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Abstract: - In this paper we present a new approach for designing an Optical Character Recognition (OCR) 
system for Arabic Alphabet. Our approach addresses mere text images; using customized techniques. We have 
divided the problem at hand into three phases: preprocessing and line extraction, segmentation, and character 
recognition. Extensive histogram and thresh-holding were considered in line extraction, image filtering and 
noise reduction. Main line algorithm was proposed for segmentation, and a neural network was used for 
character recognition. The segmentation algorithm is based on a new and novel idea that exploits the nature of 
the Arabic language. It introduces the concept of the main line to tokenize the text, and it generates a set of 33 
different tokens that represent the 28 Arabic characters and their different shapes and variation. The system 
generates tokens from the text and compares them with the reference tokens. Experimental results illustrate the 
effectiveness of the system using different font types and sizes with an average recognition rate of 87%. 
 
Key-Words: - Optical Character Recognition, Arabic Alphabet, Image Processing, Character Recognition, 
Segmentation, Neural Networks Classifier. 
 
1   Introduction 
Optical character recognition systems are key stones 
in many applications. Without the advances in OCR 
systems, a considerable set of applications are 
almost impossible. The applications of the OCR 
system range from stand-alone applications to an 
integral component in more complex systems. An 
example of the first is the scanner related software 
that construct a text file from a scanned page, thus 
reducing a considerable amount of time that were 
going to be spent in writing. An example of the later 
is the OCR systems found in PDAs. In addition, 
OCR is used to facilitate the design of the check 
reading machines that is used in banks to fasten 
check processing time, and it is used by highway 
patrol for reading car plates.  
The OCR systems can be broadly categorized into 
two categories: on-line and off-line OCR systems. In 
the online OCR, the recognition is performed at the 
time of writing, as it is the case in PDAs. While, 
offline OCR deals with scanned images. Online 
OCR systems are often provided with assistance and 
background information that guides their operation, 
such as the starting and the ending points of the 

character. Furthermore, online systems usually 
facilitate writing separate characters, not complete 
words. 
A number of researchers attempted to provide 
efficient OCR solutions. Despite the attractive 
performance found in online OCR system [4][13], 
the adopted approaches cannot be directly used in 
offline OCR systems due to the dependency of such 
systems on the online nature of writing.   However, 
a few number of researchers addressed offline OCR 
systems for Arabic language. The Arabic language 
poses a unique OCR challenges (section 3.1 
addresses Arabic language properties in details), 
making most of the techniques proposed for English 
or other languages inefficient. Hence, a number of 
new approaches attempted to present efficient OCR 
solutions for Arabic language. 
A remarkable approach was adopted in the Word 
Level Arabic Recognition WLAR OCR system [1]. 
In WLAR OCR, instead of trying to recognize every 
character separately, the word level recognition was 
proposed. The WLAR computes a vector of image-
morphological features on the input word image. 
This vector is matched next against a precompiled 
database of vectors from lexicon of Arabic words. 
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Vectors from the database with the highest match 
score are returned as hypotheses for the unknown 
image.  
Despite the effectiveness of the WLAR in avoiding 
single-character errors when recognized separately, 
it achieved overall inadequate level of accuracy. 
Since the WLAR depended on extracting a set of 
features which depended on the location and size of 
the feature, so differences in stroke width, height or 
presence of noise can make difference between the 
presence and absence of a feature. This becomes 
especially true when the input words differ in only 
one character, or even one dot (e.g. recognizing 
 The authors stated that increasing .((روج) and (زوج)
the recognition performance beyond 65% proved to 
be difficult.  
Another deficiency imposed by the word level 
recognition, is the introduction of the new phrases 
and words into the language, which is common in 
scientific writing. The WLAR system will not be 
able to recognize them correctly. Also, since the 
word level recognition depended on a database of 
word’s features, the system will be totally dependant 
on the language, and it will need an expensive 
training to be used in another language. For example 
the Arabic and the Farsi written languages use the 
same characters, but their dictionaries are totally 
different.  
In the Arabic Text Recognition System proposed in 
[2], the authors introduced the over-segmentation 
approach. In their system, the input image is firstly 
preprocessed to segment the input image into lines 
of text; these lines of texts are segmented into 
atomic segments, such that no atomic segment could 
be larger than any single character. These atomic 
segments are combined into groups (combined 
segments). The combined segments are processed by 
neural network classifier to recognize them, and 
finally in the last stage, the text line is constructed 
again in Unicode text.  
Although the over-segmentation presented 
promising results, it imposes a considerable 
overhead. The over-segmentation stage will produce 
too many atomic segments which are either ignored 
if small, or combined into combined segment. The 
number of the combined segment before recognition 
is considerable high, for example one word (رتبت) of 
four characters will produce 12 atomic segments 
combined latter into 7 combined segments. 
To boost the recognition system accuracy, in [5] the 
authors presented an Arabic character recognition 
system that is mainly composed of three recognition 
systems; namely: Over-segmentation, Sliding neural 
network system, and whole word recognition 
system. The three systems are operated in parallel on 

