
A neural network algorithm in matrix form and a heuristic

greedy method for Traveling Salesperson Problem

NICOLAE POPOVICIU

Hyperion University of Bucharest, Faculty of Mathematics-Informatics
Street Călăraşilor 169, Bucharest, ROMANIA

MIOARA BONCUł
Lucian Blaga University of Sibiu, Department of Mathematics

Avenue Victoriei 110, Sibiu, ROMANIA
nic.popoviciu@yahoo.com

 Abstract. The work describes all the necessary steps to solve the traveling salesperson problem. This optimization
problem is very easy to formulate -and a lot of works do it-, but it is rather difficult to solve it. The section 2 gives a
heuristic greedy method and a numerical example, with the mention that this method doesn’t assure the optimal route. By
using [4] as a main reference, we formulate an algorithm in a matrix form to solve the problem for optimal route. The
mathematical approach is based on Hopfield neural networks and uses the energy function with the descent gradient
method. The algorithm in matrix form is easier to use or to write a computational program. The work has seven sections.
The section 6 describes the algorithm to solve the traveling salesperson problem and the section 7 contains another
numerical example.
 Key-Words. Traveling salesperson problem, traveling salesperson algorithm, energy function, descent gradient, greedy
method.

1 Introduction
 The traveling salesperson problem (TSP) is an
optimization problem. A salesperson must make a closed
circuit through a certain n number of cities, visiting each
of them only once , minimizing the total distance traveled
and the salesperson returns to the starting point at the end
of the trip.
 We denote by

 ()XYnn dKKK == × , , 0=XXd .

the distances matrix, where XYd is the distance between

the cities X and Y .
 Related with TSP problem we have three types of
solutions : a) the possible solution (the salesperson
passes many times through certain cities); b) the
admissible solution (the salesperson passes only once
through each city, but the distance traveled is not minim
); c) the optimal solution (the solution is admissible and
the distance traveled is minim) . We are interested in
finding the optimal solution.

 Our task is to find the unknown weights jXv , the

elements of weights matrix V

 ()jXNN vVVV == × , , njnX ,1;,1 ==

which describes the optimal solution, where the subscript
X refers to the city and the subscript j refers to the

position of the city X on the tour (route) R. In any
admissible solution is satisfied the condition

{ }1;0∈JXv , and the weight changes with the route R,

i.e.)(RVV = .

 We denote by)(nR all possible tours in a n -city

problem. Then
2

!)1(

2

!
)(

−
==

n

n

n
nR . The function

)(nR is a rapidly increasing function [4]. So we obtain

 For TSP problem there exists two cases.
 Case 1. 6≤n . The optimal solution can be obtained
by an exhaustive search through all admissible routs.
 Case 2. 7≥n . In this case the TSP problem belongs
to the class known as NPC (non possible complete)
problem. For several values of n we obtain
 20160)9(,2520)8(,360)7(=== RRR

 .1814400)11(,181440)10(== RR

 Nevertheless there are several methods which have as
a goal to obtain a good admissible solution or even the
optimal one.

Proceedings of the 9th WSEAS International Conference on Automatic Control, Modeling & Simulation, Istanbul, Turkey, May 27-29, 2007 209

2 Several methods for TSP. The greedy

method
 The work [1], chapter 4, gives a history of TSP
computation and mentions several methods to solve TSP:
 a). Branch-and-bound method.
 b). Dynamic programming.
 c). Gomory cuts.
 d). The Lin-Kernighan heuristic.
 f). TSP cuts.
 g). Branch-and-cut method.
 Here we present a heuristic approach named greedy
method. For simplicity we denote the towns by 1, 2, … ,

n-1, n and. The distances are .0, =iiji dd

 By greedy methods one obtains a good possible
solution. We don’t know if this solution is an optimal
one.
 Step 1. Write the symmetric matrix K of distances.
The number of towns are arranged on a column (at the
left ofK) and a line (above the matrix K).
 Step 2. Choose an arbitrary town i to be the beginning
of the route. Let 1=i be the first town. Ones marks the
town 1 and hence the line 1 by an arrow → .
 Step 3. Compute the minimal value on the marked
line. Let us say we have

 kj
j

dd 11min = . This means the route passes from

town 1 to the town k. Mark the value kd1 by a circle or

by a star *.

