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Abstract: - Oil and gas pipeline condition monitoring is a potentially very challenging process due to varying 
temperature conditions, harshness of the flowing commodity and unpredictable terrain. Pipeline breakdown 
can potentially cost millions of dollars worth of loss and not to mention the serious environmental damage 
caused by the leaking commodity. The proposed techniques, although implemented on a lab scale 
experimental rig, ultimately aims at providing a continuous monitoring system using an array of sensors 
strategically positioned on the surface of the pipeline. Sensors used are the piezoelectric ultrasonic sensors. 
The raw sensor signal will be first processed using the Discrete Wavelet Transform (DWT) and then 
classified using the powerful learning machine called Support Vector Machines (SVM). Preliminary tests 
show that the sensors can detect the presence of artificially induced wall thinning in a steel pipe by classifying 
the attenuation and frequency changes of the propagating signals. The SVM algorithm was able to classify the 
signals as abnormal in the presence of wall thinning. 
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1 Introduction 
Currently, an established form of pipeline inspection 
uses smart pigs in a process called “pigging” [1, 2]. 
These smart pigs travel within the pipeline recording 
critical information like corrosion levels, cracks and 
structural defects using its numerous sensors. Pigs 
can give pinpoint information on the location of 
defects using techniques like magnetic flux leakage 
and ultrasonic detection [3]. However, using smart 
pigs in pipeline inspection has a few disadvantages. 
The cost of implementing a pigging system  
 
can be expensive, around RM50,000 for every 
kilometer of pipeline [4]. More importantly, pigs 
measure the pipeline condition only at the instance it 
is deployed and does not provide continuous 
measurements over time. The proposed technique 
aims at providing a continuous monitoring system 
using an array of different sensors strategically 
positioned on the external surface of the pipeline. 
Sensors that are used will mainly be piezoelectric  

 
 

 
 
acoustic sensors. The raw sensor signal will be first 
processed using the Discrete Wavelet Transform 
(DWT) and then classified using the powerful 
learning algorithm called the Support Vector 
Machines (SVM). 

 
The DWT is used here as a feature extraction tool 

in order to single out any unique features in the 
sensor data. A useful property of DWT is that it 
compresses signals and by doing so, it has the 
tendency to eliminate high frequency noise. The 
DWT is used here to eliminate noise in sensor signals 
and also to compress large amounts of real-time 
sensor data for faster processing. The compressed 
data or the DWT coefficients are then used as inputs 
to the SVM classifier, which will fuse the different 
sensor data together and then perform classification. 
SVM has been widely used lately for numerous 
applications due to is excellent generalization ability 
with small training samples. The SVM will be 
trained with normal and simulated defect conditions 
using an experimental pipeline rig in the laboratory.  
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The strength of the SVM classifier will then be 
judged on its accuracy in determining the presence of 
defects in the pipeline. 

 
 

2 Background 
2.1 Support Vector Machines 
Support vector machines, founded by V. Vapnik, is 
increasingly being used for classification problems 
due to its promising empirical performance and 
excellent generalization ability for small sample sizes 
with high dimensions. The SVM formulation uses the 
Structural Risk Minimization (SRM) principle, which 
has been shown to be superior, to traditional 
Empirical Risk Minimization (ERM) principle, used 
by conventional neural networks. SRM minimizes an 
upper bound on the expected risk, while ERM 
minimizes the error on the training data. It is this 
difference which equips SVM with a greater ability 
to generalize [5].  
 
Given a set of independent and identically 
distributed (iid) training samples, S={(x1, y1), 
(x2, y2),…..(xn,yn)}, where xi∈RN and yi∈{-1, 
1} denotes the input and the output of the 
classification, SVM functions by creating a 
hyperplane that separates the dataset into two classes. 
According to the SRM principle, there will just be 
one optimal hyperplane, which has the maximum 
distance (called maximum margin) to the closest data 
points of each class as shown in Fig. 1. These points, 
closest to the optimal hyperplane, are called Support 
Vectors (SV). The hyperplane is defined by the 
equation w.x + b = 0 (1),   and therefore the maximal 
margin can be found by minimizing ½ ||w||2 (2) [5]. 
 

 
 
Fig. 1: Optimal Hyperplane and maximum margin 
for a two class data [6]. 
 
The Optimal Separating Hyperplane can thus be 
found by minimizing (2) under the constraint (3) that 
the training data is correctly separated [7]. 

