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Abstract: A model-based method is proposed in this paper for 3-dimensional human motion recovery, taking 
un-calibrated monocular data as input. Motion trend prediction is suggested to to recover smooth human motions with 
high efficiency; while its outputs are guaranteed to not only resemble the original motion from the same viewpoint the 
sequence was taken, but also look natural and reasonable from any given viewpoint. To evaluate the accuracy of 
reconstruction algorithm, the research program starts from “synthesized” input. Experiment carried on real video data 
will be discussed as well, which indicate that the proposed method is able to recover smooth human motions from 
their 2D image features with high accuracy. 
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1. Introduction 
Animation is the production of consecutive images, 
which, when displayed, conveys a feeling of motion 
[9]. In the past decade, with the rapid development of 
computer technology, computer animation has become 
very popular in many applications. In computer 
animation, the representation of human body and its 
motion receives great attention, since human 
animation are widely employed in many areas, such as 
games, movies, surveillance, scientific visualization, 
etc. As monocular images and video sequences are 
easily available, many great efforts have been made to 
reconstruct 3D human motion from monocular images. 
However, such attempt remains very much 
under-developed due to many technical difficulties.  
Remondino and Roditakis [14] suggested adjusting the 
posture of a human model according to camera 
calibration information and biomechanical constraints 
applied on the model. Orthographic projection is used 
in their approaches, which is greatly different from the 
perspective projection used in any real camera. Liu et 
al. [12] and Park et al. [13] made use of the motion 
library. The former took motion attributes achieved 
through reconstruction as guidance for estimation of 
unknown human motion, while the latter use motion 
library to resolve the depth ambiguity in recovering 3D 
configuration from 2D image features. In both 
attempts, a large motion library needs to be maintained 
and upgraded continuously. In [3] the concept of 
prioritized constraints is introduced. Based on it the 
proposed method can get quite good results, which is 
only suitable for adding variations to motions known 
before the reconstruction. [4] introduced an interactive 
system which combines biomechanical constraints on 

3D motion with user interferences to reconstruct 
sequences in 3D; similarly three possibilities for 
solving inverse kinematics problem during human 
animation are discussed when interactive direct 
manipulation is applied [5]. There are also attempts in 
automatically generating accurate inverse dynamics 
solutions to simulate and deform human motion 
[11&16]; however such efforts have been concentrated 
on hand posture recovery only. Zhao and Li [18] 
proposed a Criterion Function (CF) to represent the 
residuals between the image feature and the projected 
features from the reconstructed 3D model in a Global 
Adjustment (GA) system. In their method the accuracy 
and the consistency of the recovered postures are only 
guaranteed from the same viewing direction as the 
original.  
Most existing methods introduce simplifications on 
human motion or require assistance such as user 
interference or motion library. This paper aims to 
propose a novel model-based human motion 
reconstruction method from un-calibrated 2D 
monocular data without user interferences and the 
human motion is truly unrestricted. 
The rest of this paper is organized as follows: the 
camera model and the 3D skeletal model used for 
motion reconstruction are described in the next section; 
section 3 discussed the key component of our work: 
the MTP method; experimental results are presented 
and analyzed in section 4; finally a conclusion is 
drawn in section 5. 
 
 

2. Model 
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Before 3D motion reconstruction, we have a camera 
model and a human model well prepared for the 
purpose. The camera model is located at a fixed 
position in virtual space with pre-defined focal length, 
and it does not require knowledge of the actual 
cameras from which the video sequence is taken (in 
most of the situations such information is unavailable 
as well). An articulated 3D skeletal model as shown in 
Fig.1 is considered sufficient for our purpose. For 
convenience terms in italic stands for joints, while 
segments’ name are underlined. The joint pelvis is set 
as the root in the skeletal tree structure, while the 5 leaf 
joints are named left wrist, right wrist, left ankle, right 
ankle and head. 

