
The Main Adaptability Principles for the Process of Handling
Relational Data Sets

BIRUTĖ PLIUSKUVIENĖ, PETRAS ADOMĖNAS

Information Systems Department
Vilnius Gediminas Technical University

Saulėtekio al. 11, Vilnius
LITHUANIA

Abstract: In this paper an adaptive data processing technology is presented that implements solutions to applied
problems in two stages. The first stage consists of data aggregation, i.e., data identification and transformation
into the primary relational data set for an applied problem, and the second stage deals with algorithmic
dependencies and the generation of implementing program modules into an application for an applied problem.
The intent of this technology is to lessen the faults in solving a problem as data and the algorithms for their
processing change. In all instances this is achieved not by creating a new program but by adapting certain
subset of the program module set into a particular program for solving a problem.

Key words: relational sets, algorithmic dependencies, data aggregation, program generation.

1 Introduction
As an application domain changes, it often becomes
necessary to change the structure and contents of
primary data as well as the algorithm for solving
problems, so applied problems have to be designed,
programmed and included into already functioning
systems anew. In the latter case not only many
problems arise in lessening the faults of problem
solving, but the time and expenses for solving the
problem increase as well. Taking this into account
an adaptive data processing technology has been
created that implements the solutions of applied
problems in two stages (Fig. 1).

In the first stage, data selection is performed out
of the totality of primary data supplied as relational
sets using identification methods. The data required
for the solution of a particular problem are selected
and provided in the order needed. Through further
data transformations the data selected are placed
into one common relational set (RS), which can also

be composed of result data, since during
transformations both arithmetic and logical
operation can be performed. The structure and
contents of primary data RS can be changed with
transformation, too.

In the second stage, having one common RS
composed of the data needed for the solution of a
particular problem, this problem is solved as a
certain implementation of algorithmic dependencies
among data because the algorithm for solving a
problem can be considered as a sequence of
algorithmic dependencies. To implement these
algorithmic dependencies program modules are
created whose codes are provided in the RS.
Algorithmic dependencies and implementing
program modules are physically matched with one
another in any combinations, and their logical
placement is set by the designer according to a
particular problem-solving algorithm.

Proceedings of the 6th WSEAS International Conference on Applied Computer Science, Tenerife, Canary Islands, Spain, December 16-18, 2006 380

Fig. 1. Two stages of applied problems solutions

Adaptive data processing technology can be used

only with data structures expressed as relational
sets. Primary and result data on real world objects,
events, processes, etc. can be expressed as relational
sets. This form of expression has been chosen
because: RS can be easily presented in data tables;
data in data tables can be considered sets, and the set
theory in mathematics is well-developed; the
information presented in table is easy to transform
into a mathematical construct, relational sets (the
latter also have a flat quadrangular shape); the
expression of relational set possesses a large portion
of technical, technological, economic, scientific and
other information; a table is a collection of data very
evident and simple for humans to understanding.

To this day different viewpoints exits to the
structure, integrity and limitations of a relational
data model [1], [2], [3], [4]. Efforts are made to
unify some basic tenets and terminology [5]. As the
things stand, it is necessary to provide some
concepts and their formal expressions as they are
interpreted.

2 Relational Sets and Their
Elements
The basis of the data model described is composed
of relational sets whose structure is as follows:

Set elements Aj (where 1< i < m, 1< j < n) are

called attributes, c ij – attribute values. All these
elements are connected among themselves both by

various parameters and semantically. Relational set
is a data set that expresses correspondence between
attribute names

and their values
c11 c 12 ... c 1j ... c 1n
c21 c 22 ... c 2j ... c 2n
...
c i1 c i2 ... c ij ... c in
...
c m1 c m2 ... c mj ... c mn

The set of attribute names is called an RS

schema:
R = R (Aj) = R (A1, A2, ..., Aj, ... An) (1)

The set of RS attribute values < c ij> is called an
RS domain:
D = < c ij> (2)

A subset of the RS domain < c ij> composed of
attribute values where i fixed and i=a is called a
tuple of attribute values:
ta = t (Aa) = c a1, c a2, ..., caj, ..., c an (3)

A certain subset R of RS schema is called an
internal key, where K ε R:
K ={Ay}, yε j (4)

Then the values { c’

 ij }ε { c ij } of K attributes are
tuple keys or their identifiers.

