On the Isentropic Forchheimer’s Sound Waves Propagation in a Cylindrical Tube Filled with a Porous Media

H. M. Dwairi
Civil Engineering Department, Faculty of Engineering, The Hashmaite University, Zarqa, Jordan

Abstract: A theory of sound waves propagation in porous media that includes the nonlinear effects of the Forchheimer type with the nonzero radial velocity effects is laid out by using variational solutions. It is shown that the main parameters governing the propagation of sound waves are the shear wave number $\mu \omega \rho / \rho_s$, the reduced frequency number $awRk$, the porosity ε, the Darcy number $Da = R/K$ and the Forchheimer number $Fs = C_r^2$. The manner in which the flow influences the attenuation and the phase velocities of the forward and backward propagating isentropic acoustic waves is deduced. It is found that the increasing of Darcy number and Forchheimer number increased wave’s attenuations and phase velocities for both forward and backward sound waves, while the increasing of porosity decreased attenuation and phase velocities. The effect of increasing reduced frequency is found to increase the attenuation of the forward waves and decrease attenuation and phase velocities of the forward and backward sound waves. The effect of the steady flow is found to decrease the attenuation and phase velocities for forward sound waves and enhance them for the backward sound waves, respectively.

Key-Words: sound waves, porous medium, fluid flow

1 Introduction
The acoustics problem finds its application in many different situations. For example if the acoustic improvements are restricted to interior spaces usually mineral wools or open pore foams can be used to solve the problem, for outdoor problems for instant acoustic noise barriers against traffic noise, the absorption provided by granular materials such as porous concrete or similar materials, as they behave better with bad weather and other atmospheric phenomena.

In porous materials the absorption process of the acoustic wave takes place through viscosity and thermal losses of the acoustic energy inside the micro tubes forming the material. The problem of a propagation of sound waves in fluids contained in a plain medium is a classical one, to which famous names are connected like Helmholtz [1], Kirchhoff [2] and Rayleigh [3]. A variational treatment of the problem of sound transmission in narrow tubes is described by Cummings [4] as an alternative to the more usual analytical procedure which is limited to mathematically tractable geometries. A first approximation to the effects of mean flow on sound propagation through cylindrical capillary tubes is achieved by Peat [5]. A sound transmission in narrow pipes with superimposed uniform mean flow and acoustic modeling of automobile catalytic converters is done by Dokumaci [6]. A numerical study on the propagation of sound through capillary tubes with mean flow is achieved also by Jeong and Ih [7] and finally an approximate dispersion equation for sound waves in a narrow pipe with ambient gradients is done by Dokumaci [8].

The problem of sound waves propagation in a stationary or flowing fluid in a porous medium is not addressed yet. An attempt is made in this article to develop a simplified nonlinear theory that predicts the propagation characteristics of a stationary or flowing fluid in saturated porous media. This theory is an extension of the classical plain medium theory, using a modification to Darcy’s law due the Forchheimer effects and assuming nonzero radial velocity effects. Analytical expressions for the propagation constant are obtained from variational solutions. Comparison with previous works in the limit of plain medium shows an excellent agreement.

2 Problem Formulation
Consider a rigid tube filled with a saturated porous material, the fluid is assumed to be a stationary or movable inside the tube. The x-coordinate is measured along the tube and the r-coordinate is measured normal to the axial direction. Under the boundary layer approximations the basic equations which govern acoustic wave propagation in a rigid tube filled with a porous media are the continuity and momentum equations:

$$\varepsilon \frac{\partial \rho^+}{\partial t} + u \frac{\partial \rho^+}{\partial x} + v \frac{\partial \rho^+}{\partial r} + \rho \left(\frac{\partial v^+}{\partial r} + \frac{v^+}{r} + \frac{\partial u^+}{\partial x} \right) = 0 \quad (1)$$
\[
\rho \left[\varepsilon \frac{\partial u^*}{\partial t} + \varepsilon \left(u^* \frac{\partial u^*}{\partial x} + v^* \frac{\partial u^*}{\partial y} \right) \right] = \frac{\partial p^*}{\partial x} \quad (2)
\]

\[
-\frac{\mu^*}{K^*} u^* - C_\gamma^{1/2} \frac{\partial u^*}{\partial x^2} + \mu^* \left(\frac{\partial^2 u^*}{\partial x^2} + \frac{\partial^2 u^*}{\partial y^2} \right) - \frac{\partial p^*}{\partial r} = 0 \quad (3)
\]

Where \(u^*, v^* \) are the velocity components in the axial and normal directions, respectively. \(\rho^*, \mu^* \) are the fluid density and pressure, \(K^* \) is the absolute viscosity and \(K \) is the permeability of the porous medium and \(\varepsilon \) is the porosity of the porous medium.

