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Abstract: In this paper a parallel algorithm for Lagrange interpolation is applied on a n-pancake graph. The n-
pancake graph is a Cayley graph with N=n! vertices and with attractive properties regarding degree, diameter, 
symmetry, embeddings and self similarity. Using these properties the algorithm carries the calculation in O(N) 
steps of communication and arithmetic operations instead of O(N2) steps for a single processor system. 
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1   Introduction 
An interconnection network consists of a set of 
processors, each with a local memory and a set of 
bidirectional links that serve for the exchange of 
data between processors. A convenient 
representation of an interconnection network is by 
an undirected (or sometimes directed) graph G=(V, 
E) where each processor P is a vertex in V and two 
vertices are connected by an edge in E if and only if 
there is a direct (bidirectional for undirected and 
unidirectional for directed graphs) communication 
link between processors. Such processors are called 
neighbors. The interconnection graph of a network 
is referred to as its topology. We will use node, 
vertex and processor with the same meaning and the 
terms edge and link are used as synonyms. Usually, 
all processors in a network are identical and each is 
assumed to have input and output abilities. 
Processors may execute the same or different 
programs. The time complexity of any algorithm has 
two components: computation time (covers local 
computation) and communication time (the time 
needed for the exchange of data between 
processors). 
     We can say that a network topology is “good” if 
it has some properties as: small degree for the nodes, 
small diameter (that means small delay in 
communication), maximum connectivity (good fault 
tolerance), symmetry (minimum congestion, 
uniform loading), embedding properties (good 
simulation of other networks), modular structure 
(offering the possibility of recursive decomposition). 
     The pancake topology used in this paper has a lot 
of such good properties that make this topology very 
attractive. 
 

 
2   Problem Formulation 
Interpolation techniques are of great importance in 
numerical analysis since they are used in many 
science and engineering domains.  
     The Lagrange interpolation for a given set of 
points (x1 ,y1), (x2 , y2 ),..., (xN , yN ) and a value x is 
defined as  
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where NiLi ,1, =   are the Lagrange polynomials 
given by the formula 
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     When the number of points N  is very large, a 
long computation time and a large storage capacity 
may be required to carry out the calculation. To 
overcome this, a parallel implementation would be 
appropriate. This kind of parallel algorithms were 
introduced for Lagrange interpolation for different 
topologies: Goertzel [2] has introduced a parallel 
algorithm for a tree topology with N processors 
augmented with ring connections which requires N 
/2 + O(1og N) steps each composed of two 
substractions and four multiplications; a parallel 
algorithm has been discussed in [7] which uses a k-
ary n-cube consisting of O(kn+kn) steps, each with 
4 multiplications and substractions for N = kn node 
interpolation. In [6] is described a parallel 
algorithm for computing a N = n!-node Lagrange 
interpolation on a n-star graph. The algorithm in [6] 
consists of three phases and requires n!/2 steps, 
each consisting of 4 multiplications, 4 substractions 
and one communication operation. In [8], this 
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parallel algorithm is applied for computing an 
N=n2n point Lagrange interpolation on an n-
dimensional cube-connected cycles (CCCn) and in 
[10] the algorithm is applied for computing a 
Lagrange interpolation on an extended Fibonacci 
cube. 
     The method can be applied for any Hamiltonian 
network, the performances depending on the 
communication abilities of the host network. 
     In this paper, the algorithm described in [6] is 
applied to a  pancake topology. The algorithm relies 
on all-to-all broadcast communication at some stages 
during computation. This is achieved by using a 
gossiping algorithm on a ring embedded in the host 
network having its all  nodes. 
 
 
2.1 The Pancake Graph 
The pancake was proposed by Akers and 
Krishnamurthy [1] together with the star as 
alternatives to the hypercube for interconnecting 
processors in parallel computers. These networks 
have good properties: edge and vertex symmetry, 
small degree and diameter, extensibility, high 
connectivity (robustness), easy routings and 
broadcasting. Properties of the pancake graph were 
studied in [1], [3], [5], [9]. The model used to define 
and analyze the pancake (used for the star to) is a 
group-theoretic model: 
     Definition. Let (G, •) be a finite multiplicative 
group, I the identity in G and S a set of generators of 
G with the properties: 
 a)  ;1 SgSg ∈∈∀ −

 b)  .SI ∉
     A Cayley graph (V, E) is defined as a graph 
whose vertex set is V= G and the edge set is 

