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     Abstract. The work describes all the necessary steps to solve the traveling salesperson problem. This optimization 
problem is very easy to formulate -and a lot of works do it-, but it is rather difficult to solve it. The section 2 gives a 
heuristic greedy method and a numerical example, with the mention that this method doesn’t assure the optimal route. By 
using [4] as a main reference, we formulate an algorithm in a matrix form to solve the problem for optimal route. The 
mathematical approach is based on Hopfield neural networks and uses the energy function with the descent gradient 
method. The algorithm in matrix form is easier to use or to write a computational program. The work has seven sections. 
The section 6 describes the algorithm to solve the traveling salesperson problem and the section 7 contains another 
numerical example.  
     Key-Words. Traveling salesperson problem, traveling salesperson algorithm, energy function, descent gradient, greedy 
method.  
 
 

1  Introduction  
     The traveling salesperson problem ( TSP ) is an 
optimization problem. A salesperson must make a closed 
circuit through a certain n  number of cities, visiting each 
of them only once , minimizing the total distance traveled 
and the salesperson returns to the starting point at the end 
of the trip.  
     We denote by  

     ( )XYnn dKKK == × ,  , 0=XXd  .  

the distances matrix, where XYd  is the distance between 

the cities X  and Y  .  
     Related with TSP problem we have three types of  
solutions : a) the possible solution ( the salesperson 
passes many times through certain cities ); b) the 
admissible  solution ( the salesperson passes only once 
through each city, but the distance traveled is not minim 
); c) the optimal  solution ( the solution is admissible and 
the distance traveled is minim ) . We are interested in 
finding the optimal solution.  

    Our task is to find the unknown weights jXv  , the 

elements of weights matrix V   

     ( )jXNN vVVV == × , , njnX ,1;,1 ==   

which describes the optimal solution, where the subscript 
X  refers to the city and the subscript j  refers to the 

position of the city X  on the tour (route) R. In any 
admissible solution is satisfied the condition 

{ }1;0∈JXv  , and the weight changes with the route R, 

i.e. )(RVV =  .  

     We denote by )(nR  all possible tours in a n -city 

problem. Then 
2

!)1(

2

!
)(

−
==

n

n

n
nR  . The function 

)(nR  is a rapidly increasing function [4]. So we obtain  

     For TSP problem there exists  two cases.  
     Case 1. 6≤n  . The optimal solution can be obtained 
by an exhaustive search through all admissible routs.  
     Case 2. 7≥n  . In this case the TSP problem belongs 
to the class known as NPC ( non possible complete ) 
problem. For several values of n  we obtain  
     20160)9(,2520)8(,360)7( === RRR   

     .1814400)11(,181440)10( == RR   

     Nevertheless there are several methods which have as 
a goal to obtain a good admissible solution or even the 
optimal one.  
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2  Several methods for TSP. The  greedy 

method  
     The work [1], chapter 4, gives a history of TSP 
computation and mentions several methods to solve TSP:  
     a). Branch-and-bound  method.  
     b). Dynamic  programming.  
     c). Gomory cuts.  
     d). The Lin-Kernighan heuristic.  
     f). TSP  cuts.  
     g). Branch-and-cut method.  
     Here we present a heuristic approach named greedy 
method. For simplicity we denote the towns by 1, 2, … , 

n-1, n and. The distances are .0, =iiji dd   

     By greedy methods one obtains a good possible 
solution. We don’t know if this solution is an optimal 
one.  
     Step 1. Write the symmetric matrix K  of distances. 
The number of towns are arranged on a column (at the 
left ofK ) and a line (above the matrix K ).  
     Step 2. Choose an arbitrary town i  to be the beginning 
of the route. Let 1=i  be the first town. Ones marks the 
town 1 and hence the line 1 by an arrow → .  
     Step 3. Compute the minimal value on the marked 
line. Let us say we have  

     kj
j

dd 11min = . This means the route passes from 

town 1 to the town k. Mark the value kd1  by a circle or 

by a star *.  

     Step 4. Mark the value 1kd  by a double star **.  

