
An Agent-based Heterogeneous UAV Simulator Design

MARTIN LUNDELL1, JINGPENG TANG1, THADDEUS HOGAN1, KENDALL NYGARD2

1Math, Science and Technology

University of Minnesota Crookston
Crookston, MN56716

UNITED STATES

2Department of Computer Science and Operations Research
North Dakota State University

Fargo, ND 58105
UNITED STATES

http://www.cs.ndsu.nodak.edu/~nygard

Abstract: To facilitate the evaluation of alternative mission planning models for teams of Unmanned Air Vehicles
(UAVs), a multi-agent simulation system was designed and developed. The system, referred to as Ether, is
designed to be more generally applicable to a wide variety of agent-oriented systems. The simulator design has
the flexibility to support a wide variety of mission planning models, yet provides infrastructure that supports
rapid prototyping.

 Key-Words: - Simulation, Agents, UAV, Distributed systems

1 Introduction
To facilitate the evaluation of alternative mission
planning models for teams of Unmanned Air
Vehicles (UAVs), a multi-agent simulation system
was designed and developed. The system, referred to
as Ether, is designed to be more generally applicable
to a wide variety of agent-oriented systems. The
simulator design has the flexibility to support a wide
variety of mission planning models, yet provides
infrastructure that supports rapid prototyping. We
describe the requirements of the simulator from the
perspective of the application to UAVs. The design
is described in detail, including principles followed
to develop a simulator that is easy to use, yet provides
great modeling expressive power and flexibility.

2 Simulator Requirements

2.1 UAV research
Scientific and Engineering advances in wireless
communication, sensors, propulsion and other areas
are rapidly making it possible to develop Unmanned
Air Vehicles (UAVs) with sophisticated capabilities.
Deployed individually, UAVs offer the potential to
search for, detect, and destroy enemy targets in

relatively complex environments. They potentially
reduce risk to human life, are cost effective, and
superior to manned aircraft for certain types of
missions. It is desirable for UAVs to have a high
level of intelligent autonomy, to carry out mission
tasks with little external supervision and control.
This raises important issues involving tradeoffs
between centralized control and the associated
potential to optimize mission plans, and
decentralized control with great robustness and
potential to adapt to changing conditions. We report
on a simulator designed to provide flexibility for
exploring a wide variety of cooperative control
models at the mission planning level for
heterogeneous UAVs. We focus particularly on
designs that hold the potential to simulate near
real-time systems.

2.2 The UAV simulator need
An agent-based simulation system is essential for
evaluating alternative control models for UAV
missions. The simulator provides the capability of
comparing the control algorithms with common
metrics that measure efficiency, effectiveness, and
cost. We wish to evaluate the alternatives based on
the dynamic battlefield in real-time [1] [2]. The

Proceedings of the 5th WSEAS Int. Conf. on Artificial Intelligence, Knowledge Engineering and Data Bases, Madrid, Spain, February 15-17, 2006 (pp453-457)

system also provides visualization for the simulation
of various UAV missions. The system uses a
multi-level approach to modeling a UAV in order to
support approaches to mission planning. This is
accomplished using an agent system through which
different levels of control can communicate [2,3,4].

2.3 Modeling challenges
A mission planning simulator should be general
enough and flexible enough to incorporate multiple
control algorithms. Established software engineering
practices should be followed in the implementation.
More specifically, the simulator must have an
algorithm control layer which can easily incorporate
different decision support algorithms for task
allocation, such as Partially Observable Markovian
Decision Process (POMDP), Fuzzy Logic, Bayesian
Decision Analysis, and Rough Set Theory for UAVs.
Another challenge is the desirability of decoupling
the simulation from the visualization system.
Visualization is typically an integral part of a
simulator, and in many cases is tightly coupled. Such
designs significantly complicate the design, and can
easily result in unjustified time spent on visualization
rather than the control algorithms themselves.