}),{( 1 SvuVVvuE ∈×∈= − . 
     The Cayley graphs are finite, connected, 
undirected, devoid of multiple edges, loop free and 
symmetric. 
     Definition. The pancake network PC(n) of 
dimension n is the Cayley graph  Pn =( Sn,E) whose 
set of generators is 

( ) },2)...1(321)...1({ niniiigSgS ini =+−=∈=

 and Sn is the set of the permutations of the elements 
{1, 2,…, n}. 
     In other words, the n! vertices of a PC(n) are 
labeled with the permutations on n symbols and any 
two vertices of PC(n),  and 

, are connected iff there exists an 

integer i, 2≤ i≤ n  such that  for 

n21 x...xxu =

nyyyv ...21=

1+−= jij xy nj ,1=  

and jj xy =  for j> i. 
     There are (n-1) generators, one for each value of  
i, 2≤ i≤ n and |S|= n-1. The Cayley network PC(n) 
has n! vertices, each with degree |S|= n-1 and PC(n) 
is (n-1)- regular. It is clear that de node degree of 
PC(n) is of order O(logN), N=n!, sublogarithmic in 
the number of processors. The diameter of the 

pancake PC(n) is less than 
3

5n5 + . 

     The pancake PC(n) can be decomposed into n 
subpancakes of dimension n-1. Each of the (n-1)! 
vertices of each (n-1)- subpancake has a block 
representation of the form Ai where 1−∈ nSA  is a 
permutation block on the (n-1) symbols {1, 2, … ,i-1, 
i+1,…, n} for a given },...,1{ ni ∈  which depends on 
the considered subpancake. 
     Example. For n=4, the pancake PC(4)  is the 
graph presented in Fig 1. In this case the set of 
generators is S={(2134),(3214),(4321)} and the 
pancake P4  consist of 4 copies of PC(3) obtained 
by fixing the last position in the permutations. 
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2.2   Processor ordering 
One of the important properties of the pancake 
graph is that it contains a hamiltonian cycle [4] and 
this cycle can be constructed as it follows. 
     Definition. For n,2k =  the pancake sequence 
Gk of order k is the sequence of generators 
recursively defined by 
        G2 = g2 ; 
        For k>2, 1kk1kk1kk G,...,g,G,g,GG −−−=  
where Gk-1 occurs k times in the sequence. 
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     Proposition. Given a permutation nS∈π , for 

n,3k = , )G,( kπ  defines a hamiltonian cycle 
over the k- pancake containing .π  
     Example. For the pancake P4  the vertices 
ordered by the pancake sequence is 
   1234→ 2134→ 3124→ 1324→ 2314→ 3214→ 
4123→ 1423→ 2413→ 4213→ 1243→ 2143→ 
3412→ 4312→ 1342→ 3142→ 4132→ 1432→ 
2341→ 3241→4231→ 2431→ 3421→ 4321→ 
1234. 
and the hamiltonian cycle is shown in figure 1 using 
bold lines. 
 
 
3   The Parallel Interpolation 
Algorithm 
The parallel algorithm is based on the algorithm 
described in [6]  for computing a N= n! node 
Lagrange interpolation on a n-star graph. We shall 
apply this algorithm for a network using a pancake 
topology with bidirectional links between nodes. 
Let N=n! be the number of the nodes in PC(n). 
     The computation is carried out in three phases: 
initialisation, main and final phase. In the 
initialisation phase, the set of points to be 
interpolated are allocated to the nodes, one point 
for each node. Then, in the main phase, the 
Lagrange polynomials NixLi ,1),( = are 
computed and in the final phase the terms are added 
together to obtain the final result y=f(x). 
     We denote by Pw the processor in the node of 
the pancake PC(n) represented by the permutation 

. Each processor PnSw∈ w has six registers 
denoted R1 , R2 , R3 , R4 , R5 , R6  and we indicate by 
Pw (Ri ) the content of the register Ri  in the 
processor Pw , nSw,6,1i ∈=  and by 

ni
)t(

w Sw,6,1i),R(P ∈=  the content of the register 
Ri  in the processor Pw after step t. In each node, 
registers R1 , R2 , R3 , R4  will hold the terms required 
for computing the polynomials and registers R5 , R6  
will be used to implement an all-to-all broadcast 
algorithm in a ring embedded in the host network 
PC(n) durring the main phase. 
     When constructing a hamiltonian cycle in PC(n) 
as shown in subsection 2.2, two arrays, Next[w] 
and Previous[w], which indicate the nodes before 
respectively after node w, nSw∈  in the embedded 
cycle can also be constructed. For any node Pw in 
the embedded hamiltonian ring, the next and 
previous nodes are PNext[w] respectively PPrevious[w]. 
Those arrays should be set to their proper values 

before starting the initialisation phase. 
 
