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Abstract: To facilitate the evaluation of alternative mission planning models for teams of Unmanned Air Vehicles 
(UAVs), a multi-agent simulation system was designed and developed.  The system, referred to as Ether, is 
designed to be more generally applicable to a wide variety of agent-oriented systems.  The simulator design has 
the flexibility to support a wide variety of mission planning models, yet provides infrastructure that supports 
rapid prototyping.  
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1 Introduction 
To facilitate the evaluation of alternative mission 
planning models for teams of Unmanned Air 
Vehicles (UAVs), a multi-agent simulation system 
was designed and developed.  The system, referred to 
as Ether, is designed to be more generally applicable 
to a wide variety of agent-oriented systems.  The 
simulator design has the flexibility to support a wide 
variety of mission planning models, yet provides 
infrastructure that supports rapid prototyping.  We 
describe the requirements of the simulator from the 
perspective of the application to UAVs.  The design 
is described in detail, including principles followed 
to develop a simulator that is easy to use, yet provides 
great modeling expressive power and flexibility.      
 
 
2  Simulator Requirements 
 
 
2.1 UAV research 
Scientific and Engineering advances in wireless 
communication, sensors, propulsion and other areas 
are rapidly making it possible to develop Unmanned 
Air Vehicles (UAVs) with sophisticated capabilities.  
Deployed individually, UAVs offer the potential to 
search for, detect, and destroy enemy targets in 

relatively complex environments.  They potentially 
reduce risk to human life, are cost effective, and 
superior to manned aircraft for certain types of 
missions. It is desirable for UAVs to have a high 
level of intelligent autonomy, to carry out mission 
tasks with little external supervision and control.  
This raises important issues involving tradeoffs 
between centralized control and the associated 
potential to optimize mission plans, and 
decentralized control with great robustness and 
potential to adapt to changing conditions. We report 
on a simulator designed to provide flexibility for 
exploring a wide variety of cooperative control 
models at the mission planning level for 
heterogeneous UAVs.  We focus particularly on 
designs  that hold the potential to simulate near 
real-time systems.   
 
 
2.2 The UAV simulator need 
An agent-based simulation system is essential for 
evaluating alternative control models for UAV 
missions. The simulator provides the capability of 
comparing the control algorithms with common 
metrics that measure efficiency, effectiveness, and 
cost.  We wish to evaluate the alternatives based on 
the dynamic battlefield in real-time [1] [2]. The 
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system also provides visualization for the simulation 
of various UAV missions. The system uses a 
multi-level approach to modeling a UAV in order to 
support approaches to mission planning. This is 
accomplished using an agent system through which 
different levels of control can communicate [2,3,4].  
 
2.3 Modeling challenges 
A mission planning simulator should be general 
enough and flexible enough to incorporate multiple 
control algorithms.  Established software engineering 
practices should be followed in the implementation.  
More specifically, the simulator must have an 
algorithm control layer which can easily incorporate 
different decision support algorithms for task 
allocation, such as Partially Observable Markovian 
Decision Process (POMDP), Fuzzy Logic, Bayesian 
Decision Analysis, and Rough Set Theory for UAVs.  
Another challenge is the desirability of decoupling 
the simulation from the visualization system. 
Visualization is typically an integral part of a 
simulator, and in many cases is tightly coupled. Such 
designs significantly complicate the design, and can 
easily result in unjustified time spent on visualization 
rather than the control algorithms themselves.    
 
2.4 Purpose of the simulator 
The Computer Science Department at North Dakota 
State University has a long history of work in mission 
planning for cooperating UAVs. Models developed 
include parallel sweep search for reconnaissance; 
synchronized, multi-point strike; layered, 
multiple-perimeter asset patrolling with threat 
elimination; mobile target tracking and surveillance; 
and forward air controller with available strike 
vehicles. In conjunction with these models, several 
algorithms have been developed to model 
decision-making by autonomous UAV’s including 
route planning, target assignment, and decisions to 
strike or not strike a target.  
   These areas of investigation have led to the 
development of several simulators, each designed to 
demonstrate and evaluate the performance of a 
particular UAV model. There are several problems 
that arise. First, there is considerable duplication of 
effort as many individuals invest time in simulator 
development. Second, it makes it difficult to compare 
the model against each another in an appropriate way.  
   The project that we describe is focused on 
developing a general purpose simulator for to 
comparing and contrasting different UAV models. 
This strategy will result in a simulator which can also 
be used for a variety of models outside the realm of 
UAV research.  
 

 
3   Simulator Features 
 
3.1 Functions of the simulator  

• Allow the user to configure their simulation 
by defining agents, their supported 
interactions, and termination conditions.  

• Operate in batch mode over a range of 
parameters specified by the user.  

• Run in a visualization mode where the user 
can see the simulation in real-time or review 
prior simulations.  

• Support distributed computing in a way that 
scales with the complexities of the mission 
model.  