the input word, trying to recognize the text without 
segmenting or extracting the character. The best 
performance obtained from the three subsystems 
was around 80% as the authors stated in their paper. 
Another technique to boost the performance of the 
neural network based character recognition system 
is to employ disambiguation rules and robust 
spelling correction to enhance the recognition [6]. 
Hidden Markov Models (HMM) was also used for 
optical character recognition [3][8]. These systems 
were inspired by continuous speech recognition 
(CSR) systems. In [3] the authors presented a 
language independent OCR system depending on 
the HMM and by utilizing the BBN BYBLOS 
continuous speech recognition system [10]. The 
presented system was identical to the BYBLOS CSR 
system except for the preprocessing and feature 
extraction stages. 
A remarkable feature of the system presented in [3], 
that it is segmentation free. The system does not 
segment the image of a line-of-text neither to 
characters nor even to words. Instead of 
segmentation, the line is divided into a set of 
overlapping frames. 
In this paper, we present a new and novel Arabic 
optical character recognition (AOCR) system. The 
system accepts a scanned-page image containing a 
set of text lines, and affected by typical noise level. 
The system preprocesses the image before the 
separate lines are handled to the character extraction 
phase. Our approach depends on segmenting the line 
into tokens and extracting characters features in 
order to recognize the characters and to assemble the 
output line of text. A neural network is used to 
process the features and to classify them into one of 
the characters. 
The rest of the paper is organized as follows: in the 
second section, we introduce the architecture of the 
new AOCR system. The third section is devoted for 
introducing the new character recognition, while the 
fourth section describes the character recognition 
system.  The construction of textual output (the 
assembly) is presented in the fifth section. In the 
sixth section, we present the results of the 
experimental study. Finally, we conclude our work 
in the seventh section. 
 
 
2  Arabic optical character recognition 
System Architecture 
Typical an AOCR program should accept, as an 
input, an image containing multiple lines with 
reasonable noise which is typically a scanned page 
of text. It should achieve reasonable efficiency in 
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recognizing the words found in the image, and it 

should generate a textual clone of them. To achieve 
this broad requirement, we are proposing a new 
AOCR system. Our system Architecture is 
composed of four main phases, namely: 
preprocessing, character extraction, character 
recognition, and assembly. 
In the preprocessing phase, the input image is 
processed in order to reduce the noise found in it, 
and to extract a complete line of the text. The role of 
the character extraction comes next to segment this 
line of text into tokens, and to extract all the 
available information. These tokens are processed in 
the recognition phase to recognize the set of possible 
characters that the token may be one of.  Finally in 
the assembly phase, all the gathered information 
through the previous steps is used to construct the 
output textual version line. This architecture is 
shown in the figure 1. 
In the preprocessing phase, the input image is 
subjected to three main processing stages: 
thresholding, morphological noise reduction, and 
line extraction. A thresholding technique is used to 
convert the image from colorful image into binary 
image of black background and white text. The 
colored input image is subjected to thresholding in 
order to compute the suitable intensity (threshold) of 
the image to convert it to a binary - Black and White 
- image.  Our system employs Otsu's [7] algorithm 
to create the threshold of the image, handling the 
problem of different background colors, and the 
presence of multiple regions in the image. 

