characters can appear in different
orientations, since the Arabic characters
within a word are not aligned and they can
extend above or below the line.

• The presence of dots and hamza (ء) in
different shapes above the characters.

• The font size highly effects characters and
dots features and shapes (e.g. the three dots
become connected in small fonts)

• Different Arabic fonts pose a dramatic
change in the character's drawing and features
with different font types. It is also noticed
that different characters in different fonts may
appear similar.

After studying the character extraction methods used
in commercial products [9][11] and those found in
literature, we observed that they adopted
substantially different approaches. One of the
approaches avoided the problem completely and
treated the line of text as a stream of frames [3],
While others used word-level recognition depending
on a database of Arabic words [1][5]. In [2] the
over-segmentation approach was proposed. In over-
segmentation approach the word is segmented into
atomic segments, and then the segments are
combined and processed by neural network based
classifier [2]. Other approaches depended greatly on
the knowledge of characters starting and ending
points [4][8][13], while this assumption is valid in
online writing systems, as in PDAs, it is not
justifiable for scanned images.
For the character extraction phase, we propose our
new extraction algorithm. The algorithm was built in
light of a lengthy statistical study performed on a set
of Arabic typed texts with different font types and
sizes. In what follows, we will summarize the results

of our statistical study for the Arabic typed text
features, and then we will present the extraction
algorithm with a detailed explanation and an
example.

3.1 Arabic typed-text main features
In this section, we summarize the findings of our
study of the characteristics of Arabic characters and
words. This study was done on the normal text line
as well as on the line after thinning. The discussion
below will stress on the silent features used in the
extraction algorithm which will be explained in the
next subsection.
Throughout the rest of the paper, we are going to use
the following words to mean certain meanings.
Firstly, the object is any character, part of a
character, hamza or dot; it occupies an area, which is
the number of pixels the object occupies. We may
use the words: pattern and token interchangeably to
mean the same thing (any isolated and extractable
object from the image). Finally, the boundary
rectangle is the minimum (in terms of area)
rectangle that surrounds the object. We assume that
the input image to this stage contains only one single
line of text and nothing but an Arabic text (no
figures, other language characters, or symbols), and
that the line does not suffer from skewness.
In order to simplify the algorithm presentation and
discussion we assume that no two characters
overlap. This case could be handled by our
algorithm, since any overlapping characters are
going to be recognized as one entity, and a new
token will be generated. Our statistical study showed
that there is a limited cases were such occurrences
can happen, they happen mainly with the character
'Kaf' ك, when it comes in the middle of a word, i.e. '
 .' ـكـ
One of the most observable Arabic typed-text-line
features is that there is always a horizontal reference
line that must cut or touch every character in the line
no mater of character’s shape or location with
respect to other characters, we call this line the Main
Line. Another important feature found in most of the
characters is that the character occupies rectangular
space in the line, so no two characters can extend
over each other. These rectangles and the main line
are shown in the figure 3. As it can be seen in figure

Fig. 3: The line of text after thinning and dots removal showing the main line and the bounding rectangle of some
characters

Proceedings of the 5th WSEAS Int. Conf. on Artificial Intelligence, Knowledge Engineering and Data Bases, Madrid, Spain, February 15-17, 2006 (pp211-224)

3, every character will start from the main line,
touch it or end at it.
The third feature in the Arabic characters is that
there are certain ratios and relations between the
character and different objects in the line. These
ratios do not change when changing the font size.
And these ratios and relations from different font
types are nearly equal. This feature facilitates safe
character resizing without affecting its features. For
example, the character always covers bigger area
than any dot or hamza around it, and the space
within the word (i.e. between the characters of the
same word) has a certain ratio with respect to the
line height. Also when the character is written in
different sizes its parts maintain a size ratio with
respect to each other.
Finally, Arabic characters are built from lines with
no sold filled areas, a characteristic that makes the
output of the thinning stage preserves the input text
skeleton; consequently the character's different parts
are still there.