 
3.2 Architecture overview 
Figure 1 illustrates the architecture of the simulator 
that is named Ether. Components in the architecture 
are detailed in the following sub-sections.   
   The Core is responsible for starting up and 
initializing components to be used in support of 
simulations.  This includes loading configuration 
files, initializing the User Interface and logging 
capabilities.  The most interesting thing the Core does 
from a design perspective is create the EmodHandler.  
Emods (Ether Modules) are discussed in greater 
detail later, but they are essentially the mechanism 
through which Ether gains its flexibility, facilitated 
by the EmodHandler in the Core.  Interfaces for 
Agents, InteractionLogic, and the user interface 
(EtherUI) provide the mechanisms to extend the 
simulator to meet individual simulation needs. 
   The Environment in the simulator is implemented 
as an Emod and contains references to all agents and 
interaction logic.  An Observer of the environment 
records state and pushes that to the database for 
analysis and/or visualization.   
   For more complex simulations there may be a need 
to run more than one Ether process.  This capability is 
also implemented as an Emod. 
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Fig. 1 Ether Simulator Architecture 
 
3.2.1 Characteristics of the Core 
 
3.2.1.1 Initialization 
The simulator core is responsible for initializing the 
users interface, logging capabilities, persistent 
storage, and the simulation component manager 
(EmodHandler). When the simulator core is started, it 
reads an XML file describing the simulation to run, 
the properties of the environment, the condition upon 
which the simulation is to end, the ways in which 
agents can interact with one another, and specifying 
which agents will be resident in the simulation.  All 
agents are created through reflection, where the class 
names of the objects to be instantiated are loaded 
from the simulation configuration file. In this way, 
the simulator is not dependant on all agents being 
defined at runtime. Additional agents, restrictions, 
logic patterns, and interactive components can be 
built outside of a running simulator and inserted at 
runtime.  
 
3.2.1.2 Persistence 
One of the major functionalities of the simulator core 
is to provide the simulation environment with access 
to persistent storage.  The principal method of data 
storage on disk is via a DBMS. Any information that 
should be stored as XML for transmission or analysis 
by other tools is to be extracted from the DBMS and 
rendered into XML after a simulation has run.  The 
use of a DBMS for persisting data to disk at runtime 
was chosen because it is much faster than rendering 
XML during the simulation.  
 
3.2.2 Environment 
The environment is the realm in which agents 
execute. It handles all agents and interactions among 

agents as specified in their corresponding Emod. It 
provides five principle services:  

1. Creates/manages the flow of simulated time.  
2. Enforces the laws of physics.  
3. Provides methods for underlying agents to 

interact with each other and the environment.  
4. Provides the logging interface.  
5. Determines when the simulation is to be 

terminated.  
 

3.2.2.1 Flow of time 
The purpose of the environment is to enforce 
restrictions which apply to all agents of any type. One 
of these restrictions is the flow of time. All of the 
agents must act in the same time frame and cannot be 
allowed to perform more or less work than any other 
agent in one cycle of the clock. For example, if two 
objects are moving at identical velocities, both must 
travel the same distance in a single clock cycle.  
   Time is to be measured in seconds, and is iterated at 
a specified rate.  The rate specifies what fraction or 
multiple of a second will be used for each execution 
step.  The clock allows each agent to simulate that 
fraction or multiple of a second in a sequential 
manner, allowing one agent to simulate, then the 
next, and so on.  For the purposes of this document, 
the use of a small fraction of a second per iteration is 
considered a high rate, while the use of a large faction 
of a second per iteration shall be considered a low 
rate.  The higher the rate, the smoother and more 
accurate the simulation will be.  A lower rate will 
allow the simulator to complete quickly, but will 
lower the accuracy achieved.  
   The simulator contains a collection of agents that 
are currently running under the environment. With 
each iteration of the clock, each agent is instructed to 
simulate its actions over time increment issued by the 
clock. For example, if an agent is traveling at 10m/s, 
and the rate is 1 millisecond, that agent will travel 10 
millimeters during a single iteration.  After an agent 
is processed, it returns any interactions that it 
performed to the scheduler.  These interactions are 
verified and immediately executed. In each execution 
cycle of the clock, all Agents have an opportunity to 
set their state before they interact. This enforces 
indifference to the ordering of the Agents in terms of 
the behavior of the simulation.  
 
3.2.2.2 Maintaining the laws of physics 
The environment simulation is responsible for 
imposing the laws of physics on the underlying 
agents.  In turn it is the responsibility of each agent to 
make use of the simulated physics in order to control 
its position in the environment. An agent's 
InteractionLogic components include acceleration 
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for any agent which is able to move. (Velocity is not 
an InteractionLogic component, as it can only be 
modified through acceleration.)  If gravity at 
9.8m/s^2 is applied to an environment in a downward 
direction, an agent must be able to report to the 
environment the production of a 9.8m/s^2 
acceleration in an upward direction in order to make 
no change to its movement.  
  Some agents are not affected by gravity, but may be 
affected by other laws of physics. For example, a 
radio transmission creates an agent, which is the 
transmission itself.  This agent represents the 
presence of radio waves in the environment and 
likewise is not affected by gravity. Accordingly, a 
radio transmission may not have an acceleration 
InteractionLogic component. However, the 
environment chooses which InteractionLogic 
components of an agent are affected by the simulated 
laws of physics.  Thus, any InteractionLogic 
component could be affected by the laws of physics, 
and any agent that wishes not to be affected by laws 
of physics must not implement the related 
InteractionLogic component. For example, a brick 
may be built without an acceleration 
InteractionLogic component, so that the brick is not 
affected by gravity.  However the brick will then not 
be able to move, since the environment is control of 
the ability of all agents to change their location.  
Similarly, a balloon that implements an 
InteractionLogic component of "size" will not 
necessarily be affected by the laws of physics unless 
a law is implemented which affects "size," such as 
pressure.  
 