 Step 4. Mark the value 1kd by a double star **.

 Step 5. Compute the minimal value on the line double

star, except value 1kd , and denote it also by star.

 Ones takes care to not construct a closed sub-cycle
This means that the column of this minim shouldn’t
contain any marked element.
 Step 6. Mark the symmetric of this number by double
star.
 Step 7. Continue on the same way.
 Finally, in the symmetric matrix K each line and each
column has only one element marked by star and only
one element marked by double star.
 Step 8. Write the route by the above algorithm.

 Step 9. Compute the length iL of the route.

 The algorithm can continue in the same way by
repeating it for each town i as a beginning of the route.
In this case the following step is necessary.
 Step 10. Compute the minim length

 },,,min{ 21 nLLL ⋯ = pL .

 The route which begins in the town },,2,1{ np ⋯∈ is

the best route for greedy method.

 Application 1. We apply the greedy algorithm for
6=n towns and the K matrix from table 1. Also, this

table contains the computations for a route beginning
from town 1.

 Table 1.
town 1 2 3 4 5 6

→1 0 *3 10 11 7 **25

2 **3 0 *6 12 8 26

3 10 **6 0 9 *4 20

4 11 12 9 0 *5 **15

5 7 8 **4 *5 0 18

6 *25 26 20 **15 18 0

 The route and the length route are

 :1=i Route 1={1, 2, 3, 5, 4, 6, 1} , 581 =L .

The others results are

 :2=i Route 2={2, 1, 5, 3, 4, 6, 2}, 642 =L .

 :3=i Route 3={3, 5, 4, 1, 2, 6, 3}, 693 =L .

 :4=i Route 4={4, 5, 3, 2, 1, 6, 4}, 584 =L .

 :5=i Route 5={5, 3, 2, 1, 4, 6, 5}, 575 =L (*)

 :6=i Route 6={6, 4, 5, 3, 2, 1, 6}, 586 =L .

 Route 1 equivalent Route 4 equivalent Route 6.
 The best greedy route is Route 5.

 Table 2.
town 1 2 3 4 5 6

1 0 **3 10 *11 7 25

2 *3 0 **6 12 8 26

3 10 *6 0 9 **4 20

4 **11 12 9 0 5 *15

→5 7 8 *4 5 0 **18

6 25 26 20 **15 *18 0

 There exist a better route than the Route 5
 {1, 2, 3, 6, 4, 5, 1} , 56=L which isn’t offered by
greedy method.

3 The neural networks and TSP.

Proceedings of the 9th WSEAS International Conference on Automatic Control, Modeling & Simulation, Istanbul, Turkey, May 27-29, 2007 210

 The weights matrix and energy function
 In this work the solving of TSP problem is based on
neural network method, which generates a TSP
algorithm. We describe the TSP algorithm in a matrix

form, rather then on components form. The neural
network method has its origins in continuous Hopfield
networks [4], page 144.
 In a Hopfield network the input layer Sx is identical
with the output layer Sy.

 The neural network for TSP has 2n neurons
(processing elements) in layer Sx. Each neuron has an
output function of sigmoid form

se

sfRf
λ21

1
)(),1;0(:

−+
=→ , λ 0> .

The output function is the same for all 2n neurons.
The parameter λ is the curve slope. If 50≥λ then the
function f is almost the Heaviside function , with the

values 0 and 1.

 During the algorithm we shall describe we use the
columns and the lines of weights matrix V . That is why
we use some special notations, as follows

 ()nj vvvvV ⋯⋯21= = ()nj VcolVcolVcol ⋯⋯1

 ()TrXba VlinVlinVlinVlinV ⋯⋯= , n
j RVcol ∈

 ()Tni VlinVlinVlinVlinV ⋯⋯21= , n
i RVlin ∈

 ()TjrjXjbjaj vvvvVcol ⋯⋯=

 ()nXjXXXX vvvvVlin ⋯⋯21= .

Also we use the sum of elements on line X and on
column j and denote

 ∑ == n
j jXX vVSline 1 , ∑ == n

X jXj vVScol 1 .

 Using the above notations we construct the extended
matrix Vex having the form





























=

01

1

1

1

nj

VSlinnrjrr

VSlinnXjXX

anajaa

VScolVScolVScol

vvv

vvv

VSlinvvv

Vex

r

X

⋯⋯

⋯⋯

⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯

⋯⋯

⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯

⋯⋯

 .