2.4 Purpose of the simulator
The Computer Science Department at North Dakota
State University has a long history of work in mission
planning for cooperating UAVs. Models developed
include parallel sweep search for reconnaissance;
synchronized, multi-point strike; layered,
multiple-perimeter asset patrolling with threat
elimination; mobile target tracking and surveillance;
and forward air controller with available strike
vehicles. In conjunction with these models, several
algorithms have been developed to model
decision-making by autonomous UAV’s including
route planning, target assignment, and decisions to
strike or not strike a target.
 These areas of investigation have led to the
development of several simulators, each designed to
demonstrate and evaluate the performance of a
particular UAV model. There are several problems
that arise. First, there is considerable duplication of
effort as many individuals invest time in simulator
development. Second, it makes it difficult to compare
the model against each another in an appropriate way.
 The project that we describe is focused on
developing a general purpose simulator for to
comparing and contrasting different UAV models.
This strategy will result in a simulator which can also
be used for a variety of models outside the realm of
UAV research.

3 Simulator Features

3.1 Functions of the simulator

• Allow the user to configure their simulation
by defining agents, their supported
interactions, and termination conditions.

• Operate in batch mode over a range of
parameters specified by the user.

• Run in a visualization mode where the user
can see the simulation in real-time or review
prior simulations.

• Support distributed computing in a way that
scales with the complexities of the mission
model.

3.2 Architecture overview
Figure 1 illustrates the architecture of the simulator
that is named Ether. Components in the architecture
are detailed in the following sub-sections.
 The Core is responsible for starting up and
initializing components to be used in support of
simulations. This includes loading configuration
files, initializing the User Interface and logging
capabilities. The most interesting thing the Core does
from a design perspective is create the EmodHandler.
Emods (Ether Modules) are discussed in greater
detail later, but they are essentially the mechanism
through which Ether gains its flexibility, facilitated
by the EmodHandler in the Core. Interfaces for
Agents, InteractionLogic, and the user interface
(EtherUI) provide the mechanisms to extend the
simulator to meet individual simulation needs.
 The Environment in the simulator is implemented
as an Emod and contains references to all agents and
interaction logic. An Observer of the environment
records state and pushes that to the database for
analysis and/or visualization.
 For more complex simulations there may be a need
to run more than one Ether process. This capability is
also implemented as an Emod.

Proceedings of the 5th WSEAS Int. Conf. on Artificial Intelligence, Knowledge Engineering and Data Bases, Madrid, Spain, February 15-17, 2006 (pp453-457)

Fig. 1 Ether Simulator Architecture

3.2.1 Characteristics of the Core

3.2.1.1 Initialization
The simulator core is responsible for initializing the
users interface, logging capabilities, persistent
storage, and the simulation component manager
(EmodHandler). When the simulator core is started, it
reads an XML file describing the simulation to run,
the properties of the environment, the condition upon
which the simulation is to end, the ways in which
agents can interact with one another, and specifying
which agents will be resident in the simulation. All
agents are created through reflection, where the class
names of the objects to be instantiated are loaded
from the simulation configuration file. In this way,
the simulator is not dependant on all agents being
defined at runtime. Additional agents, restrictions,
logic patterns, and interactive components can be
built outside of a running simulator and inserted at
runtime.

3.2.1.2 Persistence
One of the major functionalities of the simulator core
is to provide the simulation environment with access
to persistent storage. The principal method of data
storage on disk is via a DBMS. Any information that
should be stored as XML for transmission or analysis
by other tools is to be extracted from the DBMS and
rendered into XML after a simulation has run. The
use of a DBMS for persisting data to disk at runtime
was chosen because it is much faster than rendering
XML during the simulation.

3.2.2 Environment
The environment is the realm in which agents
execute. It handles all agents and interactions among

agents as specified in their corresponding Emod. It
provides five principle services:

1. Creates/manages the flow of simulated time.
2. Enforces the laws of physics.
3. Provides methods for underlying agents to

interact with each other and the environment.
4. Provides the logging interface.
5. Determines when the simulation is to be

terminated.