It must be noted that the latter RS has a fixed n
for a particular schema but can have a different m.
The set parameter n (the number of attributes) is
called a rank. The RS parameter m (the number of
tuples) is called the order or cardinality of a set.

When RS are processed by software, data can be
addressed in different ways:

A1 A2 ... Aj ... An

Proceedings of the 6th WSEAS International Conference on Applied Computer Science, Tenerife, Canary Islands, Spain, December 16-18, 2006 381

- to a separate tuple;
- to a separate domain;
- to a separate value using its coordinate in a

set table i / j.

3 Data Provision
For solving many applied problems it is necessary to
supply some quantity of data in certain order for
processing. Also, in exceptional cases all primary
data, i.e. all attribute values, are needed. Taking that
into account data provision is organized in the
defined adaptive data processing technology by
implementing data identification model and
transformations. The data identification model can
easily provide primary data for various applied
problems at the quantity and order required by its
algorithm. It also allows to control the completeness
of data [6]. Out of the data sets marked by
identifiers attribute values are transformed into a
primary data set for a particular applied problem.
That allows to change data structure and contents.

Data structure identifiers have the schema
analogous to that of a relational data set (RDS)
composed of attributes: A, B, D, where A is a code
attribute for a RDS schema identifier, B – a code
attribute for an identifier of the dependence of an
extensional to a subject, D – a code attribute for an
identifier of the dependence of an extensional to a
time factor. As a rule, three said codes are enough to
identify an RDS; however, after further identifier
analysis it is easy to notice that another amount of
identifiers in essence does not change their formal
expressions.

The values of attribute A are ax, where x are
codes for particular schemas, the values of attribute
B are by , where y are the codes of the subject to
which data belong and D is the code z of the time
factor attribute dz . Therefore, any RS identified by
RDS, where ax by and dz are the values of attributes
A, B and D. Then using an identifier set for any
applied problem we can select the primary data
needed and order them in the sequence required.

Let‘s assume for the problem being solved two
independent RDS, three subjects and the same
moment in time are needed. In this case the
identifier set is:

The provision of the identifiers needed can be
organized in a more universal fashion:
a1,2 b1-3 d1= a1b1d1, a1b2d1, a1b3d1, a2b1d1, a2b2d1,
a2b3d1. (5)

Although the results of both provision methods
are the same, it is easy to note that the latter method
makes it easy to provide large quantities of RDS
identifiers in a compact form, and the identifiers can
be automatically expanded for solving the problem
and calling the RDS needed. In the compact form
for providing identifiers ax by and dz can be
reordered freely:
ax by dz , ax dz by , by ax dz , by dz ax , dz ax by, dz by ax.(6)

It is also possible to provide index identifiers in
parts and not necessarily in sequence, e.g.:
a1-100 = a1-20 , a21-56 , a84-100 , a79-83, a57-78. (7)

This way we can guarantee the provision of any
quantity of RDS required and in any order for
solving a particular problem [7]. It is evident that if
no RDS whose identifiers are in the identifier
sequence of a particular problem is found, it is
determined what RDS are missing for solving the
problem.

While checking the data completeness in every
RDS provided for the solution, it is determined if all
tuples are present in every RDS provided, since one
of the attributes is marked as a key attribute, and its
values become tuple keys or identifiers. So it is
necessary to add to the RDS schema the key
attribute K (4) in a fixed order and the values of that
attribute:
c’

1j , c’
2j , c’

3j ,..., c’ mj . (8)

Therefore, during attribute value transformation
the tuples not needed for solving a particular
problem are not touched, but if no tuple out of
sequence (5) is found in the RDS, it is easy to
determine what data are missing and exactly what
tuples are not provided in a particular RDS.

RDS transformations enable to transfer the
attribute values needed to one common set out of
the already-formed primary data sets for solving a
particular problem.