     Step 5. Compute the minimal value on the line double 

star, except value 1kd , and denote it also by star.  

     Ones takes care to not construct a closed sub-cycle 
This means that the column of this minim shouldn’t 
contain any marked element.  
     Step 6. Mark the symmetric of this number by double 
star.  
     Step 7. Continue on the same way.  
     Finally, in the symmetric matrix K  each line and each 
column has only one element marked by star and only 
one element marked by double star.  
     Step 8. Write the route by the above algorithm.  

     Step 9. Compute the length iL of the route.  

     The algorithm can continue in the same way by 
repeating it for each town i  as a beginning of the route. 
In this case the following step is necessary.  
     Step 10. Compute the minim length  

     },,,min{ 21 nLLL ⋯ = pL  .  

    The route which begins in the town },,2,1{ np ⋯∈  is 

the best route for greedy method.  
 
     Application 1. We apply the greedy algorithm for 
6=n  towns and the K  matrix from table 1. Also, this 

table contains the computations for a route beginning 
from town 1.  
 
     Table 1.  
town 1 2 3 4 5 6 

→1 0 *3 10 11 7 **25 

2 **3 0 *6 12 8 26 

3 10 **6 0 9 *4 20 

4 11 12 9 0 *5 **15 

5 7 8 **4 *5 0 18 

6 *25 26 20 **15 18 0 

 
     The route and the length route are  

     :1=i  Route 1={1, 2, 3, 5, 4, 6, 1} , 581 =L .  

The others results are  

     :2=i  Route 2={2, 1, 5, 3, 4, 6, 2}, 642 =L .  

     :3=i  Route 3={3, 5, 4, 1, 2, 6, 3}, 693 =L .  

     :4=i  Route 4={4, 5, 3, 2, 1, 6, 4}, 584 =L .  

     :5=i  Route 5={5, 3, 2, 1, 4, 6, 5}, 575 =L  (*)  

     :6=i  Route 6={6, 4, 5, 3, 2, 1, 6}, 586 =L .  

     Route 1 equivalent Route 4 equivalent Route 6.  
     The best greedy route is Route 5.  
 
     Table 2.  
town 1 2 3 4 5 6 

1 0 **3 10 *11 7 25 

2 *3 0 **6 12 8 26 

3 10 *6 0 9 **4 20 

4 **11 12 9 0 5 *15 

→5 7 8 *4 5 0 **18 

6 25 26 20 **15 *18 0 

 
     There exist a better route than the Route 5  
     {1, 2, 3, 6, 4, 5, 1} , 56=L  which isn’t offered by 
greedy method.  
 
 

3 The  neural  networks and TSP.  
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  The weights matrix and energy  function  
     In this work the solving of TSP problem is based on 
neural network method, which generates a TSP 
algorithm. We describe the TSP algorithm in a matrix 

form, rather then on components form. The neural 
network method has its origins in continuous Hopfield 
networks [4], page 144.  
     In a Hopfield network the input layer Sx  is identical 
with the output layer Sy.  

     The neural network for TSP has 2n  neurons 
(processing elements) in layer Sx. Each neuron has an 
output function of sigmoid form  

     
se

sfRf
λ21

1
)(),1;0(:

−+
=→ , λ 0>  .  

The output function is the same for all 2n  neurons.  
The parameter λ  is the curve slope. If 50≥λ  then the 
function f  is almost the Heaviside function , with the 

values 0 and 1.  
 
     During the algorithm we shall describe we use the 
columns and the lines of weights matrix V  . That is why 
we use some special notations, as follows  

     ( )nj vvvvV ⋯⋯21=  = ( )nj VcolVcolVcol ⋯⋯1   

   ( )TrXba VlinVlinVlinVlinV ⋯⋯=  , n
j RVcol ∈   

     ( )Tni VlinVlinVlinVlinV ⋯⋯21=  , n
i RVlin ∈   

     ( )TjrjXjbjaj vvvvVcol ⋯⋯=   

     ( )nXjXXXX vvvvVlin ⋯⋯21=  .  