 

yi.(xi.w + b) ≥ 1 , ∀ i  (3) 
 

The concept of the Optimal Separating Hyperplane 
can be generalized for the non-separable case by 
introducing a cost for violating the separation 
constraints (3). This can be done by introducing 
positive slack variables ξi in constraints (3), which 
then becomes, 

 
yi.(xi.w + b) ≥ 1 - ξi , ∀ i  (4) 
 

If an error occurs, the corresponding ξi must exceed 
unity, so Σi ξi is an upper bound for the number of 
classification errors. Hence a logical way to assign an 
extra cost for errors is to change the objective 
function (2) to be minimized into: 

 
min { ½ ||w||² + C. (Σi ξi ) } (5) 
 

where C is a chosen parameter. A larger C 
corresponds to assigning a higher penalty to 
classification errors. Minimizing (5) under constraint 
(4) gives the Generalized Optimal Separating 
Hyperplane. This is a Quadratic Programming (QP) 
problem which can be solved here using the method 
of Lagrange multipliers [8]. 

 
After performing the required calculations [5, 7], the 
QP problem can be solved by finding the LaGrange 
multipliers, αi, that maximizes the objective function 
in (6), 
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The new objective function is in terms of the 
Lagrange multipliers, αi only. It is known as the dual 
problem: if we know w, we know all αi. if we know 
all αi, we know w. Many of the αi are zero and so w 
is a linear combination of a small number of data 
points. xi with non-zero αi are called the support 
vectors [9]. The decision boundary is determined 
only by the SV. Let tj (j=1, ..., s) be the indices of the 
s support vectors. We can write,  
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So far we used a linear separating decision surface. 
In the case where decision function is not a linear 
function of the data, the data will be mapped from 
the input space (i.e. space in which the data lives) 
into a high dimensional space (feature space) through 
a non-linear transformation function Ф ( ). In this 
(high dimensional) feature space, the (Generalized) 
Optimal Separating Hyperplane is constructed. This 
is illustrated on Fig. 2 [10]. 
               
       

 
Fig. 2: Mapping onto higher dimensional feature 
space 

 
By introducing the kernel function, 
 ( ) ( ) ( ) ,,, jiji xxxxK ΦΦ=  (9) it is not necessary to 
explicitly know Ф ( ). So that the optimization 
problem (6) can be translated directly to the more 
general kernel version [10], 
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After the αi variables are calculated, the equation of 
the hyperplane, d(x) is determined by, 
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The equation for the indicator function, used to 
classify test data (from sensors) is given below where 
the new data z is classified as class 1 if i>0, and as 
class 2 if i <0 [11]. 
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Note that the summation is not actually performed 
over all training data but rather over the support 
vectors, because only for them do the Lagrange 

multipliers differ from zero. As such, using the 
support vector machine we will have good 
generalization and this will enable an efficient and 
accurate classification of the sensor signals. It is this 
excellent generalization that we look for when 
analyzing sensor signals due to the small samples of 
actual defect data obtainable from field studies. In 
this work, we simulate the abnormal condition and 
therefore introduce an artificial condition not found 
in real life applications.  
 
 

2.2 Discrete Wavelet Transform 

A discrete wavelet transform (DWT) is basically a 
wavelet transform for which the wavelets are 
sampled in discrete time. The DWT of a signal x is 
calculated by passing it through a series of filters. 
First the samples are passed through a low pass filter 
with impulse response g, resulting in a convolution 
of the two (13). The signal is also decomposed 
simultaneously using a high-pass filter h (14). 

                   
(13)                                     
 

                   
(14) 

 

The output of the equations 13 and 14 gives the 
detail coefficients (from the high-pass filter) and 
approximation coefficients (from the low-pass). It is 
important that the two filters are related to each other 
for efficient computation and they are known as a 
quadrature mirror filter [12]. 

However, since half the frequencies of the signal 
have now been removed, half the samples can be 
discarded according to Nyquist’s rule. The filter 
outputs are then down sampled by 2 as illustrated in 
Fig. 3. This decomposition has halved the time 
resolution since only half of each filter output 
characterizes the signal. However, each output has 
half the frequency band of the input so the frequency 
resolution has been doubled. The coefficients are 
used as inputs to the SVM [13]. 
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 Fig. 3: DWT filter decomposition 
 

2.3 Corrosion Measurement 
A pipe failure and leakage of crude oil in Winchester, 
Kentucky on January 2000, was one of the biggest 
accidents that occurred and it incurred the owner 
Marathon Ashland Pipe Line LLC a clean up cost of 
$7.1 million. The crack was due to a small dent in the 
pipe that might have been caused by stone particles 
flowing along the path, in addition to the fluctuating 
pressure of the pipe wall [14]. An example of such a 
failure is shown in Fig. 4. 
 