3.2 Extraction Algorithm
The extraction algorithm is built based on the
characteristics described in the previous subsection.
Next, we will present the algorithm in pseudo code
followed by a detailed explanation. Also, a complete
example is included for illustration. We refer to the
output of the preprocessing stage as the input, which

consists of an image of a single line of text. The
input image is a binary image of zeros and ones
arranged to form the characters and the background,
where the background is black and the text is white.
 The algorithm starts by preprocessing the input
image to produce the input and an integer
representing the height of the line as shown in figure
4. The second step in the algorithm is used to
remove the dots and hamzas around the character.
This is done by labeling every disconnected object
with a unique label (ObjectID). Consequently, every
dot or hamza will have a different label than the
word they belong to. Since the area covered by the
character (and hence the word area too) is greater
than any dot or hamza regardless of the font type or
size as mentioned previously, the dots can be easily
identified and removed to another binary image,
(DotsImg). As a result of this step the InputImg is
separated into two images, one holding the line
image without dots (SkeletonImg), and other
holding the dots and hamzas (DotsImg).
Figures 5 and 6 show the results after apply the
second step to image shown in figure 4. It is noted
that the (لا) character is divided into two parts
among the two images. But the part that appears in
the dots image can be safely ignored; since the
remaining part in the characters image forms a
unique token and does not look like any other
character (i.e. the remaining part can alone identify
the (لا) character).

The Extraction Algorithm
1 (InputImg,LineHeight) = PreprocessingPhase (ImageFile)
2 (SkeletonImg,DotsImg) = DotsRemoval (InputImg)
3 SkeletonImg = Thinning (SkeletonImg)
4 CObjectsImg = ClosedObjectsDetection (SkeletonImg)
5 (TokensImg,MainLine) = MainLineRemoval (SkeletonImg)
6 TokensImg = InsertCObjects (TokensImg,CObjectsImg)
7 (TokensImg,NumberOfObjects) = LabelObjects (TokensImg)
8 TokensImg = UnifyObjects (TokensImg)
9 TokensImg = MainLineInsertion (TokensImg,MainLine)
10 TokensImg = ConnectCloseObjects (TokensImg)
11 (DotsImg,NumOfDots) = LabelObjects (DotsImg)
12 DotsRec = GetBoundingRectangle (DotsImg)
13 SpacesInfo = FindSpaces (TokensImg,LineHaight)
14 For (I = 1 : NumberOfObjects)
15 Character = ExtractChar (TokensImg,I)
16 CharachterRec= GetBoundingRec (Character)
17 CharacterHole = IsHole (Character)
18 CharacterRecognition = RecognitionPhase (Character)
19 CharactersInfo[I]=(CharacterRecognition,CharacterHole,CharacterRec,SpaceInfo)
20 End
21 OutputText = AssemblePhase (CharactersInfo, DotsImg, DotsRec)
22 return

Proceedings of the 5th WSEAS Int. Conf. on Artificial Intelligence, Knowledge Engineering and Data Bases, Madrid, Spain, February 15-17, 2006 (pp211-224)

The third step will thin the characters image so the
line width of the line constructing the characters will
become one. This step works efficiently regardless
of the original font size. The characters shape is
preserved through thinning as described previously.
Figure 7 shows the result of applying the thinning on
the image shown in figure 6. In the fourth step, all
objects forming a closed shaped are detected and
copied to a separate image (CObjectsImg) to
preserve them. Figure 8 shows the result after
processing the image shown in the figure 7. This
step is very useful to protect the shape from
distortion that can happen when the main line is
removed in the next step.
The main line is removed from the skeleton image in
the fifth step. The main line connects all the
characters and represents a reference line that all the
characters must touch. An important feature of the
main line of any typed text is that it is the most dens

line in the image. So by simply generating the
horizontal histogram of the image the main line can
be identified. The line is copied to a separate image
(MainLine) and the rest of the image is copied to a
token image (TokensImg). The main line of our
input image is shown in figure 9. The token image is
shown in figure 10 and one can see that the image
contains a set of tokens that characterizes the text.
This step is followed by combining the image of
closed objects with the token image to restore any
distortion to the close-form objects as shown in
figure 11.
In the seventh step, we label each object by
replacing all object’s pixels content (originally
contain ones) with the object’s label. Looking back
at the figure 11, we notice that the token image
contains parts of the characters or separate
characters. Also, it is noticeable that some characters
have some parts over the main line and others under