 The mathematical model of TSP problem needs two
supplementary weights having the meaning [1]

 nXXXnX vvvv ==+ 01)1(, (1)

 Any admissible route R has an associated matrix V
and an energy function denoted)(REE = .

 Definition. The energy function is defined by four
sums, as it follows [4], page 151 ; [6]

 4321
2222

)(Σ+Σ+Σ+Σ=
DCBA

RE (2)

 ∑ ∑ ∑= = ≠==Σ n
X

n
i

n
ijj jXiX vv1 1 ,11

 ∑ ∑ ∑= = ≠==Σ n
j

n
X

n
XYY jYjX vv1 1 ,12

2

1 13 




 −=Σ ∑ ∑= =

n
X

n
j jX nv

()
XY

vvvd
n
X

n
Y

n
j jYjYjXXY

≠

+=Σ ∑ ∑ ∑= = = −+1 1 1 1,1,4

 A lot of papers and books limit the discussions at this
formula and do not show how to use it in a solving
algorithm.
 Let us investigate the contribution of the four sums in
the function energy.

 The contribution of the sum 1Σ will be zero if and
only if a single town appears in each row of the V matrix
i.e. each town appears only once in the route. So a single

1=jXv and all other 0=jXv .

 The contribution of the sum 2Σ is zero if and only if

each column of the V matrix contains a single value of 1.
This means that each position on a route has an unique
town associated with it.

 The third sum 3Σ contains a simple summation of all

2n elements. There should be only n of these terms that
have a value of 1; all other elements should be zero. Then

 ∑ ∑= = =n
X

n
j jX nv1 1 .

If more or less than n terms are equal to 1, then the
contribution of this sum will be greater than zero.
 We remark that the first three sums do not depend of
the distances between towns.

 The sum 4Σ contains the distances YXd . This sum

computes a numerical value proportional to the distance
traveled on the route. Thus, a minimum distance route
results in a minimum contribution of this term to the
energy function (2).

Proceedings of the 9th WSEAS International Conference on Automatic Control, Modeling & Simulation, Istanbul, Turkey, May 27-29, 2007 211

 Work [4] mentions that the weights matrix is defined

in terms of inhibitions between the 2n processing
elements of the attached neural network. The desire to

minimize the sum 4Σ can be exposed into connections

between units that inhibit the selection of adjacent towns
in proportion to the distance between those towns.

 Proposition 1 . The four sums from the energy
function are represented in the following vector form
 ∑

≤<≤
><=Σ

njk
jk vv

1
1 ;2

 ∑
≤<≤

><=Σ
nki

ki VlinVlin

1
2 ;2

2

13 




 −=Σ ∑ =

n
X X nVSlin

() () ⋯+−+−=Σ 22114 [2 bbabbaab vVSlinvvVSlinvd

 () +−+]bnbna vVSlinv

 + () () ⋯+−+− 2211[2 ccaccaac vVSlinvvVSlinvd

 () ⋯+−+]cncan vVSlinv ,

where the last sum is extended for all distances in the
upper superior triangular positions , i.e.

 nkidd kiXY ≤<≤= 1, .

 The notation >< vu ; means the scalar product

 nnT RvRuvuvu ∈∈>=< ,,; .

 Proof . One uses the definitions of sums

4321 ,,, ΣΣΣΣ with a convenient association of the

weights jXv (End).

4 The relation between continuous

Hopfield model and TSP problem

 The Hopfield network with 2n processing elements,
attached to TSP problem proceeds from the continuous
Hopfield model [4], page 144. The continuous model is
described by two differential equations (with
independent notations [1])

 ∑ = +−= n
j i

i

i
jji

i I
R

u
vw

dt

du
p 1 (3)

 ∑ =

−








−= n

i
i

i

i

dt

dv

dv

vdf
p

dt

dE
1

21)(
 (4)

where nivfuufv iiii ,1),(),(1 === − .

 Two things are very important in the future: the time

delay ii Ru /− from equation (3) and)(vEE = from

(4).

 The variables iu from continuous model [4] become

 njnXu jX ,1;,1, == in TSP problem.