Simple noise symptoms that may be found in binary 

images are greatly reduced by the use of 
morphological algorithm to remove isolated pixels, 
without the removal of dots and punctuation marks. 
Finally, line's boundaries in the image were 
identified by generating a histogram of the 
horizontal lines (i.e. a line of pixels). The histogram 
of lines between the text lines will appear as local 
minima (the histogram value approaches zero at 
these points). 
 
 
3   Character Extraction 
After preprocessing the input image (noise 
elimination and line extraction), we end up with an 
image containing a single line of text. The image 
contains a line of characters with different features 
and drawing characteristics. The main goal of the 
character extraction phase (as the name implies) is 
to segment the line into separate characters and to 
extract all the characters distinguishing features.  
Extracting a token (a character or part of a character) 
is not simple as the reader may assume, especially if 
the characters are connected (cursive writing), and 
come in different sizes even within the same font 
size as the case in Arabic written text. Figure 2 
shows an image containing typed Arabic text.  Not 
only the Arabic written characters are connected to 
each other, but also the connection point with 
respect to the character comes in different places 
(from top, middle, or bottom). This variation in 
character drawing from no connection to a 
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Fig. 1: System Architecture 
 

 
 

Fig. 2: Sample image containing typed Arabic text 
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connected in different places makes the extraction 
difficult. The following characteristics of the Arabic 
written language make the extraction a challenging 
problem: 
• The Arabic written characters come in 

different non proportional sizes in the same 
font size, which makes the characters occupy 
unpredictable areas within the word. 

• The same character can appear in completely 
different shapes and sizes within the same 
word, making extraction that depend on 
certain character features inefficient. 

• The characters can appear in different 
orientations, since the Arabic characters 
within a word are not aligned and they can 
extend above or below the line. 

• The presence of dots and hamza (ء) in 
different shapes above the characters. 

• The font size highly effects characters and 
dots features and shapes (e.g. the three dots 
become connected in small fonts) 

• Different Arabic fonts pose a dramatic 
change in the character's drawing and features 
with different font types. It is also noticed 
that different characters in different fonts may 
appear similar. 

 
After studying the character extraction methods used 
in commercial products [9][11] and those found in 
literature, we observed that they adopted 
substantially different approaches. One of the 
approaches avoided the problem completely and 
treated the line of text as a stream of frames [3], 
While others used word-level recognition depending 
on a database of Arabic words [1][5]. In [2] the 
over-segmentation approach was proposed. In over-
segmentation approach the word is segmented into 
atomic segments, and then the segments are 
combined and processed by neural network based 
classifier [2]. Other approaches depended greatly on 
the knowledge of characters starting and ending 
points [4][8][13], while this assumption is valid in 
online writing systems, as in PDAs, it is not 
justifiable for scanned images. 
For the character extraction phase, we propose our 
new extraction algorithm. The algorithm was built in 
light of a lengthy statistical study performed on a set 
of Arabic typed texts with different font types and 
sizes. In what follows, we will summarize the results 

of our statistical study for the Arabic typed text 
features, and then we will present the extraction 
algorithm with a detailed explanation and an 
example. 
 
 
3.1 Arabic typed-text main features 
In this section, we summarize the findings of our 
study of the characteristics of Arabic characters and 
words. This study was done on the normal text line 
as well as on the line after thinning. The discussion 
below will stress on the silent features used in the 
extraction algorithm which will be explained in the 
next subsection.  
Throughout the rest of the paper, we are going to use 
the following words to mean certain meanings. 
Firstly, the object is any character, part of a 
character, hamza or dot; it occupies an area, which is 
the number of pixels the object occupies. We may 
use the words: pattern and token interchangeably to 
mean the same thing (any isolated and extractable 
object from the image). Finally, the boundary 
rectangle is the minimum  (in terms of area) 
rectangle that surrounds the object. We assume that 
the input image to this stage contains only one single 
line of text and nothing but an Arabic text (no 
figures, other language characters, or symbols), and 
that the line does not suffer from skewness.   
In order to simplify the algorithm presentation and 
discussion we assume that no two characters 
overlap. This case could be handled by our 
algorithm, since any overlapping characters are 
going to be recognized as one entity, and a new 
token will be generated. Our statistical study showed 
that there is a limited cases were such occurrences 
can happen, they happen mainly with the character 
'Kaf' ك, when it comes in the middle of a word, i.e. ' 
 .' ـكـ
One of the most observable Arabic typed-text-line 
features is that there is always a horizontal reference 
line that must cut or touch every character in the line 
no mater of character’s shape or location with 
respect to other characters, we call this line the Main 
Line. Another important feature found in most of the 
characters is that the character occupies rectangular 
space in the line, so no two characters can extend 
over each other. These rectangles and the main line 
are shown in the figure 3. As it can be seen in figure 