3.2.2.1 Flow of time
The purpose of the environment is to enforce
restrictions which apply to all agents of any type. One
of these restrictions is the flow of time. All of the
agents must act in the same time frame and cannot be
allowed to perform more or less work than any other
agent in one cycle of the clock. For example, if two
objects are moving at identical velocities, both must
travel the same distance in a single clock cycle.
 Time is to be measured in seconds, and is iterated at
a specified rate. The rate specifies what fraction or
multiple of a second will be used for each execution
step. The clock allows each agent to simulate that
fraction or multiple of a second in a sequential
manner, allowing one agent to simulate, then the
next, and so on. For the purposes of this document,
the use of a small fraction of a second per iteration is
considered a high rate, while the use of a large faction
of a second per iteration shall be considered a low
rate. The higher the rate, the smoother and more
accurate the simulation will be. A lower rate will
allow the simulator to complete quickly, but will
lower the accuracy achieved.
 The simulator contains a collection of agents that
are currently running under the environment. With
each iteration of the clock, each agent is instructed to
simulate its actions over time increment issued by the
clock. For example, if an agent is traveling at 10m/s,
and the rate is 1 millisecond, that agent will travel 10
millimeters during a single iteration. After an agent
is processed, it returns any interactions that it
performed to the scheduler. These interactions are
verified and immediately executed. In each execution
cycle of the clock, all Agents have an opportunity to
set their state before they interact. This enforces
indifference to the ordering of the Agents in terms of
the behavior of the simulation.

3.2.2.2 Maintaining the laws of physics
The environment simulation is responsible for
imposing the laws of physics on the underlying
agents. In turn it is the responsibility of each agent to
make use of the simulated physics in order to control
its position in the environment. An agent's
InteractionLogic components include acceleration

Proceedings of the 5th WSEAS Int. Conf. on Artificial Intelligence, Knowledge Engineering and Data Bases, Madrid, Spain, February 15-17, 2006 (pp453-457)

for any agent which is able to move. (Velocity is not
an InteractionLogic component, as it can only be
modified through acceleration.) If gravity at
9.8m/s^2 is applied to an environment in a downward
direction, an agent must be able to report to the
environment the production of a 9.8m/s^2
acceleration in an upward direction in order to make
no change to its movement.
 Some agents are not affected by gravity, but may be
affected by other laws of physics. For example, a
radio transmission creates an agent, which is the
transmission itself. This agent represents the
presence of radio waves in the environment and
likewise is not affected by gravity. Accordingly, a
radio transmission may not have an acceleration
InteractionLogic component. However, the
environment chooses which InteractionLogic
components of an agent are affected by the simulated
laws of physics. Thus, any InteractionLogic
component could be affected by the laws of physics,
and any agent that wishes not to be affected by laws
of physics must not implement the related
InteractionLogic component. For example, a brick
may be built without an acceleration
InteractionLogic component, so that the brick is not
affected by gravity. However the brick will then not
be able to move, since the environment is control of
the ability of all agents to change their location.
Similarly, a balloon that implements an
InteractionLogic component of "size" will not
necessarily be affected by the laws of physics unless
a law is implemented which affects "size," such as
pressure.

3.2.2.3 Agent interaction
The environment is responsible for all interactions
between agents. Fig. 2 illustrates the communication
among agents, the environment, and the interaction
logic in a typical situation. Agents cannot know what
other agents exist at their build time. Instead, agents
are aware of all InteractionLogic components that
they can affect at their build time.
 When the environment issues an execution cycle to
an agent, that agent determines if it will interact with
another agent during that cycle. If it does interact
with another agent, it will return to the environment
the InteractionLogic component it will change and
which agent that change applies to. (Multiple
interactions can be reported from a single execution
cycle.) The environment then imposes that change
on the affected agent.

Fig. 2 Agent Interaction Sequence Diagram

3.2.2.4 Logging
The environment provides a standard mechanism by
which agents are able to log or record what has
changed during each of their executions. Also, the
environment supports logging rules under which it
can extract data from agents for logging. This was
developed during design so that the environment and
agents are not logging the same information.

3.2.2.5 Termination condition
The termination of a simulation can be a result of
simulation objective being realized and/or a specified
time expiring.