Transformations can be classified into
unconditional, conditional, conditional continuous,
conditional cyclical and arithmetic according to
semantic algorithms. All transformations except for
arithmetic serve for forming the RS of the primary
data needed for solving a particular problem. Using
an arithmetic transformation we can browse a data
source and change their contents because it is

Proceedings of the 6th WSEAS International Conference on Applied Computer Science, Tenerife, Canary Islands, Spain, December 16-18, 2006 382

possible to perform addition, subtraction and other
arithmetic operations.
In all transformation mentioned except for
unconditional the following symbols are used to
indicate the conditions for comparing data: = , ≠ , > ,
< , ≥ , ≤ , , ¬ . ∨∧,

In conditional transformations address contents
are compared and the transformation is performed
only if the condition is satisfied.

Transformation addresses in RS can be of several
kinds:
- the addresses out of which data is taken
< k / l >;
- the addresses into which data is put < i / j >;
- the addresses whose contents are compared
according to the set condition { k / l }, { i / j }.

These addresses are merged into simple not
ordered sets because the numbers of addresses being
compared can be vary widely. For example, the
contents of one address can be compared with a
large quantity of source addresses, and the
transformation performed if the condition is
satisfied. In this case the order of positioning source
addresses has no significance whatsoever.

Hence, the address structure of the transformation
formula is as follows:

f t ({ k / l }n < k / l >n < i / j >n { i / j }n).(9)

Here the contents of addresses { i / j } and { k /
l} are being compared; Σ is defined as a symbol for
one of the comparison conditions mentioned above.
When the condition is satisfied, data are transferred
from address < k / l > to addresses < i / j >. The
arrow indicates the direction of data transformation.
Index n means the number of set order. At the same
time these indices can be all different or all the
same. If n values are different, then the comparison
of data to satisfy the condition Σ is performed in
some groups and the transformation of data in the
others. If n values are the same, then data are
compared and transformed in the same RS; i.e., the
change (data positioning and/or their quantity) of
one RS structure is performed.

In case of unconditional transformation condition
Σ is not in the formula and neither are the addresses
in the parentheses. Hence, the formula of
unconditional transformation:
f t (< k / l >n < i / j >). (10)

In expression < i / j > index n has no meaning
because the RS receiving data is always a single
one.

In all transformation data can be transferred from
one set to another in three ways:

 performing Cartesian transformation;
 performing transformation in tuples;
 performing transformation in domains.

Therefore, set transformations are expressed by
the formula that can be substituted for operations of
relational algebra and exceed their capabilities in
many instances. Since arithmetic and logical
operations can be performed during transformations,
the RS receiving data can be composed completely
or partially of new attribute values cij not present in
the data source. It means that during transformations
we can change the structure and contents of data sets
if desired.

4 Algorithmic Data Dependencies
Having formed a set of primary data for solving an
applied problem, a problem can be solved as a
certain implementation of algorithmic dependencies
between data because algorithmic dependencies
appear between attributes. In other words, while
solving this particular problem the attributes
selected are associated; i.e., in the space of this
problem they depend on each other. From a
theoretical standpoint, data dependency is
considered an algorithm that describes how data in
the same RS are processed while solving a problem
in question [6]. Data in this system are actually the
values cij of RS attributes. For each attribute value
or for any subset of RS values an ordered set of
algorithmic dependencies is selected, the program
modules of algorithm implementation of its
elements perform data processing:

Σ

<pij>→ <cij> → <c'
ij>, (11)

where <pij> is a set of algorithmic dependencies,
<cij> – a set of the primary data selected and <c'

ij> –
a result of the solution.

Algorithmic dependencies (AD), depending on
the nature of operations performed, can be
subdivided into six classes.
 The computational - infological ADs are

subdivided into computational p+ and infological p=.
Computational ADs are used to describe various
arithmetic operations also getting the results of these
operations. Infological ADs are used to compare the
results of various arithmetic operations while
checking the compatibility and correctness of
various processes.
 The computational AD in domains – ps.