 
Fig. 3: The line of text after thinning and dots removal showing the main line and the bounding rectangle of some 
characters 
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3, every character will start from the main line, 
touch it or end at it. 
The third feature in the Arabic characters is that 
there are certain ratios and relations between the 
character and different objects in the line. These 
ratios do not change when changing the font size. 
And these ratios and relations from different font 
types are nearly equal. This feature facilitates safe 
character resizing without affecting its features. For 
example, the character always covers bigger area 
than any dot or hamza around it, and the space 
within the word (i.e. between the characters of the 
same word) has a certain ratio with respect to the 
line height. Also when the character is written in 
different sizes its parts maintain a size ratio with 
respect to each other.  
Finally, Arabic characters are built from lines with 
no sold filled areas, a characteristic that makes the 
output of the thinning stage preserves the input text 
skeleton; consequently the character's different parts 
are still there. 
 
 
3.2 Extraction Algorithm 
The extraction algorithm is built based on the 
characteristics described in the previous subsection.  
Next, we will present the algorithm in pseudo code 
followed by a detailed explanation. Also, a complete 
example is included for illustration.  We refer to the 
output of the preprocessing stage as the input, which 

consists of an image of a single line of text. The 
input image is a binary image of zeros and ones 
arranged to form the characters and the background, 
where the background is black and the text is white.  
 The algorithm starts by preprocessing the input 
image to produce the input and an integer 
representing the height of the line as shown in figure 
4. The second step in the algorithm is used to 
remove the dots and hamzas around the character. 
This is done by labeling every disconnected object 
with a unique label (ObjectID). Consequently, every 
dot or hamza will have a different label than the 
word they belong to. Since the area covered by the 
character (and hence the word area too) is greater 
than any dot or hamza regardless of the font type or 
size as mentioned previously,  the dots can be easily 
identified and removed to another binary image, 
(DotsImg). As a result of this step the InputImg is 
separated into two images, one holding the line 
image without dots (SkeletonImg), and other 
holding the dots and hamzas (DotsImg).  
Figures 5 and 6 show the results after apply the 
second step to image shown in figure 4. It is noted 
that the (لا) character is divided into two parts 
among the two images. But the part that appears in 
the dots image can be safely ignored; since the 
remaining part in the characters image forms a 
unique token and does not look like any other 
character (i.e. the remaining part can alone identify 
the (لا) character). 