Also we use the sum of elements on line X and on 
column j and denote  

     ∑ == n
j jXX vVSline 1  , ∑ == n

X jXj vVScol 1  .  

     Using the above notations we construct the extended 
matrix Vex  having the form  
 

     





























=

01

1

1

1

nj

VSlinnrjrr

VSlinnXjXX

anajaa

VScolVScolVScol

vvv

vvv

VSlinvvv

Vex

r

X

⋯⋯

⋯⋯

⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯

⋯⋯

⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯

⋯⋯

 .  

 

     The mathematical model of TSP problem needs two 
supplementary weights having the meaning [1]  

     nXXXnX vvvv ==+ 01)1( ,         (1)  

     Any admissible route R has an associated matrix V  
and an energy function denoted )(REE = .  

     Definition. The energy function is defined by four 
sums, as it follows [4], page 151 ; [6]  

     4321
2222

)( Σ+Σ+Σ+Σ=
DCBA

RE        (2)  

     ∑ ∑ ∑= = ≠==Σ n
X

n
i

n
ijj jXiX vv1 1 ,11   

     ∑ ∑ ∑= = ≠==Σ n
j

n
X

n
XYY jYjX vv1 1 ,12   

     
2

1 13 




 −=Σ ∑ ∑= =

n
X

n
j jX nv   

( )
XY

vvvd
n
X

n
Y

n
j jYjYjXXY

≠

+=Σ ∑ ∑ ∑= = = −+1 1 1 1,1,4

     A lot of papers and books limit the discussions at this 
formula and do not show how to use it in a solving 
algorithm.  
     Let us investigate the contribution of the four sums in 
the function energy.  

     The contribution of the sum 1Σ  will be zero if and 
only if a single town appears in each row of the V  matrix 
i.e. each town appears only once in the route. So a single  

1=jXv  and all other 0=jXv .  

     The contribution of the sum 2Σ  is zero if and only if 

each column of the V  matrix contains a single value of 1. 
This means that each position on a route has an unique 
town associated with it.  

     The third sum 3Σ  contains a simple summation of all 

2n  elements. There should be only n  of these terms that 
have a value of 1; all other elements should be zero. Then  

     ∑ ∑= = =n
X

n
j jX nv1 1 .  

If more or less than n  terms are equal to 1, then the 
contribution of this sum will be greater than zero.  
     We remark that the first three sums do not depend of 
the distances between towns.  

     The sum 4Σ  contains the distances YXd  . This sum 

computes a numerical value proportional to the distance 
traveled on the route. Thus, a minimum distance route 
results in a minimum contribution of this term to the 
energy function (2).  
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    Work [4]  mentions that the weights matrix is defined 

in terms of inhibitions between the 2n  processing 
elements of the attached neural network. The desire to 

minimize the sum 4Σ  can be exposed into connections 

between units that inhibit the selection of adjacent towns 
in proportion to the distance between those towns.  
 
     Proposition 1 . The four sums from the  energy 
function are represented in the following vector form  
     ∑

≤<≤
><=Σ

njk
jk vv

1
1 ;2   

     ∑
≤<≤

><=Σ
nki

ki VlinVlin

1
2 ;2   

     
2

13 




 −=Σ ∑ =

n
X X nVSlin   

( ) ( ) ⋯+−+−=Σ 22114 [2 bbabbaab vVSlinvvVSlinvd

   ( ) +−+ ]bnbna vVSlinv   

    + ( ) ( ) ⋯+−+− 2211[2 ccaccaac vVSlinvvVSlinvd  

    ( ) ⋯+−+ ]cncan vVSlinv  ,  

where the last sum is extended for all distances in the 
upper superior triangular positions , i.e.  

     nkidd kiXY ≤<≤= 1,  .  

     The notation >< vu ;  means the scalar product  

     nnT RvRuvuvu ∈∈>=< ,,;  .  

     Proof . One uses the definitions of sums 

4321 ,,, ΣΣΣΣ  with a convenient association of the 

weights jXv  (End).  