 
Figure 1: 3D skeletal model and its 2D correspondence 

composed of 17 joints and 12 segments 

At the current moment, our attention is focused on the 
movements of segments including hip, waist, chest, 
neck, upper arms, forearms, thighs, and crura, which 
are resulted from proper rotations about each starting 
joint of these segments. The tips of hands and feet, and 
the top of the head are not considered as individual 
joints in our current work. For reconstruction purpose, 
we assign each intermediate joint (all joints in Fig.1 
except leaf joints) 1 to 3 DOF(s) in the world 
coordinate system (WCS), and each of these joint is 
associated with a local coordinate system (LCS). 
However there are 6 DOFs (3 for translations and the 
other 3 for rotations) at pelvis, since the translation of 
the whole body is represented by the movement of hip. 
In total our human model actually 37 DOFs. 
It’s obvious that the rotational angles of each 
intermediate joint about the 3 axes in its associated 
LCS are governed by biomechanical constraints [17], 
here we decide to introduce the joint constraints in [18] 
with some modifications applied according to latest 
human biology information.  
Through proper translations of the pelvis joint and 
rotations of segments about each intermediate joint of 
the skeletal model, any human posture could be 
obtained from the initial pose in Fig.1. 
 
 

3. Motion Reconstruction 

Human motion reconstruction is actually a process to 
reconstruct human posture at every frame. The goal is 
to recover human postures which resemble the original 
postures as much as possible. Our algorithm is based 
on two observations about human motion. 1. Despite 
the complexity of human motion, there are actually 
only two types of movements involved: the translation 
of the whole body and the rotations of the body 
segments about each intermediate joint. The former 
put the human body in a certain location, while the 
latter generates a particular body posture. Hence, the 
3D movement of any joint can be treated as the 
composition of translation of pelvis, and rotations of 
all ancestor joints of this particular joint. 2. Most of the 
human motions are generally smooth, which means 
that the 3D human postures in neighboring frames are 
similar. Based on the above observations, the Motion 
Trend Predication technique is proposed. 
 
 
3.1. The MTP technique 
In the early research stage, only monocular human 
motions without body relocation are studied. Therefore 
the joint pelvis’s position is always fixed and the 
movement of each joint can be simplified just as a 
composition of the rotations about all its ancestor 
joints.  
According to kinematics principles [10], we will 
follow the order from the root to the leaf joints to 
adjust segments of the skeletal model. As mentioned 
before, once human body gets located a particular 
posture could be obtained through proper rotations of 
each segment about its starting intermediate joint. 
Therefore only when the 2D residuals between the 
recovered posture’s projection and its corresponding 
2D image feature achieve the minimum value, can we 
consider all joints and segments have been 
transformed to certain 3D positions which merely 
ensure the recovered posture resembles the original 
one from the same viewpoint. However recovering 
posture at each frame individually may violate the 
inter-frame consistency. To effectively produce natural 
looking motions, an important 3D predictor is 
introduced in the suggested MTP. Since the 3D 
positions of any joint in neighboring frames should be 
similar to ensure continuous motion, coordinates of 
every joint in the WCS could be utilized for motion 
prediction and tracking. When a segment is being 
rotated about the ith intermediate joint, WCS 
coordinates of its all child joints will serve as the 3D 
predictor to better evaluate if the segment has been 
rotated to the correct location. To obtain the value of 
this 3D predictor, below formula is applied, which 
represents track of a certain joint’s movement with 
frames: 