3.2.2.3 Agent interaction 
The environment is responsible for all interactions 
between agents.  Fig. 2 illustrates the communication 
among agents, the environment, and the interaction 
logic in a typical situation.  Agents cannot know what 
other agents exist at their build time.  Instead, agents 
are aware of all InteractionLogic components that 
they can affect at their build time.  
   When the environment issues an execution cycle to 
an agent, that agent determines if it will interact with 
another agent during that cycle.  If it does interact 
with another agent, it will return to the environment 
the InteractionLogic component it will change and 
which agent that change applies to. (Multiple 
interactions can be reported from a single execution 
cycle.)  The environment then imposes that change 
on the affected agent.  

 

 
Fig. 2 Agent Interaction Sequence Diagram 
 
3.2.2.4 Logging 
The environment provides a standard mechanism by 
which agents are able to log or record what has 
changed during each of their executions.  Also, the 
environment supports logging rules under which it 
can extract data from agents for logging.  This was 
developed during design so that the environment and 
agents are not logging the same information.  
 
3.2.2.5 Termination condition 
The termination of a simulation can be a result of 
simulation objective being realized and/or a specified 
time expiring.  
 
3.2.3 Emods 
For the purpose of establishing a flexible 
development environment that is highly decoupled, 
agents and the environment are separately developed 
and interlaced at runtime through a simple pluggable 
components called Emods (Ether Modules).  
   When the simulator is run it has an Emods directory 
where Emods reside. When added, or touched, the 
simulator loads the class files and descriptors and 
adds the defined component to the simulation 
environment.  The simulator implements a special 
classloader that allows Emods to be refreshed 
without restarting the simulator, even when the 
simulation is running.  
   An Emod is simply a folder with the extension 
.Emod, and has the following structure:  

• Example.emod/  
• Example.emod/emod.xml -> Descriptor file  
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• Example.emod/icon.png -> Graphical 
representation to be used within the 
simulator (optional)  

• Example.emod/classes/ -> classpath root for 
Emod classes  

The descriptor file contains information regarding 
the Emod, such as what type of agent it is, the name 
of the class to invoke, whether it is renderable, and its 
possible startup parameters.  
 
3.2.4 Visualization 
The simulator supports drawing of agents done with 
standard graphics primitives. A future version with 
Scalable Vector Graphics is planned. The 
visualization component supports full pan and zoom 
of the environment independent of the visualization 
data.  The visualization component inputs the visual 
representation of the environment in physical units 
(e.g., meters) and converts it into a visual 
representation in logical units (pixels ).  
   The visualization system has two components. A 
renderer is contained within each agent and provides 
instructions for drawing that agent.  A visualizer 
which inputs the data generated by the agents and 
presents it on the screen.  The rendering instructions 
for an agent are provided by the Environment as an 
XML stream. Potential components that can process 
this XML stream include a visualizer to display the 
data, a file writer to store the data, and a network 
socket to transmit the data to remote visualizers.  
 
3.2.5 Distributed processing 
The simulator supports distributed processing.  When 
running simulation sets with many combinations of 
the available parameters, a large number of 
simulations may be necessary. To complete these 
simulation sets in a reasonable amount of time, the 
simulator can send simulations to remote machines 
for processing.  A control simulator creates the jobs 
and distributes them to remote nodes.  Remote 
machines are transient, so that if one or more is 
disconnected the entire set of simulations is not lost. 
Simulation result data are be collected from the nodes 
by the control simulator and processed as if the jobs 
were run on the local simulator.  
 
 
4   Conclusions 
The Ether simulator allow for comparison of 
alternative agent-based algorithms.  For example, we 
can provide the same environment between multiple 
simulation runs and change only the decision making 
algorithm in the agent’s Emod.   It is possible to 
isolate individual parameters for investigation.  A 

consequence of simulator flexibility is the burden 
placed on the users of the simulator to develop their 
own Emods.  Over time an Emod library of agents, 
agent behaviors, and interaction logic to promote 
faster simulation builds will be developed and made 
available. 
   While the Ether simulator was motivated UAV 
research, it is not UAV specific.  Ether can be used as 
a general purpose agent-based simulation platform.  
The users would only need to create their own agents 
and interactions and package them in the Emod 
structure. 
   The first major experiments with the Ether 
simulator include comparisons among Fuzzy Logic, 
Bayesian Decision Analysis, and Rough Set theory 
algorithms for task allocation and decision making 
for missions with multiple UAVs.  
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