The Extraction Algorithm 
1 (InputImg,LineHeight) = PreprocessingPhase (ImageFile) 
2 (SkeletonImg,DotsImg) = DotsRemoval (InputImg) 
3  SkeletonImg = Thinning (SkeletonImg) 
4 CObjectsImg = ClosedObjectsDetection (SkeletonImg) 
5 (TokensImg,MainLine) = MainLineRemoval (SkeletonImg) 
6 TokensImg = InsertCObjects (TokensImg,CObjectsImg) 
7 (TokensImg,NumberOfObjects) = LabelObjects (TokensImg) 
8 TokensImg = UnifyObjects (TokensImg) 
9 TokensImg = MainLineInsertion (TokensImg,MainLine) 
10 TokensImg = ConnectCloseObjects (TokensImg) 
11 (DotsImg,NumOfDots) = LabelObjects (DotsImg) 
12 DotsRec = GetBoundingRectangle (DotsImg) 
13 SpacesInfo = FindSpaces (TokensImg,LineHaight) 
14 For (I = 1 : NumberOfObjects)  
15      Character = ExtractChar (TokensImg,I) 
16      CharachterRec= GetBoundingRec (Character) 
17      CharacterHole = IsHole (Character) 
18      CharacterRecognition = RecognitionPhase (Character) 
19      CharactersInfo[I]=(CharacterRecognition,CharacterHole,CharacterRec,SpaceInfo) 
20 End  
21 OutputText = AssemblePhase (CharactersInfo, DotsImg, DotsRec) 
22  return  
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The third step will thin the characters image so the 
line width of the line constructing the characters will 
become one. This step works efficiently regardless 
of the original font size. The characters shape is 
preserved through thinning as described previously. 
Figure 7 shows the result of applying the thinning on 
the image shown in figure 6. In the fourth step, all 
objects forming a closed shaped are detected and 
copied to a separate image (CObjectsImg) to 
preserve them.  Figure 8 shows the result after 
processing the image shown in the figure 7. This 
step is very useful to protect the shape from 
distortion that can happen when the main line is 
removed in the next step. 
The main line is removed from the skeleton image in 
the fifth step. The main line connects all the 
characters and represents a reference line that all the 
characters must touch. An important feature of the 
main line of any typed text is that it is the most dens 

line in the image. So by simply generating the 
horizontal histogram of the image the main line can 
be identified. The line is copied to a separate image 
(MainLine) and the rest of the image is copied to a 
token image (TokensImg). The main line of our 
input image is shown in figure 9. The token image is 
shown in figure 10 and one can see that the image 
contains a set of tokens that characterizes the text.  
This step is followed by combining the image of 
closed objects with the token image to restore any 
distortion to the close-form objects as shown in 
figure 11. 
In the seventh step, we label each object by 
replacing all object’s pixels content (originally 
contain ones) with the object’s label. Looking back 
at the figure 11, we notice that the token image 
contains parts of the characters or separate 
characters. Also, it is noticeable that some characters 
have some parts over the main line and others under 

 

 
Fig. 4: Input Image 

 

 
Fig. 5: Dots part of the input image (DotsImg) 

 

 
Fig. 6: Characters part of the input image (SkeletonImg) 

 

 
Fig. 7: SkeletonImg after thinning 

 

 
Fig. 8: CObjectsImg image 

 
Fig. 9: Main line 

 

 
Fig. 10: TokensImg Image after main line removal 

 
 

 
Fig. 11: TokensImg with the closed objects inserted 
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the main line. Therefore by removing the main line 
and labeling the disconnected object with different 
labels, these parts will have different labels while 
they belong to the same character. In the eighth step, 
these characters are detected and are given the same 
label. For example, if we look at the word (لحم) the 
figure 11, we can see that the last character of the 
word (م) is divided into two parts, one over the line 
and another underneath it. Since these parts belong 
to the same character, and in order to minimize the 
number of tokens generated by the extraction 
method, the two parts are given the same label.  
The main line is reinserted in the ninth step. During 
the insertion process, each segment of the main line 
is labeled with the same label of the object that 
crosses that segment, since the segment was 
originally part of that character. The result of 
inserting the main line on the image shown in figure 
11 is shown in the figure 12. For the purpose of 
illustration, figure 13 shows the objects with unique 
labels separated apart.  If the character is formed by 
two parts around the main line, where one of them is 
completely above the line and the other is complete 
underneath it, these two parts should carry the same 
label. The tenth step takes care of this issue as show 
in figure 14. We can see that the (لآ) character in the 
last word was divided into two tokens in figure 13 
which are combined into one token in figure 14.  
In step 11, objects in the DotsImg are labeled to 
facilitate further processing as shown in figure 15. In 
order to know where the dot resides with regard to 
the main line, and to which character it belongs, we 
need to know the bounding rectangle of each dot 
(the rectangle with the minimum area surrounding 
the object). The twelfth step calculates the bounding 
rectangle for each dot. 