212121
__3 )()()( −−− −+−+−= KKKKKK
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where (xK, yK, zK) and (xK-1, yK-1, zK-1) stand for each ith 
joint’s direct descendant’s WCS coordinates at the Kth 
and (K+1)th frame respectively. 
Once the reconstruction of a frame is finished, the 
posture configuration of the skeletal model obtained 
for this frame will be used as the reference for 
predicting the human posture in the next frame.  
To represent the MTP in a parametric way, an AF for 
optimizing rotation about the ith  intermediate joint is 
declared as shown in Eq.(2).  
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where deviationorientation_i and deviationlength_i represent 
2D orientation and length deviations between 
projected and image features of the segment(s) 
connecting the ith  intermediate joint and its direct 
child joint(s), while deviationposition_i  is 2D position 
deviation of the ith  intermediate joint’s all direct child 
joint(s) on image plane. 
Such above AF looks similar to the popularly-used 
energy function defined in [17]; however usage of 3D 
predictor for motion tracking and its trend prediction 
has been added in. This improvement is to enhance the 
accuracy of human animation in 3D space, which is the 
main concern in any 3D motion reconstruction. 
Meanwhile the way the AF is formulated in our MTP 
makes the solution process much simpler than all 
currently existing methods. 
However, the current AF is still insufficient, especially 
when dealing with limbs, as possible ambiguities could 
be resulted from occlusion due to the high flexibility of 
limbs. To smooth such ambiguities, we assume that 
poses of the forearms or shins remain exactly the same 
as in the previous frame when upper arms or thighs are 
being rotated in current frame. The purpose is to 
combine the 2D position residuals of the wrists or 
ankles between the projection and image features into 
current AF. Hence the AF for rotating upper arms or 
thighs evolves as follows: 

ijoleafijoleaf

i
b

i
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                                         (3)  
( )pjijijoleaf PPDdeviation __2_int__ ,=              (4) 

Here the jth joint (leaf joint – wrist or ankle) is an 
indirect descendant of the ith intermediate joint 
(shoulder or hip); Pj_i is the image feature of the thj  
joint, and Pj_p is its corresponding projected feature, as 
illustrated in Fig.2. 

 
Figure 2: 2D position deviation of shoulder or hip’s 

indirect child joint (leaf joint) 
Once the posture configuration resulting in the 
minimum AF values for every intermediate joint is 
obtained, all joint are believed to have been moved to 
their approximately correct 3D positions. As the result, 
the whole reconstructed human motion will be smooth, 
and looks natural from any viewpoint in 3D space. 
Next step we attempt to handle unrestricted human 
motions containing body relocation. That means the 
relocation of the human body which is represented by 
the translations of the pelvis has to be taken into 
consideration as well. Such relocation can be further 
categorized into translations parallel and perpendicular 
to the image plane. The former is easy to implement, 
since in this case the distance between the human 
object and the camera is fixed. The AF for recovering 
pelvis’s parallel translations is defined as below: 

pelvispositionntranslatio deviationAF _1_ =                (5)   

( )ppelvisipelvispelvisposition PPDdeviation __2_ ,=         (6) 
where Ppelvis_i and Ppelvis_p are image feature and 
projection of pelvis respectively. 
In contrast, the second type of translation is much 
more difficult to handle since it is not easy to detect 
when and how such translation exactly happens. It is a 
common knowledge that the distance of an object with 
the projection plane determines its projected sizes on 
the image plane. Such understanding is used to 
determine the translation of the pelvis perpendicular to 
the image plane. Before the pelvis being translated in 
the (K+1)th frame, the 3D posture configuration 
obtained at the Kth frame will be applied to the skeletal 
model temporarily. If the skeletal model is translated 
to its correct location at the (K+1)th frame, the sum of 
the projected segment lengths should approach to that 
of the image features as much as possible. The 
following AF is then defined to perform the body 
translation perpendicular to the image plane: 

lengthtotalntranslatio deviationAF _2_ =                 (7) 

⎟
⎠

⎞
⎜
⎝

⎛
−= ∑∑

==

16

1
_

16

1
__

i
pi

i
iilengthtotal SSabsdeviation       (8) 

where Si_i and Si_p respectively represent lengths of the 
image feature and projected feature of each segment 
considered in our model.  
After the translation of the joint pelvis, the 3D skeletal 
model is considered as positioned to the right location 
in 3D space. Rotations of every intermediate joint will 
then follow using the methods described upfront. As 
the pelvis’s position changes in most of the frames, to 
recover the human posture through the same AFs for 
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rotations about each intermediate joint, a new 
reference coordinate system (RCS) is introduced and 
serves as the substitute of the “WCS” for calculating 
the 3D predictor’s value in MTP. Such RCS is defined 
after the translation of pelvis in every frame, with its 
origin located at pelvis and its three axes parallel to 
those of WCS. Based on the RCS, rotations of all 
intermediate joints can be performed for motion 
reconstruction purpose. 
 