We denote ()jXnn uUUU == × , , where jXu are

input variables. Then we compute the weights

 ()jXjX ufv = , 













 +=

− jXu
jX ev

λ2
1/1

 ()jXnn vVVV == × , (5)

 According to the general techniques of neural

networks, the variables jXu are updated when the

algorithm passes from time t (the route t) to time 1+t
(the route 1+t). The updating is done by a recurrent
relation which has two equivalent forms: a component
form or a matrix form, respectively

)()()1(tututu jXjXjX ∆+=+ (6)

)()()1(tUtUtU ∆+=+ , ())()(tutU jX∆=∆ (7)

 Now the main question is to find the appropriate form

of corrections)(tu jX∆ . Again we use the general

neural networks theory: the corrections are defined by
descent gradient of energy function. So we have the
following dependences:
)(),(vEEREE == ,)(),(uEEufv == .

The derivative are positive, namely 0,0 >>
du

dE

dv

dE
 .

 Due to time delay from (3) and the descent gradient,
we define the corrections by the relation

 0)(
1

)(<−−=∆
jX

jXjX
dv

dE
tutu

τ
 (8)

The 0>τ is a parameter controlled by the user.

5 The explicit correction form and new

matrix notations
 The formula (8) and)(vEE = give the following

corrections

 ∑
≠=

−−−=∆
n

jkk
jXjXjX tvAtutu

;1
)()(

1
[)(
τ

Proceedings of the 9th WSEAS International Conference on Automatic Control, Modeling & Simulation, Istanbul, Turkey, May 27-29, 2007 212

 −













−−− ∑ ∑∑

= =≠=

n

Y

n

k
kY

n

XYY
jY ntvCtvB

1 1;1

')()(

 () tvvdD
n

Y
jYjYYX ∆+− ∑

=
−+

1
1,1,] (9)

where appear some parameters for user’s disposal
 nnnnt 5.1',0',)1;0(,)1;0(≤<≥∈∆∈τ

 In order to compute the laborious formula (9) we use
new notations, as it follows

 ())(; tvVSlinjkVlinS jXXX −=≠

 ())(; tvVScolXYVcolS jXjj −=≠

 () ∑ ∑= = −= n
Y

n
k kY ntvnVS 1 1 ')(';

 () ()∑ = −+ += n
Y jYjYYXX vvdjKlinS 1 1,1,; (10)

(the meanings of the letters are: S is the sum in the
matrix V or K etc.) .
 Proposition 2 . The corrections (9) take the form

 []−−−−=∆)()(
1

{)(tvVSlinAtutu jXXjXjX τ

 [] ()[]−−−− ';)(nVSCtvVScolB jXj

 ()[] tjKlinSD X ∆− }; (11)

 Proof . One uses the notations (10). (End).
 The formula (10) determine us to introduce the
following matrix

 ()1,1,
~
,

~~
−+× +== jYjYnn vvVVV (12)

 Proposition 3 . All the sums from (10) create a new
matrix (as a product)

 ()()jKlinSVK X ;
~
= (13)

 Proof . One uses (1) and the direct computation. (End).

 We can write the elements)(tu jX∆ from (11) or

equivalent the matrix)(tU∆ from (7) if we introduce the

matrices (denoted by a succession of two or three letters)

 nnnnnn VSCVSCVSLVSLVSVS ××× === ,, .

 Explicitly, for n=4, the above matrices have the forms



















=

)';()';()';()';(

)';()';()';()';(

)';()';()';()';(

)';()';()';()';(

nVSnVSnVSnVS

nVSnVSnVSnVS

nvSnVSnVSnVS

nVSnVSnVSnVS

VS





















=

dddd

cccc

bbbb

aaaa

VSlinVslinVSlinVSlin

VslinVSlinVSlinVSlin

VSlinVSlinVSlinVSlin

VSlinVSlinVSlinVSlin

VSL





















=

4321

4321

4321

4321

VScolVScolVScolVScol

VScolVScolVScolVScol

VScolVScolVScolVScol

VScolVScolVScolVScol

VSC

 Proposition 4 . The corrections (11) from the
proposition 2 have the matrix form

 nnnn tUtUtUtU ×× ∆=∆=)()(,)()(

[] []−−−−−−=∆)()()(
1

{)(tVVSCBtVVSLAtUtU
τ

 () tVKDVSC ∆−− })
~

((14)

 Proof . We use (11) and the special matrices VS, VSL
and VSC. (End).
 The updating recurrent relations (6) or the equivalent
matrix form (7) work if we know the initial values

)1(0
jXjX

uu = or the initial matrix)1(0 UU = for

first route.