Fig. 4: Input Image

Fig. 5: Dots part of the input image (DotsImg)

Fig. 6: Characters part of the input image (SkeletonImg)

Fig. 7: SkeletonImg after thinning

Fig. 8: CObjectsImg image

Fig. 9: Main line

Fig. 10: TokensImg Image after main line removal

Fig. 11: TokensImg with the closed objects inserted

Proceedings of the 5th WSEAS Int. Conf. on Artificial Intelligence, Knowledge Engineering and Data Bases, Madrid, Spain, February 15-17, 2006 (pp211-224)

the main line. Therefore by removing the main line
and labeling the disconnected object with different
labels, these parts will have different labels while
they belong to the same character. In the eighth step,
these characters are detected and are given the same
label. For example, if we look at the word (لحم) the
figure 11, we can see that the last character of the
word (م) is divided into two parts, one over the line
and another underneath it. Since these parts belong
to the same character, and in order to minimize the
number of tokens generated by the extraction
method, the two parts are given the same label.
The main line is reinserted in the ninth step. During
the insertion process, each segment of the main line
is labeled with the same label of the object that
crosses that segment, since the segment was
originally part of that character. The result of
inserting the main line on the image shown in figure
11 is shown in the figure 12. For the purpose of
illustration, figure 13 shows the objects with unique
labels separated apart. If the character is formed by
two parts around the main line, where one of them is
completely above the line and the other is complete
underneath it, these two parts should carry the same
label. The tenth step takes care of this issue as show
in figure 14. We can see that the (لآ) character in the
last word was divided into two tokens in figure 13
which are combined into one token in figure 14.
In step 11, objects in the DotsImg are labeled to
facilitate further processing as shown in figure 15. In
order to know where the dot resides with regard to
the main line, and to which character it belongs, we
need to know the bounding rectangle of each dot
(the rectangle with the minimum area surrounding
the object). The twelfth step calculates the bounding
rectangle for each dot.

An important part of Arabic word is the space within
the word; this can be confused with the space
between the words. In our statistical study, we found
that the space between the characters of the same
word no matter the size of the font, are proportional
to the size of the text and its height. Typical values
of the ratios are as follows: the space within the
word will never go longer than 0.3 of the line height
and the spaces between the words never goes shorter
than 0.4 of the line height. This thirteenth step
removes space within the word. Depending on this
simple scheme for space recognition, our system
achieved 100 percent efficiency, i.e. the system
never (in all of our tests) added, omitted, or falsely
recognized a space.
In the steps 14 through 20, we loop on all objects (a
character or part of it) in the token image to collect
the necessary data for recognition phase and
assembly phase. We start by extracting the
characters from the token image since these
characters are now uniquely labeled. Figures 16–21
show some characters extracted from the image in
figure 14. Then and for each character, we calculate
the bounding rectangle to identify any related dots
or hamzas and we check the character for holes.
This is an important feature used if the tokens
collide in the recognition phase. At this stage, the
character can be identified and therefore, we call the
recognition system to do this job. Finally and for
statistical purposes, the system uses a simple data
structure containing all the necessary information
gathered through the character extraction and
character recognition phases. It contains the output
of the recognition phase, the information about the
holes and the bounding rectangles. In addition to the
information related to the spaces within and between
the words. Finally and in the last step of the

Fig. 12: TokensImg after inserting the main line

Fig. 13: TokensImg with the different objects separated apart

Fig. 14: SkeletonImg with the close objects are connected

Fig. 15: The dots of the input image (DotsImg)

Proceedings of the 5th WSEAS Int. Conf. on Artificial Intelligence, Knowledge Engineering and Data Bases, Madrid, Spain, February 15-17, 2006 (pp211-224)

algorithm, we call the assemble phase providing it
with all the necessary information to assemble the
line of text.
Our algorithm for character extraction generates 33
recognizable different tokens. Keeping in mind that
the number of Arabic characters is 28 and that each
character can appear in totally different shapes;
generating only 33 different token is fairly excellent.
This adds to the efficiency of our recognition phase,
and to the system’s overall accuracy.