 
 

4 The relation between continuous 

Hopfield  model  and  TSP  problem  

     The Hopfield network with 2n  processing elements, 
attached to TSP problem proceeds from the continuous 
Hopfield model [4], page 144. The continuous model is 
described by two differential equations ( with 
independent notations [1] )  

     ∑ = +−= n
j i

i

i
jji

i I
R

u
vw

dt

du
p 1    (3)  

     ∑ =

−








−= n

i
i

i

i

dt

dv

dv

vdf
p

dt

dE
1

21 )(
   (4)  

where nivfuufv iiii ,1),(),( 1 === −  .  

     Two things are very important in the future: the time 

delay ii Ru /−  from equation (3) and )(vEE =  from 

(4).  

     The variables iu  from continuous model [4] become  

     njnXu jX ,1;,1, ==  in TSP problem.  

We denote ( )jXnn uUUU == × , , where jXu  are 

input variables. Then we compute the weights  

     ( )jXjX ufv =  , 













 +=

− jXu
jX ev

λ2
1/1   

     ( )jXnn vVVV == × ,     (5)  

     According to the general techniques of neural 

networks, the variables jXu  are updated when the 

algorithm passes from time t  ( the route t  ) to time 1+t  
( the route 1+t  ). The updating is done by a recurrent 
relation which has two equivalent forms: a component 
form or a matrix form, respectively  

     )()()1( tututu jXjXjX ∆+=+        (6)  

 )()()1( tUtUtU ∆+=+  , ( ))()( tutU jX∆=∆  (7)  

     Now the main question is to find the appropriate form 

of corrections )(tu jX∆  . Again we use the general 

neural networks theory: the corrections are defined by 
descent gradient of energy function. So we have the 
following dependences:  
     )(),( vEEREE ==  , )(),( uEEufv ==  .  

The derivative are positive, namely 0,0 >>
du

dE

dv

dE
 .  

     Due to time delay from (3) and the descent  gradient, 
we define the corrections by the  relation  

     0)(
1

)( <−−=∆
jX

jXjX
dv

dE
tutu

τ
  (8)  

The 0>τ  is a parameter controlled by the user.  
 
 

5  The explicit  correction form and new 

matrix  notations  
     The formula (8) and )(vEE =  give the following 

corrections  

     ∑
≠=

−−−=∆
n

jkk
jXjXjX tvAtutu

;1
)()(

1
[)(
τ
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     −













−−− ∑ ∑∑

= =≠=

n

Y

n

k
kY

n

XYY
jY ntvCtvB

1 1;1

')()(   

     ( ) tvvdD
n

Y
jYjYYX ∆+− ∑

=
−+

1
1,1, ]   (9)  

where appear some  parameters for user’s disposal  
     nnnnt 5.1',0',)1;0(,)1;0( ≤<≥∈∆∈τ   

     In order to compute the laborious formula (9) we use 
new notations, as it follows  

     ( ) )(; tvVSlinjkVlinS jXXX −=≠   

     ( ) )(; tvVScolXYVcolS jXjj −=≠   

     ( ) ∑ ∑= = −= n
Y

n
k kY ntvnVS 1 1 ')(';   

 ( ) ( )∑ = −+ += n
Y jYjYYXX vvdjKlinS 1 1,1,;   (10)  

( the meanings of the letters are: S is the sum in the 
matrix V or K etc.) .  
     Proposition 2 . The corrections (9) take the form  

     [ ]−−−−=∆ )()(
1

{)( tvVSlinAtutu jXXjXjX τ
  

                        [ ] ( )[ ]−−−− ';)( nVSCtvVScolB jXj   

                        ( )[ ] tjKlinSD X ∆− };   (11)  

     Proof . One uses the notations (10). (End).  
     The formula (10) determine us to introduce the 
following matrix  

     ( )1,1,
~
,

~~
−+× +== jYjYnn vvVVV    (12)  

     Proposition 3 . All the sums from (10) create a  new 
matrix  ( as a product )  

     ( )( )jKlinSVK X ;
~
=     (13)  

     Proof . One uses (1) and the direct computation. (End).  