An important part of Arabic word is the space within 
the word; this can be confused with the space 
between the words. In our statistical study, we found 
that the space between the characters of the same 
word no matter the size of the font, are proportional 
to the size of the text and its height. Typical values 
of the ratios are as follows: the space within the 
word will never go longer than 0.3 of the line height 
and the spaces between the words never goes shorter 
than 0.4 of the line height. This thirteenth step 
removes space within the word.  Depending on this 
simple scheme for space recognition, our system 
achieved 100 percent efficiency, i.e. the system 
never (in all of our tests) added, omitted, or falsely 
recognized a space. 
In the steps 14 through 20, we loop on all objects (a 
character or part of it) in the token image to collect 
the necessary data for recognition phase and 
assembly phase. We start by extracting the 
characters from the token image since these 
characters are now uniquely labeled. Figures 16–21 
show some characters extracted from the image in 
figure 14.  Then and for each character, we calculate 
the bounding rectangle to identify any related dots 
or hamzas and we check the character for holes. 
This is an important feature used if the tokens 
collide in the recognition phase. At this stage, the 
character can be identified and therefore, we call the 
recognition system to do this job.  Finally and for 
statistical purposes, the system uses a simple data 
structure containing all the necessary information 
gathered through the character extraction and 
character recognition phases. It contains the output 
of the recognition phase, the information about the 
holes and the bounding rectangles. In addition to the 
information related to the spaces within and between 
the words. Finally and in the last step of the 

 
Fig. 12: TokensImg after inserting the main line 

 

 
Fig. 13: TokensImg with the different objects separated apart 

 

 
Fig. 14: SkeletonImg with the close objects are connected 

 

 
Fig. 15: The dots of the input image (DotsImg) 

Proceedings of the 5th WSEAS Int. Conf. on Artificial Intelligence, Knowledge Engineering and Data Bases, Madrid, Spain, February 15-17, 2006 (pp211-224)



algorithm, we call the assemble phase providing it 
with all the necessary information to assemble the 
line of text. 
Our algorithm for character extraction generates 33 
recognizable different tokens. Keeping in mind that 
the number of Arabic characters is 28 and that each 
character can appear in totally different shapes; 
generating only 33 different token is fairly excellent. 
This adds to the efficiency of our recognition phase, 
and to the system’s overall accuracy.  
 
 
4   Pattern Recognition 
After the tokens have been extracted from the input 
image, they are passed to the recognition system. 
The recognition system receives one of 33 possible 
tokens augmented with all the extracted features and 
information about it; and tries to recognize it 
correctly. 
Depending on a careful study and analysis of 
different design choices, we selected the 2-layer 
feed forward neural network. In order to boost our 
recognition system we firstly classified the input 
characters into two sets. The first set (set 1) contains 
all the tall characters (i.e. the ratio of the height to 
the width is greater than 1) and the second set (set 2) 
contains all the wide characters (i.e. the ratio of the 
height to the width is less than 1). For each set, we 
designed a separate neural network. Some 
characters, and due to differences in font types and 

sizes, may be considered tall in some cases and wide 
in others; consequently they will be members of the 
two sets. The members of each set are shown in 
appendix A. 
After classifying the input pattern into one of the 
two sets, the pattern is resized into an appropriate 
size. All the characters belonging to the first set are 
resized to 10x5 image, while the members of the 
second sets are resized into 7x7 image. This 
classification followed by the appropriate resizing, 
further preserves the characters shape and adds to 
the accuracy of the recognition system. 
The first neural network (for tall characters) is 
designed as two layers log-sigmoid/log-sigmoid 
network; the first layer consisted of 15 neurons and 
the second layer consisted of 26 neurons (one 
neuron for each token). We have used the standard 
log-sigmoid as a transfer function. 
The second neural network (for wide characters) is 
also designed as a two-layer network; the first layer 
is composed of 15 neurons and the second layer is 
composed of 17 neurons. Also, the transfer function 
is the same log-sigmoid function. Figures 22 and 23 
below show the architecture of the two neural 
networks. 
The number of neurons in the hidden layer was 
selected after several experiments to produce the 
best recognition rate. Also, the log-sigmoid transfer 
function was picked because of its output range (0 to 
1), which is suitable for classification purposes. The 
network is trained to output a 1 in the correct 

 

 
Fig. 16: Object number 2 

 
Fig. 17: Object number 5 

 
Fig. 18: Object number 13 

 
 

 
Fig. 19: Object number 16 

 
Fig. 20: Object number 22 

 

 
Fig. 21: Object number 24 
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position of the output vector and to fill the rest of the 
output vector with 0’s. However, Input vectors may 
result in the network not creating perfect 1’s and 0’s. 
So after the network produces its results, the result is 
passed through the competitive transfer function that 
replaces the largest element of the output vector by 
1, and places 0 in place of the other elements. 
 