4 Pattern Recognition
After the tokens have been extracted from the input
image, they are passed to the recognition system.
The recognition system receives one of 33 possible
tokens augmented with all the extracted features and
information about it; and tries to recognize it
correctly.
Depending on a careful study and analysis of
different design choices, we selected the 2-layer
feed forward neural network. In order to boost our
recognition system we firstly classified the input
characters into two sets. The first set (set 1) contains
all the tall characters (i.e. the ratio of the height to
the width is greater than 1) and the second set (set 2)
contains all the wide characters (i.e. the ratio of the
height to the width is less than 1). For each set, we
designed a separate neural network. Some
characters, and due to differences in font types and

sizes, may be considered tall in some cases and wide
in others; consequently they will be members of the
two sets. The members of each set are shown in
appendix A.
After classifying the input pattern into one of the
two sets, the pattern is resized into an appropriate
size. All the characters belonging to the first set are
resized to 10x5 image, while the members of the
second sets are resized into 7x7 image. This
classification followed by the appropriate resizing,
further preserves the characters shape and adds to
the accuracy of the recognition system.
The first neural network (for tall characters) is
designed as two layers log-sigmoid/log-sigmoid
network; the first layer consisted of 15 neurons and
the second layer consisted of 26 neurons (one
neuron for each token). We have used the standard
log-sigmoid as a transfer function.
The second neural network (for wide characters) is
also designed as a two-layer network; the first layer
is composed of 15 neurons and the second layer is
composed of 17 neurons. Also, the transfer function
is the same log-sigmoid function. Figures 22 and 23
below show the architecture of the two neural
networks.
The number of neurons in the hidden layer was
selected after several experiments to produce the
best recognition rate. Also, the log-sigmoid transfer
function was picked because of its output range (0 to
1), which is suitable for classification purposes. The
network is trained to output a 1 in the correct

Fig. 16: Object number 2

Fig. 17: Object number 5

Fig. 18: Object number 13

Fig. 19: Object number 16

Fig. 20: Object number 22

Fig. 21: Object number 24

Proceedings of the 5th WSEAS Int. Conf. on Artificial Intelligence, Knowledge Engineering and Data Bases, Madrid, Spain, February 15-17, 2006 (pp211-224)

position of the output vector and to fill the rest of the
output vector with 0’s. However, Input vectors may
result in the network not creating perfect 1’s and 0’s.
So after the network produces its results, the result is
passed through the competitive transfer function that
replaces the largest element of the output vector by
1, and places 0 in place of the other elements.

5 Assembly
The last stage in our AOCR is the assembly phase.
In this phase, we use all the gathered information in
the previous two phases (character extraction and
recognition). This will finalize the character
recognition to form complete words and to assemble
the text line. Note that all the information related to
the character recognition and line assembly were
extracted in the character extraction phase, such as
the dots image, their rectangle, space info …etc.
Furthermore, the recognition phase classifies tokens

into one of the 33 defined tokens. However, the 33
tokens are not complete characters. For example, the
characters (خ, ج, ح), all of them will have the same
shape without dots, and hence will be assigned to
the same token in the recognition phase. In the
assembly phase we will overcome this problem and
other similar cases using the information gathered
through the previous phases.
In order to complete the character recognition, we
are in need to look to the related dots or hamzas. All
what we have about the dots is an image containing
them and the coordinates of the bounding rectangle.
Therefore, we need firstly to recognize the dots and
hamzas. Then, the assembly phase will integrate the
recognized token with dots information to form
possible characters. Finally, the assembly phase will
fine tune the output and correct some recognition
errors.
Most Arabic characters are surrounded by dots. A
character may have one, two or three dots. And the