Since one is dealing only not with capillary tubes the radial velocity might be expected to be not negligible. This effect of this is to couple the continuity equation (4) and the momentum equation (5). Next, it is assumed that the flow through the capillary duct is a superposition of a fully developed laminar, incompressible, axial steady flow and a small harmonic acoustic disturbance of frequency \(\omega \).

The steady flow is taken to have constant density \(\rho \) and a speed of sound \(\sigma \) such that the fluid variables can be expanded in the form:

\[
\rho^* = \rho \left(1 + \alpha \eta \right) \quad u^* = u \left(1 + \alpha \eta \right) \quad v^* = v \left(1 + \alpha \eta \right) \quad p^* = p \left(1 + \alpha \eta \right)
\]

Where \(\alpha \ll 1 \) and \(\gamma \) is the ratio of specific heats. It is seen that the steady flow variables \(p_o \) and Mach numbers \(M_o \) together with acoustic variables \(\rho, u, v \) and \(p \) are dimensionless. Now introduce the following variables in the transformations:

\[
\xi = \alpha x^* / \sigma \quad \eta = r^* / R \quad (8)
\]

Where \(R \) is the radius of the capillary duct. The axial acoustic wave motion has been assumed to have complex propagation constant \(\Gamma \) which can be expanded as:

\[
\Gamma = \Gamma^* + i \Gamma^* \quad (9)
\]

Where \(\Gamma^* \) represents the wave attenuation per unit distance and \(\Gamma^\ast \) represents the phase shift over the same distance. The assumed forms of the variables, equations (4-7) are substituted into the governing equations (1) and (2)-(3) and terms of similar order in \(\alpha \) equated. It is found that for zeroth order, the steady flow solution, the equations of continuity and radial momentum are identically satisfied, while the axial momentum equation (6) becomes:

\[
\frac{s^2 \rho_o}{\gamma} \frac{d \rho_o}{d \eta} \left[1 + \frac{d \eta}{d \eta} \right] = M_o - \frac{C_\gamma^2}{k} M_o^2 \quad (10)
\]

Here \(s = R \sqrt{\rho_o / \mu} \) is the shear wave number, \(k = \alpha R / \sigma \) is the reduced frequency parameter, \(D_a = R / K \) is the Darcy number and \(C_\gamma \) is the Forchheimer number. This is the classical equation of Hagen-Poiseuilli flow, the solution of which, with no-slip boundary conditions, gives a parabolic velocity profile:

\[
M_o = \frac{s^2 \rho_o}{\gamma} \frac{d \rho_o}{d \eta} \left[1 - \eta^2 \right] = \frac{2M (1 - \eta^2)}{4} \quad (11)
\]

Where \(\bar{M} \) is the mean Mach number of the steady flow. The linearized acoustic equations follow from equating terms of first order in \(\alpha \) in the governing equations, and are:

\[
\frac{k \mu}{\sigma} + F u + 2M \Gamma (1 - \eta^2) \rho + \frac{d \eta}{d \eta} + \frac{\eta}{\gamma} = 0 \quad (12)
\]

\[
\left(\frac{1}{s^2 \sigma} \right) \left[\frac{d^2 u}{d \eta^2} + \frac{1}{\eta} \frac{du}{d \eta} \right] - \left(\frac{Da}{s^2 / \sigma} \right) u \left(1 - \frac{2\Gamma}{\sigma} \right) + \frac{1}{\gamma} \frac{d \eta}{d \eta} = 0 \quad (13)
\]

Where \(Da = K / R \) and \(k = wR / \sigma \) is the Darcy number and the Forchheimer number respectively. The case of \(\varepsilon = 1 \) or \(Da = 0 \) corresponds to the plain medium without the presence of the solid matrix and any values of \(0 < \varepsilon < 1 \) or \(Da > 0 \) represent a porous medium with different pore spaces. For the case of \(\varepsilon = 1 \) and \(Da = 0 \), the governing equations (12) and (13) reduces to those obtained by Peat [5] for the case of a pure plain medium. In the limit of zero steady flow, \(\bar{M} = 0 \), these equations are found to reduce to those for the reduced frequency solution of Tijdeman [9].