     We can write the elements )(tu jX∆  from (11) or 

equivalent the matrix )(tU∆  from (7) if we introduce the 

matrices ( denoted by a succession of two or three letters )  

     nnnnnn VSCVSCVSLVSLVSVS ××× === ,, .  

     Explicitly, for n=4, the above matrices have the forms  
 

     



















=

)';()';()';()';(

)';()';()';()';(

)';()';()';()';(

)';()';()';()';(

nVSnVSnVSnVS

nVSnVSnVSnVS

nvSnVSnVSnVS

nVSnVSnVSnVS

VS   

 

     





















=

dddd

cccc

bbbb

aaaa

VSlinVslinVSlinVSlin

VslinVSlinVSlinVSlin

VSlinVSlinVSlinVSlin

VSlinVSlinVSlinVSlin

VSL   

 

     





















=

4321

4321

4321

4321

VScolVScolVScolVScol

VScolVScolVScolVScol

VScolVScolVScolVScol

VScolVScolVScolVScol

VSC   

 
     Proposition 4 . The corrections (11) from the 
proposition 2 have the matrix form  

     nnnn tUtUtUtU ×× ∆=∆= )()(,)()(   

[ ] [ ]−−−−−−=∆ )()()(
1

{)( tVVSCBtVVSLAtUtU
τ

  

               ( ) tVKDVSC ∆−− })
~

(    (14)  

     Proof . We use (11) and the special matrices VS, VSL 
and VSC. (End).  
     The updating recurrent relations (6) or the equivalent 
matrix form (7) work if we know the initial values 

)1(0
jXjX

uu =  or the initial matrix )1(0 UU =  for 

first route.  
 

6  The  TSP  algorithm  in  matrix  form  
     Having all the above notations, formulas and ideas we 
can describe the TSP algorithm. We choose to describe 
this algorithm in matrix form.  
     Step 1. We introduce the input data :  

     a). n  - number of towns; ( )YXdK =  ; N  - number 

of algorithm iterations.  
     b). general parameters tn ∆,,,' τλ ;  

     c). inhibitions parameters DCBA ,,,  .  

     d). output function 
se

sf
λ21

1
)(

−+
=  .  

     e). initial values ( )00
jX

uU =  , njnX ,1;,1 ==  .  

     f). we declare the dimensions for all matrices :  

     VexVVUK ,
~
,,,  and so on.  

     Step 2. We execute the computations in a DO loop as 
it follows  
     L0  CONTINUE  
            DO  L3  t=1, N  
            *  compute the sigmoid outputs and create  
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            the matrix ( ))(tvV jX=   

            DO  L2  X=1,n  
            DO  L1  j=1,n  

            [ ])()( tuftv jXjX =   

     L1  CONTINUE  
     L2  CONTINUE  

            *  compute the sums 321 ,, ΣΣΣ  from  

            proposition 1  
            ∑

≤<≤
><=Σ

njk
jk tvtv

1
1 )();(2   

            ∑
≤<≤

><=Σ
nki

ki tVlintVlin

1
2 )();(2   

            
2

1 13 )( 




 −=Σ ∑ ∑= =

n
Y

n
k kY ntv   

            *  compute the extended matrix )(tVex   

            *  using )(),(, tVextVK  we compute the sum  

            4Σ  from proposition 1.  

            *  compute the energy function  

            4321
2222

)( Σ+Σ+Σ+Σ=
DCBA

tE   

            *  optional: print the values )(),(, tEtVt  .  

            *  compute the following matrices at time t  

            ( ) nXtVSlinVSL X ,1,)( ==   

            ( ) njtVScolVSC j ,1,)( ==   

            ( ))()(
~

1,1, tvtvV jXjX −+ += , for  

            all  njnX ,1;,1 ==   

            VK
~
  

            *  compute the correction matrix )(tU∆  by  

            using the formula (14) from proposition 4  
            *  update the input matrix U  by the recurrent  
            equation  
            )()()1( tUtUtU ∆+=+   

     L3  CONTINUE  (the DO  loop until t=N ) .  
     Step 3. Verify if the closed Do loop generates an 
admissible TSP solution, by the matrix  

            ( ))()( NvNV jX=  .  