 
3.1 Initialisation phase 
In this phase the values x, Next[w], Previous[w], (xi 
, yi ) are assignated to the processor Pw  to be stored 
in the local memory. The assignation of the points 
(xi , yi ) to the processor is made in such a way that 
each point is assigned to a processor. For example, 
the point (xi , yi ) can be assigned to the processor of 
order i in the ordering presented in subsection 2.2. 
The registers R1 , R2 , R3 , R4, R5 , R6  of each 
processor are set to their initial values, for all 

nSw∈  in parallel: 

;)(;)(;)(

;)(;1)(;1)(

6
)0(

5
)0(

1
)0(

3
)0(

2
)0(

1
)0(

iwiwiw

iwww

xxRPxxRPxRP

xRPRPRP

−=−==

===

 
 
3.2 Main phase 
In this phase, each node Pw uses the values Next[w] 
and Previous[w] to communicate with the next and 
previous node in the embedded hamiltonian cycle. 
To compute the terms Li(x) all the processors 
perform the following sequence simultaneously: 
For t= 0, 1, ..., N/2-2 do 

));((

))(()()(

);()()()(

);()(

);()(

);()(

);()(

4
)1(

3
)1(

2
)1(

2
)1(

6
)1(

5
)1(

1
)1(

1
)1(

6
)(

][Pr6
)1(

5
)(

][5
)1(

4
)(

][Pr4
)1(

3
)(

][3
)1(

RPx

RPxRPRP

RPRPRPRP

RPRP

RPRP

RPRP

RPRP

t
wi

t
wi

t
w

t
w

t
w

t
w

t
w

t
w

t
wevious

t
w

t
wNext

t
w

t
wevious

t
w

t
wNext

t
w

+

+++

++++

+

+

+

+

−×

×−×=

××=

⇐

⇐

⇐

⇐

 

end for; 
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     The last iteration is used to avoid multiplying 
the terms )( 2/Nxx −  and  twice. )( 2/Ni xx −
     Each step consists of two data communications 
(the first two respectively the last two 
communications can be realised in parallel 
because of bidirectional links between nodes), 2 
substractions and 4 multiplications. 
     To conclude the main phase, all the processors 
execute the instruction 
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     Therefore, at the end of this phase 
 .)()( 1 iiw yxLRP ×=

     In the main phase, each processor performs N 
data communications, 2N-1 multiplications, N-1 
substractions and  one division. 
 
 
3.3 The Final Phase 
In this phase, the contents of register R1 in all 
nodes are added together to obtain the final result. 
We can use for this a gossiping method for a ring 
similar to the one used in the main phase, but we 
can also use a method similar to the addition of 
the content of the processors in a star network 
topology presented in [6]. 
     This phase consists in (n-1) subphases, each 
with O(log n) steps, each step including three 
communication operations and one addition. In 

total, this phase includes  additions and 

 communication operations. 
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4   Conclusion 
Due to its properties, the pancake graph is an 
attractive topology for interconnection networks. 
The pancake graph is a Cayley graph, so it has a lot 
of desirable properties as vertices and edge 
symmetry, high connectivity and it is a Hamiltonian 
graph. It has also lower degree and diameter than the 
classic hypercube topology. 
     In this paper, the parallel algorithm that computes 
a N=n! point Lagrange interpolation on a n-star 
graph is applied for a n- pancake network. This 
algorithm, that works in three phases, requires in 

total  data communication 

steps, 2N-1 multiplication operations, 

 substractions or additions and 

one division. The parallel algorithm carries out in a 
total time of O(N), while the running time for such 
an interpolation on a single-processor system is of 
O(N

⎡∑⋅++
=

n

3i
ilog312/N

⎡∑+−
=

n

2i
ilog2N2

2 ). 
     The main phase of the algorithm works for all the 
topologies that contain a Hamiltonian cycle. The 
method used for the final phase depends on the 

properties of each topology. The property of being 
Hamiltonian can be used in this phase, but the 
number of communication steps increases. The 
property of self-similarity (or recursive 
decomposition) is much useful in this phase. 
     This algorithm can be used to compute similar 
functions, like Hermite interpolation, trigonometric 
interpolation and others. 
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