Computation-infological ADs are applied to
attribute values in RS tuples, so computational ADs
are defined that are applied only to RS domains. If
arithmetic operations have to be performed in
domains, an additional domain of special tuple keys
and the sums of various attribute values is

Proceedings of the 6th WSEAS International Conference on Applied Computer Science, Tenerife, Canary Islands, Spain, December 16-18, 2006 383

introduced. In this case, the distribution of attribute
values and the number of tuples can vary.
 Taking into account that a particular attribute

value can change as it is used in solving different
problems, internal algorithm dependencies pa of
attribute values. This class is composed of markedly
different algorithmic dependencies that only rather
reservedly can be considered permanent.
 The AD of program steps – pp. Many

algorithmic dependencies use data from various RS
addresses so it is necessary to start a program step at
the required address and continue in the required
direction. Otherwise, the process of data processing
becomes incorrect or impossible. All program steps
in algorithmic RS (ARS) are divided into successive
and non-successive. An ARS is a set composed of
the identifiers for algorithmic dependencies of
attribute values that unambiguously determines the
use of attribute values in a certain operation of data
processing.
 The external AD – pi. The external dependencies

of algorithmic RS regulate the interrelation of the
ARS of the data being processed with the adjacent
ARS. These links cannot be separated from the RS
of the data being processed.

Algorithmic dependencies can change. For one
planned processing they can be of one kind between
the same attributes, and for another they might need
be selected similarly. If for a data processing
problem being solved new algorithmic dependencies
and their implementing modules are needed because
their existing totality cannot perform certain
operations for solving a problem, then a new
algorithmic dependency and its implementing
module are created that are included into existing
sets of algorithmic dependencies and program
modules. A new algorithmic dependency together
with other encompass the implementation of solving
a new problem. So it can be said that the set of all
algorithmic dependency classes and the number of
algorithmic dependencies in a class are open.

To develop the concept of this paper algorithmic
dependencies could be illustrated by examples. That
would enable one to comprehend the validity and
rationality of the process more convincingly.

5 Conclusions
The ability to aggregate data into primary data for
any relational problem enables to interpret a
complex provision of data uniformly, and that
simplifies the understanding of primary data
aggregation, since aggregation principles for each
problem vary only through technological formula
parameters.

A program for an applied problem is formed as a
subset of all implementation modules of algorithmic
dependencies, so no new programs appear. That
enables to solve various problems with the same set
of program modules for algorithmic dependencies
without creating any new programs.

The adaptive data processing technology is
improving or learning in that aggregation and
generation codes and their ordered set accumulate
while more problems are being solved and that
results in more complex procedures.

The limitation of this technology is that both
primary data and result data have to be expressed as
an RS.

References:
[1] J.D.Ullman. Principles of Database and

Knowledge – Base Systems. Computer
Science Press, Rockville, 1988.

[2] B.Thalheim, Dependencies in relational
database, Teubner, 1991.

[3] J.H.Bekke. Semantic Data Modeling. Prentice
Hall, 1992.

[4] A.Haeuer, G.Saake. Datenbanken, Konzepte
und Sprachen. Internation Thomson
Publishing Group, German, 1995.

[5] A.Binemann-Zdanowicz, Current Issues in
Databases and Information Systems, Proc.
East-European Conference on Advances in
Databases and Information Systems, Prague,
2000, pp. 307-314.

[6] B.Pliuskuvienė, P.Adomėnas, The
Aggregation of Relational Sets and the
Algorithmic Dependencies of Data,
International Journal of WSEAS Transactions
on Systems, Issue 4, Volume 5, April 2006, p.
793-798.

[7] P.G.Adomėnas, A.Čiučelis, Data aggregation
sets in adaptive data model, Informatica, Vol.
13, No 4, 2002, p. 381-392.

[8] P.G.Adomėnas, Data Functional Feature Sets
and their Adaptability, Proc. V East–
European Conference on Advances in
Databases and Information Systems, Vilnius,
2001, pp. 131-140.

[9] B.Pakalniškytė, P.Adomėnas, The
Identification Model of Data Structuries,
Proc. IV Conference on Information
Technology, Alytus, 2005, pp. 157-162.

[10] K.Дейт. Введение в системы баз данных,
Москва, 1999.

[11] Г.Ханнсен, Д. Ханнсен. Базы данных:
раэработка управление, Москва, 1999.

Proceedings of the 6th WSEAS International Conference on Applied Computer Science, Tenerife, Canary Islands, Spain, December 16-18, 2006 384

	1 Introduction
	2 Relational Sets and Their
	Elements
	3 Data Provision
	4 Algorithmic Data Dependencies
	5 Conclusions