3.2.3 Emods
For the purpose of establishing a flexible
development environment that is highly decoupled,
agents and the environment are separately developed
and interlaced at runtime through a simple pluggable
components called Emods (Ether Modules).
 When the simulator is run it has an Emods directory
where Emods reside. When added, or touched, the
simulator loads the class files and descriptors and
adds the defined component to the simulation
environment. The simulator implements a special
classloader that allows Emods to be refreshed
without restarting the simulator, even when the
simulation is running.
 An Emod is simply a folder with the extension
.Emod, and has the following structure:

• Example.emod/
• Example.emod/emod.xml -> Descriptor file

Proceedings of the 5th WSEAS Int. Conf. on Artificial Intelligence, Knowledge Engineering and Data Bases, Madrid, Spain, February 15-17, 2006 (pp453-457)

• Example.emod/icon.png -> Graphical
representation to be used within the
simulator (optional)

• Example.emod/classes/ -> classpath root for
Emod classes

The descriptor file contains information regarding
the Emod, such as what type of agent it is, the name
of the class to invoke, whether it is renderable, and its
possible startup parameters.

3.2.4 Visualization
The simulator supports drawing of agents done with
standard graphics primitives. A future version with
Scalable Vector Graphics is planned. The
visualization component supports full pan and zoom
of the environment independent of the visualization
data. The visualization component inputs the visual
representation of the environment in physical units
(e.g., meters) and converts it into a visual
representation in logical units (pixels).
 The visualization system has two components. A
renderer is contained within each agent and provides
instructions for drawing that agent. A visualizer
which inputs the data generated by the agents and
presents it on the screen. The rendering instructions
for an agent are provided by the Environment as an
XML stream. Potential components that can process
this XML stream include a visualizer to display the
data, a file writer to store the data, and a network
socket to transmit the data to remote visualizers.

3.2.5 Distributed processing
The simulator supports distributed processing. When
running simulation sets with many combinations of
the available parameters, a large number of
simulations may be necessary. To complete these
simulation sets in a reasonable amount of time, the
simulator can send simulations to remote machines
for processing. A control simulator creates the jobs
and distributes them to remote nodes. Remote
machines are transient, so that if one or more is
disconnected the entire set of simulations is not lost.
Simulation result data are be collected from the nodes
by the control simulator and processed as if the jobs
were run on the local simulator.

4 Conclusions
The Ether simulator allow for comparison of
alternative agent-based algorithms. For example, we
can provide the same environment between multiple
simulation runs and change only the decision making
algorithm in the agent’s Emod. It is possible to
isolate individual parameters for investigation. A

consequence of simulator flexibility is the burden
placed on the users of the simulator to develop their
own Emods. Over time an Emod library of agents,
agent behaviors, and interaction logic to promote
faster simulation builds will be developed and made
available.
 While the Ether simulator was motivated UAV
research, it is not UAV specific. Ether can be used as
a general purpose agent-based simulation platform.
The users would only need to create their own agents
and interactions and package them in the Emod
structure.
 The first major experiments with the Ether
simulator include comparisons among Fuzzy Logic,
Bayesian Decision Analysis, and Rough Set theory
algorithms for task allocation and decision making
for missions with multiple UAVs.

References:
 [1] Altenburg K, Schlecht J, Nygard KE. (2002). An

Agent-based Simulation for Modeling Intelligent
Munitions", Athens, Greece: Advances in
Communications and Software Technologies, pp.
60-65.

[2] Brooks, R.A., "A Layered Control System for a
Mobile Robot," IEEE Journal of Robotics and
Automation, Vol. 2:1, pp. 14-23, 1986.

 [3] N. Huff, A. Kamel, and K. Nygard, An Agent
Based Framework for Modeling UAVs. In Proc.
of the 16th International Conference on Computer
Applications in Industry and Engineering
(CAINE03), 2003.

[4] Sean Luke, Claudio Cioffi-Revilla, Liviu Panait,
Keith Sullivan, and Gabriel Balan. MASON: A
Multi-Agent Simulation Environment.
Forthcoming, Simulation Journal.

Proceedings of the 5th WSEAS Int. Conf. on Artificial Intelligence, Knowledge Engineering and Data Bases, Madrid, Spain, February 15-17, 2006 (pp453-457)