 
 

 Fig. 4: The rapture pipe due to fatigue cracking [14]. 
 
Wall thinning, a common occurrence in the oil piping 
industry, is characterized by metal loss caused by 
surface erosion due to high temperature, high 
pressure and high flowing velocity of the flowing 
commodity [15]. The pipes are also subjected to 
combined loading by internal pressure, bending 
moment, and longitudinal forces. 
 
The internal wall thinning of a pipe cannot be 
observed from the outside of the pipe, hence a 
method of condition monitoring using ultrasonic 
waves as a non-destructive test of the metal loss can 
help to determine when the pipe may be at risk for 
leaks or failure. Ultrasonic sensor enables detection 
without any contact with the object regardless of its 
material, nature, color and degree of transparency. 
They are widely use in industrial application for 
detecting the position of the machine parts, the flow 
of object on the conveyer belt and the level of 
measure liquid [13].  
The detection technology used here lies within the 
concepts of nonlinear acoustics. This basically states 
that when sound waves travels through a material, 

frequency and attenuation changes occur to the sound 
waves. The changes in the frequency and amplitude 
must be detected and analyzed to give precise 
information on the state of the material. Ultrasonic 
transmitters can be used to send ultrasonic waves and 
ultrasonic receivers can be used to detect the 
propagating waves. These sensors are very accurate 
as they can produce and detects high frequency 
sound wave based on Piezoelectricity [16]. 
Piezoelectric transducers have solid-state pressure 
sensitive elements that will expand and contract in 
step with input signals. 
 
Demma [17] examined the effect of defect size with 
frequency on the reflection from notches and was 
able to show the relation between the value of 
reflection coefficient and the defect sizing. The 
cylindrical ultrasonic waves propagate along the pipe 
and are partially reflected when met with defects thus 
providing a fast screening technique to determine the 
presence of defects. Similar results and observation 
are recorded by Lin [18] by using guided waves and 
electromagnetic acoustic transducers (EMATs) to 
measure the wall thickness precisely. Wave 
propagation is performed for a specimen with 
thickness of 10mm, where different artificial defects 
are introduced to model local wall thinning. As 
shown in Fig.5, when transmitted waves impinge the 
wall thinning, they are reflected and the intensity of 
the reflected waves varies. 
 
 

 
Fig. 5: The energy carried by the transmitted waves 
passes through the wall thinning and some reflected 
back as echoes. [18] 
 
It is therefore a well known phenomenon, both 
theoretically and experimentally that defects in pipes 
can be detected by ultrasonic transducers [15]. Our 
aim here is to monitor the sensor signals and use 
SVM to predict the presence of defects.       
3 Methodology 
This section details the experimental setup that will 
be used to simulate pipeline conditions and also 
defect conditions. The aim is to create a scaled 
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downed version of an actual section of pipeline in the 
laboratory using commonly available materials. Fig. 
6 shows the experimental setup. A motor pump is 
used to pump hydraulic oil in the reservoir through 
the pipeline section. A flow rate of around 5 m3/h 
was achieved through a 1 m section of pipe (outer 
diameter of 48.30 mm and inner diameter of 42 mm). 
An electric valve is used to control the flow of oil 
through the pipeline section. Below are the properties 
of galvanize steel pipe that was used: Young’s 
Modulus, E (GPa); 190 – 210/Density, ρ (kg / m3); 
7850/Yield Strength (MPa); 340 – 1000. 
 

 
Fig. 6: Pipeline Experimental Setup. 

 
A lathe is used to clear an area of 1mm wide and 
1mm deep all around the circumference at the inner 
surface of the pipe as show in Fig. 7. This is to 
simulate a crack or corrosion at the inner surface of 
the pipe. An ultrasonic transmitter is used to transmit 
a signal across the flowing pipe and through the 
defect area to see changes in the ultrasound signal. 
Ultrasonic sensors used are Murata analogue 
ultrasonic transmitter which is an open structure type 
of sensor that has a range of up to 6 m and they will 
be attached to the outer surface of the pipe using 
epoxy. MA40B8S have the nominal frequency of 40 
kHz with the maximum input voltage of 40V peak to 
peak. The stationary sensors can avoid any 
disturbance from the environment and will be able to 
transmit ultrasound along the length of the pipe by 
ringing the surface of galvanized steel pipe. 
 