It will be assumed that the tubes are rigid which implies the no-slip boundary condition of the fluid velocity at wall:

\[
u = 0 \text{ at } \eta = 1 \quad (14)
\]

The solution of equations (12)-(13) is greatly simplified if one assumes that the acoustic disturbances occur isentropically, since then:

\[
p = \rho \gamma \quad (15)
\]

3. Variational Solutions

The continuity equation (12), with the assumption of isentropic disturbances and the given form of the trial solution of the axial velocity, equations (18) and (19), and integrating this expression and using the boundary condition that \(v = 0 \) when \(\eta = 0 \) gives:

\[
- \frac{n}{k} \frac{\sigma^2}{2} \left(1 - \frac{\eta}{2} \right)^2 - \frac{2M \Gamma (1 - \eta^2)}{2} \frac{\rho_o}{\gamma} + \frac{2M \Gamma (1 - \eta^2)}{2} \frac{\rho_o}{\gamma} + \frac{\sigma^2}{2} \left(1 - \frac{\eta^2}{2} \right) \frac{u}{\gamma} = \left(- \frac{\sigma}{\gamma} \right) p + \frac{1}{s^2 \sigma} \left[\frac{d \eta}{d \eta} \frac{du}{d \eta} \right] - \left(\frac{Da^2}{s^2 / \sigma} \right) u \left(1 - \frac{2\Gamma}{\sigma} \right) \quad (16)
\]

This expression can now be substituted into the full momentum equation (13) to give:

\[
\left(\frac{1}{s^2 \sigma} \right) \left[\frac{d^2 u}{d \eta^2} + \frac{1}{\eta} \frac{du}{d \eta} \right] = \left(- \frac{\sigma}{\gamma} \right) p + \frac{1}{s^2 \sigma} \left[\frac{d \eta}{d \eta} \frac{du}{d \eta} \right] - \left(\frac{Da^2}{s^2 / \sigma} \right) u \left(1 - \frac{2\Gamma}{\sigma} \right) \quad (17)
\]

Equation (17) corresponds to the minimum of the
Now the assumed form of trial solution for u, equation (18), is substituted into this expression and the minimum is found by setting:

$$\frac{\partial G}{\partial C} = 0$$

Which result in an expression for the constant C; namely,

$$C = -\frac{p}{\gamma} \left(-\frac{1}{2} + \frac{M^2}{3\varepsilon^2} + \frac{M^2}{2\varepsilon} \right)$$

Substitution of the same trial solution for u into equation (16) and use of boundary condition $v = 0$ at $\xi = 1$ leads to a second expression of the propagation constant,

$$C = -\frac{2p}{\gamma} (i + M)$$

Equations (20) and (21) enable C to be eliminated which results in an expression for the propagation constant:

$$\left(1 - \frac{2M^2}{\varepsilon^2} \right)^{1/2} \left(\frac{8}{s^2} + \frac{4i}{3\varepsilon} + \frac{4i}{3\varepsilon} - \frac{2i}{3\varepsilon} + \frac{4Dai^2}{3\varepsilon} + \frac{C_{Da}^2}{k} \right) \left(\frac{2}{s^2} + \frac{i}{3\varepsilon} + \frac{3M}{4\varepsilon^2} \right)$$

With a solution of the propagation constants of the form:

$$\Gamma = \frac{\left(\frac{8}{s^2} + \frac{3i}{3\varepsilon} + \frac{4Dai^2}{3\varepsilon} - \frac{2i}{3\varepsilon} + \frac{C_{Da}^2}{k} \right)}{2(1 - \frac{2M^2}{\varepsilon^2})} \pm \sqrt{\left(\frac{8}{s^2} + \frac{3i}{3\varepsilon} + \frac{4Dai^2}{3\varepsilon} - \frac{2i}{3\varepsilon} + \frac{C_{Da}^2}{k} \right)^2 - 4\left(\frac{2M^2}{\varepsilon^2} \right)}$$

Note that when $\varepsilon = 1$ or $Da = 0$ the propagation constant, equation (28) is reduced to those obtained by Peat [15] for the case of a pure plain medium. It is important also to note that the M will reflect the effect of steady flow on the acoustic problem under consideration; the case of $M = 0$ corresponds to the absence of mean flow velocity and to the acoustic problem in a stationary porous media.