Fig. 22: Recognition Neural Network for the tall characters

Fig. 23: Recognition Neural Network for the wide characters

Proceedings of the 5th WSEAS Int. Conf. on Artificial Intelligence, Knowledge Engineering and Data Bases, Madrid, Spain, February 15-17, 2006 (pp211-224)

dots can be either above or below the character. The
following figure shows all the possible patterns.
 Differentiating between the hamza and the dots is
relatively easy, since the hamza has a
distinguishable structure from any dots patter, and
the shape of hamza does not change with different
font size. Consequently, the same classifier shown
in figure 23 is used to recognize the hamza token. In
addition, it is very simple to identify the relative
location of the dots with regard to the character
(above or below). However, what is not trivial is to
count the number of the dots above each character
because the dots do not come with standard drawing
or shape and they depend on the font size. For
instance, the three dots in big fonts appear as three
separated objects, while in small fonts they appear
as one entity.
To deal with this complication, we noticed that for
large fonts we need to count the number of objects
to determine the dot count since the dots are
separated. However, in small fonts, the dots will be
combined and appear as one object. So we depended
on some observations of our statistical study that
revealed an interesting feature in the dots found in
small fonts. Our results show that the eccentricity of
the dots varies significantly between the three
possible dots combinations (one, two, or three). The
eccentricity of the single dot is always very small,
i.e. nearly zero. The eccentricity is very large for
two dots and is moderate for three dots. The typical
values are shown in the table 1. This property of the
dots was used efficiently to recognize the dots in
small fonts.
After combining the recognized tokens and dots, we
have now meaningful characters. Note that there are
possibly multiple characters for the same token as
shown in Appendix A. A simple logic that links the

position and number of dots to the token can
uniquely identify the correct character. In addition,
we need the hamza to identify the character in the
case of the fourth token. For example, the fourth
token could be on of the “بـ تـ ثـ فـ نـ يـ س ش ئـ”
characters; the unique character is identified
according to the previously mentioned logic.
Some errors could occur in the recognition phase,
which maps to nonexistent characters. The assembly
module can detect some of these errors and correct
them by replacing the erroneous token with the most
probable token according to the Arabic language
structure (i.e. the character ‘د’ cannot have a dot
beneath it, if such a combination occurred, the token
is probably a mistaken ‘جـ’).

6 Experimental Results
An extensive testing was conducted to test the
effectiveness of the presented AOCR. We firstly
tested every phase separately and then performed a
complete system testing. We have implemented the
system using C++ and Matlab 6.1® [12]. The
execution time depended on the text length and font
size. After extensive testing, we found that the
patterns in Appendix are good representative of the
Arabic alphabets. The patterns can suffer from a
small amount of variation according to the font size
and type which is a natural result in Arabic written
text.
The neural network was trained using a set of
characters extracted from images containing Arabic
text with different font types and sizes. Then the
system was subjected to a blind test. The system was
tested with three datasets: set 1 contained 5 scanned
pages composed only of characters found in the
training set. Set 2 includes images of 15 pages and
contains text of 18pt size or greater scanned at
300dpi, and set 3 uses the same text in set 2 with
font sizes less than 18pt and scanned at 300dpi. The
results are shown in the table 2.
In addition to the previous results, thought the
testing the recognition rate per pattern was also
calculated for all the pages in the three sets. The
rates are shown in the table 3 on the next page.
The results show a graceful degradation in system
accuracy with small font sizes, this is due to the
changes in the characters and the dots features
among the different font sizes. The overall system
recognition rate for testing data is 87% and 91% for
Arial and Times New Roman fonts (frequently used
fonts).

Fig. 24: Arabic dots possible combinations

Number of Dots Eccentricity
1 0
2 >= 0.8
3 >0 and <0.8

Table 1: Typical value of eccentricity for the dots
combinations

Proceedings of the 5th WSEAS Int. Conf. on Artificial Intelligence, Knowledge Engineering and Data Bases, Madrid, Spain, February 15-17, 2006 (pp211-224)

4 Conclusion
The Arabic language nature poses unique challenges
for the optical character recognition field. The
Arabic language is written cursively, with different
shapes for the same character, also the presence of
dots and hamzas adds to the system complexity.
In this paper, we presented a new and novel Arabic
optical character recognition system, which
depended mainly on extracting a set of features for
each character, and provide all the extracted
information to recognition and assembly phases. The
system introduces a new approach which utilizes the
characteristics of the Arabic language; it utilizes the
information in the main line of text to create tokens
that characterize the characters. Our system
achieved a very promising result of being able to
correctly recognize input text images with 87%
percent accuracy across different fonts and different
font sizes.