Ultrasonic receivers are placed at either side of the 
defect area. These receivers will be able to pick-up 
the waveform that is vibrating in the pipe and can be 
used to monitor the condition of the pipe. The 
changes in the ultrasound signal before and after the 
defect area will be used to determine the presence of 
any defects. 
 
4 Results 
The results of from the experimental rig will 
ultimately be used to ascertain whether SVM can 

detect the presence of cracks and whether DWT 
helps in the decision making. DWT is performed on 
raw time domain samples and the coefficients of the 
resulting DWT are inputted into the SVM for 
classification. Various wavelets can be tested 
including the Haar and Daubechies wavelets. A 
popular SVM algorithm called LIBSVM [19] is used 
to perform the SVM calculations. 
 
LIBSVM includes a variety of kernel functions to 
choose from such as linear, polynomial, radial basis 
function (RBF), and sigmoid. To train an SVM, the 
user must select the proper C value as well as any 
required kernel parameters. The various kernel 
functions are defined as: 
 

 
 
Time domain samples before and after the defect area 
are first broken down into frames where the number 
of samples within the frame is a variable. Each frame 
will represent one instance or sample needed for the 
SVM and the frame size is the number of attributes 
or dimensions.  Table 1 shows the results of the SVM 
accuracy in percentage as frame sizes of 50 and 25 
are of the same datasets are inputted into the 
LIBSVM algorithm.  10,000 data points before the 
defect and 10,000 data points after the defect are 
used to obtain the results. 
 
Table 1: Classification accuracy (%) for pipeline data 
using LIBSVM for various kernel functions.  
 

Frame 
size Poly RBF Sigmoid 

50 67.74 70.97 67.74 
25 73.68 75.44 73.68 

 
As can be seen from Table 1 the smaller frame size 
provides better classification accuracy than the 
bigger frame size. The radial basis function (RBF) 
kernel shows the highest classification rates among 
the kernel functions tested. Table 2 shows the results 
of performing DWT on the data samples before 
inputting into LIBSVM. The daubechies and haar 
wavelets were used in separate instances and the 
results shown.  
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Table 2: Classification accuracy (%) using DWT 
with LIBSVM for two different wavelets. 

 
 
As can be seen from the data in Table 2, the use of 
DWT increases the classification accuracy 
significantly. The highest accuracy is achieved is 
89.65% using the Haar wavelet with a frame size of 
25. 
 
5 Conclusion 
Monitoring hundreds of kilometers of pipelines is a 
difficult task due to the high number of unpredictable 
variables involved. Rapidly changing weather 
conditions, pressure changes and erosion due to gas 
or oil flow and ground movement are a few variables 
that can have direct impact on the pipelines. There 
variables can cause defects like corrosion, dents and 
cracks which will lead to loss of the valuable 
commodity and not to mention the serious affects on 
the surrounding environment. 
 
The use of an array of sensors with help of support 
vector machine processing intends to solve these 
problems in two ways. Firstly the array of sensors 
provides a continuous monitoring platform along the 
entire distance of the pipeline. Secondly the use of 
artificial intelligence tools like support vector 
machines, makes it possible to monitor and 
ultimately predict the occurrence of defects. Support 
vector machines are ideal for applications like these 
where there are high number of dimensions of data 
(sensors) and small numbers of samples for defect 
scenarios. SVM has been used widely in many such 
applications and has provided excellent 
generalization performance.  
An experimental miniature pipeline rig provided the 
setting to see the initial performance of SVM on 
pipeline data. Acoustic sensors were used and the 
corrosion defect was simulated using human 
manipulation. The results showed good performance 
by SVM using an RBF kernel function. The use of 

DWT further improved the performance of the SVM 
accuracy to 89.65%. This is due to the DWT 
compressing the data and filtering away unwanted 
noise from the high frequency acoustic signals. 
 
This report has come to the conclusion that a 
combination of DWT and SVM algorithm can 
predict, to a high degree of accuracy, the presence of 
defects in pipes. This report will be used as a 
benchmark for testing on a higher scale pipeline rig, 
with more defect scenarios (types of defects) and 
higher number of sensors (along with different types 
of sensors such as Fiber Bragg Grating sensors). The 
ultimate aim of the research will be to predict defects 
before they occurs thereby conserving the precious 
commodity and environment. Additional experiments 
relating to sensor sensitivity in relation to distance 
from the defect will also be conducted. 
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