 
3.2. Implementation of MTP technique 
To generate the best motion reconstruction from 2D 
monocular correspondence with the proposed MTP 
method, one key point is to find the most appropriate 
setting of the weighting parameters in each AFi. Based 
on the attributes of residuals in AFs, the WP settings 
are divided into two categories: 2D WP setting and 3D 
WP value. WP setting for orientation and length of 
each segment, joint positions on 2D image plane 
belong to the first category, because such parameters 
are only related to the calculation of 2D residuals. It is 
obvious the WP of each joint’s 3D recovered position 
in the previous frame should belong to the other 
category, which mainly concerns 3D attributes of 
human postures. As 2D residuals and 3D residual have 
different units, it is suggested to derive the possible 2D 
WP setting first and 3D WP value for rotations about 
each intermediate joint will be evaluated during run 
time based on the generated 2D WP setting.  
As long as the recovered posture’s projection is close 
to its corresponding image features, it appears similar 
to the original posture from the same viewpoint the 
video was produced. Actually there exist numerous 
possible postures which have such same projection, 
however not all of them resemble the original posture 
in all details. To establish the relationship between 
different 2D WPs in AFs, some simple motion 
sequences, which concern the human motion nearly 
parallel to the image plane, especially the translation of 
pelvis, are reconstructed. During these reconstructions 
all possibilities just mentioned are found out and the 
sum of residuals of each 2D factor is calculated. 
According to statistic data obtained, the possible 2D 
WP setting is finally determined as [21 20 10], 
following the order as segment’s orientation, 
segment’s length, and joint’s position. 
Once 2D WPs are obtained, the value of real-time 3D 
WP employed during rotations about the ith 
intermediate joint in the (K+2)th frame can be derived 
through the following Eq. (9) and (10): 

150003 =D
KWP  ( )2=K                       (9) 
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in the above formula s is a coefficient taking value 
from 0 to 1, while 1−K

jR  and 1−K
jE  are state vectors 

that respectively represent recovered and estimated 3D 
position of the ith intermediate joint’s direct descendant 
(the jth joint) at the (K-1)th frame; thus a transition state 

)(1 sT K
j
−  between 1−K

jR  and 1−K
jE  can be expressed 

as ( )[ ]111 −− ∗+∗− K
j

K
j EsRs  which depends on the 

value of coefficient s; 
)(1 sT K

j
P −

 is the jth joint’s 

projection resulted from the transition state; finally 
1−K

jI  is the original 2D correspondence of the jth joint 
at the (K-1)th frame.  
 
 