References:
[1] Erlandson, E. J., Trenkle, J.M., Vogt, R.C.,

"Word-level recognition of multifont Arabic
text using a feature-vector matching approach"
Proceedings of the SPIE, Vol. 2660-08, San
Jose, 1996.

[2] Gillies, A.M, Erlandson, E.J., Trenkle, J.M.,
Schlosser, S.G., "Arabic Text Recognition
System", Proceedings of the Symposium on
Document Image Understanding Technology,
Annapolis, Maryland, 1999.

[3] Zhidong Lu, Issam Bazzi,Andras Kornai, John
Makhoul, Premkumar Natarajan,Richard
Schwartz, " A Robust, Language-Independent
OCR System " , In: Robert J. Mericsko (ed):
Proc. 27th AIPR Workshop: Advances in
Computer-Assisted Recognition SPIE
Proceedings 3584 1999

[4] E. Gomez Sanchez, Y.A. Dimitriadis, M.
Sanchez-Reyes Mas, P.Sanchez Garcia, J.M.

Dataset Pages Lines Words Characters Recognition
rate

Set 1 5 156 645 3643 98.4%
Set 2 15 363 964 5464 88.6%
Set 3 8 186 964 5464 86.3%

Table 2: Test Results

Pattern
number

Possible characters Recognition
rate

Pattern
number

Possible characters Recognition
rate

%96.7 ء 1 %82.7 ق 18
%93.2 ا أ 2 %83.8 ك 19
%96 ب ت ث ف ك 3 %95.7 ـكـ 20
%81.2 بـ تـ ثـ فـ نـ يـ س ش ئـ 4 %86 ل 21
%79.6 جـ حـ خـ 5 %83.4 لـ 22
%84.9 ـج ـح ـخ 6 %93.9 لا لأ 23
%82 ج ح خ 7 %85.4 ـلا ـلأ 24
%81.7 ر ز 8 %85 مـ 25
%80.1 د ذ 9 %83.2 م 26

س ش ص ضن 10 82.5% %93.7 هـ 27
%94.3 ص ض 11 %96 ـهـ 28
%94.9 ط ظ 12 %94.8 ـه ـة 29
%91 عـ غـ 13 %96.3 ه ة 30
%87.1 ـعـ ـغـ 14 %88 ـو 31
%86 ـع ـغ 15 %93 ي 32
%89.1 ع غ 16 %93.9 ي 33
%95.4 فـ قـ 17

Table 3: Recognition rate of each pattern

Proceedings of the 5th WSEAS Int. Conf. on Artificial Intelligence, Knowledge Engineering and Data Bases, Madrid, Spain, February 15-17, 2006 (pp211-224)

Cano Izquierdo, J. Lopez Coronado , "On-Line
Character Analysis and Recognition with Fuzzy
Neural Networks" , Intelligent Automation and
Soft Computing, Vol. 7,No. 3, pp.161-162, 1998

[5] Trenkle, J.M., Gillies, A.M, Erlandson, E. J.,
Schlosser, S.G., "Arabic Character
Recognition" Proceedings of Symposium on
Document Image Understanding Technology.
Bowie, Maryland, pp. 191-195, October 24-25,
1995.

[6] Trenkle, J. M. and R. C. Vogt, "Disambiguation
and Spelling Correction for a Neural Network-
based Character Recognition System." In
Proceedings Document Recognition, Proc. SPIE
2181, eds. Luc M. Vincent and Theo Pavlidis,
San Jose, CA, pp. 322-333, 6-10 February
1994.

[7] N. Otsu, "A threshold selection method from
gray- level histograms", IEEE transactions on
systems, Man and Cybernetics, vol. 9, no. 1, pp
62-69, 1979.