 
5   Assembly 
The last stage in our AOCR is the assembly phase. 
In this phase, we use all the gathered information in 
the previous two phases (character extraction and 
recognition). This will finalize the character 
recognition to form complete words and to assemble 
the text line.  Note that all the information related to 
the character recognition and line assembly were 
extracted in the character extraction phase, such as 
the dots image, their rectangle, space info …etc. 
Furthermore, the recognition phase classifies tokens 

into one of the 33 defined tokens. However, the 33 
tokens are not complete characters. For example, the 
characters ( خ, ج, ح ), all of them will have the same 
shape without dots, and hence will be assigned to 
the same token in the recognition phase. In the 
assembly phase we will overcome this problem and 
other similar cases using the information gathered 
through the previous phases. 
In order to complete the character recognition, we 
are in need to look to the related dots or hamzas. All 
what we have about the dots is an image containing 
them and the coordinates of the bounding rectangle. 
Therefore, we need firstly to recognize the dots and 
hamzas. Then, the assembly phase will integrate the 
recognized token with dots information to form 
possible characters. Finally, the assembly phase will 
fine tune the output and correct some recognition 
errors. 
Most Arabic characters are surrounded by dots. A 
character may have one, two or three dots. And the 

 

 

Fig. 22: Recognition Neural Network for the tall characters 

 

Fig. 23: Recognition Neural Network for the wide characters 
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dots can be either above or below the character. The 
following figure shows all the possible patterns.  
 Differentiating between the hamza and the dots is 
relatively easy, since the hamza has a 
distinguishable structure from any dots patter, and 
the shape of hamza does not change with different 
font size.  Consequently, the same classifier shown 
in figure 23 is used to recognize the hamza token. In 
addition, it is very simple to identify the relative 
location of the dots with regard to the character 
(above or below). However, what is not trivial is to 
count the number of the dots above each character 
because the dots do not come with standard drawing 
or shape and they depend on the font size. For 
instance, the three dots in big fonts appear as three 
separated objects, while in small fonts they appear 
as one entity.  
To deal with this complication, we noticed that for 
large fonts we need to count the number of objects 
to determine the dot count since the dots are 
separated. However, in small fonts, the dots will be 
combined and appear as one object. So we depended 
on some observations of our statistical study that 
revealed an interesting feature in the dots found in 
small fonts.  Our results show that the eccentricity of 
the dots varies significantly between the three 
possible dots combinations (one, two, or three). The 
eccentricity of the single dot is always very small, 
i.e. nearly zero. The eccentricity is very large for 
two dots and is moderate for three dots. The typical 
values are shown in the table 1.  This property of the 
dots was used efficiently to recognize the dots in 
small fonts. 
After combining the recognized tokens and dots, we 
have now meaningful characters. Note that there are 
possibly multiple characters for the same token as 
shown in Appendix A.  A simple logic that links the 

position and number of dots to the token can 
uniquely identify the correct character. In addition, 
we need the hamza to identify the character in the 
case of the fourth token. For example, the fourth 
token could be on of the “بـ تـ ثـ فـ نـ يـ س ش ئـ” 
characters; the unique character is identified 
according to the previously mentioned logic.  
Some errors could occur in the recognition phase, 
which maps to nonexistent characters. The assembly 
module can detect some of these errors and correct 
them by replacing the erroneous token with the most 
probable token according to the Arabic language 
structure (i.e. the character ‘د’ cannot have a dot 
beneath it, if such a combination occurred, the token 
is probably a mistaken ‘جـ’). 
 