4. Results and Discussion

Comparison of variational solution with exact solutions as given by Peat [5] in the limits of plain medium for $\varepsilon = 1$ and $Da = 0$ are shown in table 1. Figure 1 is a plot of the modulus of wave attenuation for unit distance, Γ and phase shift Γ' for varying shear wave number and Mach numbers $M = 0.0, 0.1, 0.2, 0.3$ and for $Da = 10, C_s = 0.1, \varepsilon = 0.8$ and $k = 0.15\pi$. It is clear that as the Mach number is increased the attenuation is decreased and the phase velocities are increased for the forward waves, while as the Mach number is increased both the attenuation and phase velocities are increased for the backward sound waves; this is due to collision effects of the forward sound waves and favorable vertical velocity effects in more damping of the backward sound waves. Figure 2 shows the effect of increasing Darcy numbers $Da = 0, 0.1, 1, 5, 10$ for $M = 0.1, C_s = 0.1, \varepsilon = 0.8$ and $k = 0.15\pi$, it is clear that as the Darcy number is increased the attenuation and phase velocities for both the forward and backward sound waves; this is due to favorable effects of the solid matrix in damping sound waves. Figure 3 shows the effect of porosity $\varepsilon = 0.5, 0.6, 0.7, 0.8, 0.9$ on attenuation and phase velocities for selected values of $Da = 10, C_s = 0.1, M = 0.1$ and $k = 0.15\pi$, it is found that the increasing of porosity decreases the attenuation and phase velocities for both the forward and backward waves; this is due to the small effect of the solid matrix as moving toward the plain media limit. Figure 4 shows the effect of Forchheimer term $C_s = 0.1, 1, 5, 10$ on attenuation and phase velocities for $Da = 10, \varepsilon = 0.8, M = 0.1$ and $k = 0.15\pi$, it is found that as the Forchheimer term is increased the attenuation and phase velocities are increased for the forward and backward sound waves; this is due to favorable damping effects of the fluid inside the large used pores of the solid matrix. Finally figure 5 shows the effect of increasing $k = 0.05\pi, 0.5\pi, 0.1\pi, 0.2\pi, 0.3\pi, 0.5\pi$ on the attenuation and phase velocities for $Da = 10, \varepsilon = 0.8, M = 0.3$ and $C_s = 10$, it is found that as the reduced frequency is increased the attenuation is increased and the phase velocities are decreased for the forward sound waves and both the attenuation and phase velocities are decreased.
for the backward sound waves; this is due to higher frequency of the impacted sound waves on the solid matrix, it is important to note that the same effect is noticed for sound waves propagated in a plain medium.

5. Conclusion
1- It is found that the effect of increasing Darcy number or Forchheimer number is to increase the attenuation and phase velocities for both forward and backward sound waves; this is due to favorable role of solid matrix in damping sound waves.
2- It is found that the effect of increasing porosity or reduced frequency parameter is to decrease attenuation and phase velocities for both forward and backward sound waves; this is due to absence of favorable role of porous matrix and high incident sound waves strength respectively.

References:
Phase Shift – Backward wave
Fig. 1 Effect of Mach Number

<table>
<thead>
<tr>
<th>Da</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1</td>
<td>0.5</td>
<td>0.7</td>
<td>0.9</td>
<td>0.9</td>
</tr>
<tr>
<td>1</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Attenuation – Forward waves

Phase Shift – Forward wave

<table>
<thead>
<tr>
<th>Da</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1</td>
<td>0.5</td>
<td>0.7</td>
<td>0.9</td>
<td>0.9</td>
</tr>
<tr>
<td>0.5</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Attenuation – Backward wave

Phase Shift – Backward wave
Fig. 2 Effect of Darcy Number

Phase Shift – Forward wave

<table>
<thead>
<tr>
<th>Da</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1</td>
<td>0.5</td>
<td>0.7</td>
<td>0.9</td>
<td>0.9</td>
</tr>
<tr>
<td>0.01</td>
<td>100</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Attenuation – Forward wave

Phase Shift – Forward wave

<table>
<thead>
<tr>
<th>Da</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1</td>
<td>0.5</td>
<td>0.7</td>
<td>0.9</td>
<td>0.9</td>
</tr>
<tr>
<td>0.001</td>
<td>1000</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Attenuation – Backward wave

Phase Shift – Backward wave
Fig. 3 Effect of Porosity
Attenuation - Forward wave

Phase Shift – Forward wave

Attenuation – Backward wave

Phase Shift – Backward wave

Fig. 4 Effect of Forchheimer

Fig. 7 Effect of k reduced frequency