4. Experiments and Statistics 
In order to generate reliable motion reconstruction, 2D 
feature information (2D correspondence) extracted 
from the source images or video, such as each joint’s 
position on the 2D image plane, must be highly 
accurate. There have been a large number of 
approaches to feature extraction in the image 
processing and computer vision area [1, 2, 7, 16]. 
However up to date, no technique is able to guarantee 
such process is already sufficiently accurate. 
Extraction error remains an unavoidable issue. As a 
matter of fact, such inaccuracy is one of the main 
factors preventing the progress of reconstruction 
technology. Besides, the lack of depth information in 
monocular image source makes it extremely difficult 
to evaluate the performance of any 3D reconstruction 
algorithm. 
To enable accurate evaluation and assessment of the 
proposed MTP method, computer synthesized source 
videos are used as input before the MTP method is 
applied on real video data. The popular BVH 
(Bio-vision hierarchical data) motion files are firstly 
employed in any computer animation software to 
generate various animation series on a fixed human 
model with known geometry (for the time being, the 
motion is generated for a skeletal model to show the 
motion more clearly). Then the generated 3D 
animation is projected on the image plane to produce 
the accurate 2D posture correspondence in every frame, 
which is the only input to the motion reconstruction 
system. In this way errors in feature extraction can be 
eliminated. The 3D motion data and the camera 
settings are not utilized in any way during the 
reconstruction process. The 3D motion data is only 
used for comparison purpose after the 3D motion is 
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reconstructed to ensure proper evaluation of the MTP 
method. 
After the visual and numerical comparison based on 
synthesized input data, the MTP method is applied on 
real monocular videos to further test its accuracy. 
Since the depth information is not available in such 
cases, the technique can only be evaluated through the 
visual resemblance in the same viewpoint with the 
original, and the smoothness and reasonableness of the 
reconstructed motion in other viewpoints. 
Currently only monocular sequences with resolution of 
640x480 pixels and frame rate of 20fps are studied.  
 
 
4.1. Results from “synthesized” data 
In this section, the MTP technique is evaluated on 
computer synthesized monocular video data. The 
statistics data obtained during reconstruction from one 
sample kicking (22frames, where the joint pelvis is 
moving all the time) is shown in Fig.4, where the total 
2D residuals of all the 17 joints between image and 
projection features are presented in form of stacked 
line. It can be seen from Fig.4 that, the total value of 
AFs of all joints at each frame for the kicking sequence 
reaches its peak at the 11th frame, which is only 
1.660629 in pixels. The result indicates that the 
projection of the recovered 3D posture at each frame is 
very close to the original, given the image resolution of 
640*480. 
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Figure 3: Total 2D AF value at all frames (Kicking) 

Since the sequence is computer synthesized, the actual 
3D position of every joint is available. In Fig.4 the 
original and reconstructed motions are still very 
similar when viewed from another angle. 

 

 
 

Figure 4: Input and reconstructed motion from other 
viewing directions 

4.2. Results from real video data 
Further the technique is tested on real monocular video 
sequences. One motion sequence composed of walking 
and squatting (49frames), and the reconstructed human 
animation based on it are presented in Fig.5. To ensure 
accurate image feature extraction from real video 
sequence and to reduce unnecessary noises, color 
labels are stuck to the human object at joint positions. 
Image processing techniques such as those mentioned 
in [2] are used to extract the 2D joint features from 
each frame of the video sequences; however we can 
only guarantee the noises will be minimized as 
possible as we can, which will affect the final 3D 
motion reconstruction. 

  

 

 
Figure 5: Top: Two frames from the input video 

Middle: Reconstructed motion - front view Bottom: 
Reconstructed motion - side view (Walking and 

Squatting) 
Fig.6 shows the total values of AFs of all joints at each 
frame of this sequence. Comparing with Fig.3, it can 
be seen that the total values of AFs for real video 
reconstruction is much higher than those from 
“synthesized” data. However the maximum AF sum 
value is only 6.28112 at the 18th frame in a resolution 
of 640*480. The reconstruction from real video still 
can be considered as highly accurate.  
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Figure 6: Total AF value at all frames (Walking and 
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squatting) 
 
 

5. Conclusion 
A model-based technique is proposed in this paper for 
motion reconstruction from un-calibrated monocular 
video sequences containing unrestricted human motion. 
MTP technique is first developed to reconstruct human 
motion with no body relocation. The technique is then 
extended to derive a new RCS at each frame, and 
hence enable reconstruction of any unrestricted human 
motion. 
The main advantage of our approach is that through it 
a truly wide range of monocular sequences could be 
reconstructed efficiently, and there is no requirement 
for camera calibration. From experimental results 
presented in the paper, the reconstruction results are 
highly satisfactory as long as the 2D image features are 
reasonably accurate.  
As a future work we are planning to introduce control 
on the leaf joint into MTP. Plausible motions about 
these parts are expected to be simulated. 
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