[8] Starner, T., J. Makhoul, R. Schwartz, and G.
Chou. "On-line Cursive Handwriting
Recognition Using Speech Recognition
Methods." In IEEE Proceedings International
Conference on Acoustics, Speech, and Signal
Processing, pp. 125-128, April 1994.

[9] Tapas Kanungo, Gregory A. Marton, and
Osama Bulbul , "OmniPage vs. Sakhr: Paired
Model Evaluation of Two Arabic OCR
Products " ,Proceedings of SPIE Conference on
Document Recognition and Retrieval (VI), vol.
3651 San Jose, CA; January 27-28, 1999

[10] Richard Schwartz; Chris Barry; Yen-Lu Chow;
Alan Deft; Ming-Whei Feng; Owen Kimball;
Francis Kubala; John Makhoul; Jeffrey
Vandegrift , "The BBN BYBLOS Continuous
Speech Recognition System ", Speech and
Natural Language: Proceedings of a Workshop
Held at Philadelphia, Pennsylvania, February
21-23, 1989

[11] Tapas Kanungo, Gregory A. Marton, and
Osama Bulbul, " Performance Evaluation of
Two Arabic OCR Products" ,Proceedings of
AIPR Workshop on Advances in Computer
Assisted Recognition, SPIE vol. 3584
Washington, D.C.; October 14-16, 1998

[12] MathWorks ,“Image Processing Toolbox
User’s Guide Version 3”, MathWorks

[13] Tim Klassen ,”Towards Neural Network
Recognition Of Handwritten Arabic Letters ”
Thesis, Faculty of Computer Science,
Dalhousie University

Proceedings of the 5th WSEAS Int. Conf. on Artificial Intelligence, Knowledge Engineering and Data Bases, Madrid, Spain, February 15-17, 2006 (pp211-224)

Appendix A:
Table 4 lists all the patterns and their corresponding characters and table 5 shows the patterns generated by
the extraction algorithm. Note that in table 5, the color of the images is inverted from the one generated by the
extraction function only to make the patters more clear to the reader.

Pattern
number

Possible characters Possible
Set

Pattern
number

Possible characters Possible
Set

 2 ق 18 1 ء 1
 or 2 1 ك 19 1 ا أ 2

 1 ـكـ 20 1 ث ف كب ت 3

بـ تـ ثـ فـ نـ يـ س 4
 ش ئـ

1 or 2 21 1 ل

 1 لـ 22 2 جـ حـ خـ 5

 1 لا لأ 23 1 ـج ـح ـخ 6

 1 ـلا ـلأ 24 1 ج ح خ 7

 2 مـ or 2 25 1 ر ز 8

 1 م or 2 26 1 د ذ 9

 or 2 1 هـ 27 2 ن س ش ص ض 10

 1 ـهـ 28 2 ص ض 11

 1 ـه ـة or 2 29 1 ط ظ 12

ـعـ غ 13 1 ه ة 30 2

 or 2 1 ـو 31 2 ـعـ ـغـ 14

 or 2 1 ي 32 1 ـع ـغ 15

 or 2 1 ي 33 1 ع غ 16

 or 2 1 فـ قـ 17

Table 4: Possible Characters for each pattern

Proceedings of the 5th WSEAS Int. Conf. on Artificial Intelligence, Knowledge Engineering and Data Bases, Madrid, Spain, February 15-17, 2006 (pp211-224)

14

 ح 5 ب ت ث ن ي 4 ب ف ك 3 ا 2 ء 1

 ن س ص 10 د 9 ر 8 ح 7 ح 6

 ع 15 ع 14 ع 13 ط 12 ص 11

 ك 20 ك 19 ق 18 ف ق 17 ع 16

 م 25 لا 24 لا 23 ل 22 ل 21

 ه 30 هـ 29 هـ 28 هـ 27 م 26

 ي 33 ي 32 و 31

Table 5: Complete Pattern set of the Arabic alphabet

Proceedings of the 5th WSEAS Int. Conf. on Artificial Intelligence, Knowledge Engineering and Data Bases, Madrid, Spain, February 15-17, 2006 (pp211-224)