 
6   Experimental Results 
An extensive testing was conducted to test the 
effectiveness of the presented AOCR. We firstly 
tested every phase separately and then performed a 
complete system testing. We have implemented the 
system using C++ and Matlab 6.1® [12]. The 
execution time depended on the text length and font 
size.  After extensive testing, we found that the 
patterns in Appendix are good representative of the 
Arabic alphabets. The patterns can suffer from a 
small amount of variation according to the font size 
and type which is a natural result in Arabic written 
text.   
The neural network was trained using a set of 
characters extracted from images containing Arabic 
text with different font types and sizes. Then the 
system was subjected to a blind test. The system was 
tested with three datasets: set 1 contained 5 scanned 
pages composed only of characters found in the 
training set. Set 2 includes images of 15 pages and 
contains text of 18pt size or greater scanned at 
300dpi, and set 3 uses the same text in set 2 with 
font sizes less than 18pt and scanned at 300dpi. The 
results are shown in the table 2. 
In addition to the previous results, thought the 
testing the recognition rate per pattern was also 
calculated for all the pages in the three sets. The 
rates are shown in the table 3 on the next page. 
The results show a graceful degradation in system 
accuracy with small font sizes, this is due to the 
changes in the characters and the dots features 
among the different font sizes. The overall system 
recognition rate for testing data is 87% and 91% for 
Arial and Times New Roman fonts (frequently used 
fonts).    
 
 

 
 

Fig. 24: Arabic dots possible combinations 

Number of Dots Eccentricity 
1 0 
2 >= 0.8 
3 >0 and  <0.8 

 
Table 1: Typical value of eccentricity for the dots 
combinations 
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4   Conclusion 
The Arabic language nature poses unique challenges 
for the optical character recognition field. The 
Arabic language is written cursively, with different 
shapes for the same character, also the presence of 
dots and hamzas adds to the system complexity.  
In this paper, we presented a new and novel Arabic 
optical character recognition system, which 
depended mainly on extracting a set of features for 
each character, and provide all the extracted 
information to recognition and assembly phases. The 
system introduces a new approach which utilizes the 
characteristics of the Arabic language; it utilizes the 
information in the main line of text to create tokens 
that characterize the characters. Our system 
achieved a very promising result of being able to 
correctly recognize input text images with 87% 
percent accuracy across different fonts and different 
font sizes. 
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Appendix A: 
Table 4 lists all the patterns and their corresponding characters and  table 5 shows the patterns generated by 
the extraction algorithm. Note that in table 5, the color of the images is inverted from the one generated by the 
extraction function only to make the patters more clear to the reader. 

 
 

Pattern 
number 

Possible characters Possible 
Set 

Pattern 
number 

Possible characters Possible 
Set 

 2 ق 18 1 ء 1
 or 2 1 ك 19 1 ا أ 2

 1 ـكـ 20 1  ث ف كب ت 3

بـ تـ ثـ فـ نـ يـ س  4
 ش ئـ

1 or 2 21 1 ل 

 1 لـ 22 2 جـ حـ خـ 5

 1 لا لأ 23 1 ـج ـح ـخ 6

 1 ـلا ـلأ 24 1 ج ح خ 7

 2 مـ or 2 25 1 ر ز 8

 1 م or 2 26 1 د ذ 9

 or 2 1 هـ 27 2 ن س ش ص ض 10

 1 ـهـ 28 2 ص ض 11

 1 ـه ـة or 2 29 1 ط ظ 12

ـعـ غ 13  1 ه ة 30 2 

 or 2 1 ـو 31 2 ـعـ ـغـ 14

 or 2 1 ي 32 1 ـع ـغ 15

 or 2 1 ي 33 1 ع غ 16

    or 2 1 فـ  قـ 17

Table 4: Possible Characters for each pattern 
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14 

 
    ح  5    ب ت ث ن ي  4  ب ف ك  3    ا  2    ء 1

     
    ن س ص  10    د  9    ر  8    ح  7    ح  6

     
    ع  15    ع    14    ع  13    ط   12    ص  11

     
    ك   20    ك  19    ق   18    ف ق  17    ع   16

     
    م   25    لا  24    لا  23    ل   22    ل   21

     
   ه  30    هـ  29    هـ  28    هـ  27    م  26

     
      ي  33    ي  32    و  31

   

  

Table 5: Complete Pattern set of the Arabic alphabet 
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