     There are several possibilities ( versions )  
     Version 1. The matrix )(NV  generates an admissible 

TSP solution. Then GO TO  label L4.  
     Version 2. The matrix )(NV  do not generate an 

admissible solution because  

     { }1;0)( ∉Nv jX  i.e. ( )1;0∈jXv  .  

     Then we replace N  by NNN >','  and GO TO label 

L0 and resume the cycle DO loop.  
     Version 3. One uses the matrix )(NV  and compute 

the maxim element on each line nXX ,1, =  . We denote 

it by 0)(* =Nv
jX

 . If 8.0,)1;()(* >∈ εεNv
jX

 ( for 

example ) then we set 1* =jX
v  and all the other 

elements *,0)( jjNv jX ≠=  on the line X. (winner-

take-all). The resulting matrix is denoted )(* NVl , where 

l  means the work on lines. Analogous we can compute 

the maxim element )(* Nv
jX

 on each column nj ,1=  . 

So we obtain the matrix )(* NVc  , where the letter c  

means the work on columns.  

     Compute the routes described by matrices )(* NVl  , 

)(* NVc  and take the best one. GO TO  L4.  

     L4  CONTINUE  
     Step 4. Print the final results :  

     ,N )(* NVl  or )(* NVc  , )(NE  and the route *R  .  

            STOP  
            END  
 
 

7  Application 2  
Let n  be with the value 4=n  and the distances between 
the towns a, b, c, d given by the matrix 



















=

0152

1023

5207

2370

K  . Apply the above algorithm to find 

the best route.  
     Solution. We use the parameters  
     10,01.0,1,10,5',4 =−∆==== Ntnn τλ   

     10,4,10,10 ==== DCBA  , 
se

sf
201

1
)(

−+
=   

     The initial inputs are  

     



















==

0211

2110

1102

1021

)1(0 UU  . For 1=t  we obtain  
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

















=

500.0000.1999.0999.0

000.1999.0999.0500.0

999.0999.0500.0000.1

999.0500.0000.1999.0

)1(V   

     952.351 =Σ  , 952.352 =Σ  , 252.03 =Σ   

     56.3694 =Σ  ; 84.22707)1( =E  and so on.  

 
     992.85992.13)';( =−=nVS  .  

     Construct the matrix VS .  
     Use the formula  

     ( ) 40151,1, ,;
~

YYYYjYjY vvvvvvV ==+= −+   

for 4,1=j   and one obtains the matrix  

     



















=

999.1499.1999.1499.1

4999.1999.1499.1999.1

999.1499.1999.1499.1

499.1999.1499.1999.1

~
V  .  

     The matrix VK
~
 has the elements  

 

     



















=

492.14492.13492.14492.13

494.10494.10494.10949.10

486.23486.25486.23486.25

488.22488.19488.22488.19

~
VK   

 

     



















−−−−

−−−−

−−−−

−−−−

=∆

408.2228.2319.2219.1

928.1919.1919.1009.2

218.3418.3308.3428.3

118.3908.2128.3818.2

)1(U   

 
     )1()1()2( UUU ∆+=   

 

     



















−−−−

−−−

−−−−

−−−−

=

408.2288.0319.1219.1

071.0919.0918.0009.2

218.2418.2308.3428.1

118.2908.2128.1818.1

)2(U  

 
     2=t . The matrix )2(V  has the elements  

     
)2(2

1

1
)2(

jXu
jX

e

v
λ−

+
=  , 10=λ   

     4,1;4,1 == jX .  

 























⋅⋅

⋅⋅

⋅

⋅

=

−−

−−

−

−

0.001.01049.31058.2

0.01004.11004.10.0

0.00.00.01095.3

0.00.01059.10.0

)2(

1211

88

3

10

V

 

     }1;0{)2( ∉jXv  . The algorithm must continue.  
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