6 The TSP algorithm in matrix form
 Having all the above notations, formulas and ideas we
can describe the TSP algorithm. We choose to describe
this algorithm in matrix form.
 Step 1. We introduce the input data :

 a). n - number of towns; ()YXdK = ; N - number

of algorithm iterations.
 b). general parameters tn ∆,,,' τλ ;

 c). inhibitions parameters DCBA ,,, .

 d). output function
se

sf
λ21

1
)(

−+
= .

 e). initial values ()00
jX

uU = , njnX ,1;,1 == .

 f). we declare the dimensions for all matrices :

 VexVVUK ,
~
,,, and so on.

 Step 2. We execute the computations in a DO loop as
it follows
 L0 CONTINUE
 DO L3 t=1, N
 * compute the sigmoid outputs and create

Proceedings of the 9th WSEAS International Conference on Automatic Control, Modeling & Simulation, Istanbul, Turkey, May 27-29, 2007 213

 the matrix ())(tvV jX=

 DO L2 X=1,n
 DO L1 j=1,n

 [])()(tuftv jXjX =

 L1 CONTINUE
 L2 CONTINUE

 * compute the sums 321 ,, ΣΣΣ from

 proposition 1
 ∑

≤<≤
><=Σ

njk
jk tvtv

1
1)();(2

 ∑
≤<≤

><=Σ
nki

ki tVlintVlin

1
2)();(2

2

1 13)(




 −=Σ ∑ ∑= =

n
Y

n
k kY ntv

 * compute the extended matrix)(tVex

 * using)(),(, tVextVK we compute the sum

 4Σ from proposition 1.

 * compute the energy function

 4321
2222

)(Σ+Σ+Σ+Σ=
DCBA

tE

 * optional: print the values)(),(, tEtVt .

 * compute the following matrices at time t

 () nXtVSlinVSL X ,1,)(==

 () njtVScolVSC j ,1,)(==

 ())()(
~

1,1, tvtvV jXjX −+ += , for

 all njnX ,1;,1 ==

 VK
~

 * compute the correction matrix)(tU∆ by

 using the formula (14) from proposition 4
 * update the input matrix U by the recurrent
 equation
)()()1(tUtUtU ∆+=+

 L3 CONTINUE (the DO loop until t=N) .
 Step 3. Verify if the closed Do loop generates an
admissible TSP solution, by the matrix

 ())()(NvNV jX= .

 There are several possibilities (versions)
 Version 1. The matrix)(NV generates an admissible

TSP solution. Then GO TO label L4.
 Version 2. The matrix)(NV do not generate an

admissible solution because

 { }1;0)(∉Nv jX i.e. ()1;0∈jXv .

 Then we replace N by NNN >',' and GO TO label

L0 and resume the cycle DO loop.
 Version 3. One uses the matrix)(NV and compute

the maxim element on each line nXX ,1, = . We denote

it by 0)(* =Nv
jX

 . If 8.0,)1;()(* >∈ εεNv
jX

 (for

example) then we set 1* =jX
v and all the other

elements *,0)(jjNv jX ≠= on the line X. (winner-

take-all). The resulting matrix is denoted)(* NVl , where

l means the work on lines. Analogous we can compute

the maxim element)(* Nv
jX

 on each column nj ,1= .

So we obtain the matrix)(* NVc , where the letter c

means the work on columns.

 Compute the routes described by matrices)(* NVl ,

)(* NVc and take the best one. GO TO L4.

 L4 CONTINUE
 Step 4. Print the final results :

 ,N)(* NVl or)(* NVc ,)(NE and the route *R .

 STOP
 END

7 Application 2
Let n be with the value 4=n and the distances between
the towns a, b, c, d given by the matrix



















=

0152

1023

5207

2370

K . Apply the above algorithm to find

the best route.
 Solution. We use the parameters
 10,01.0,1,10,5',4 =−∆==== Ntnn τλ

 10,4,10,10 ==== DCBA ,
se

sf
201

1
)(

−+
=

 The initial inputs are



















==

0211

2110

1102

1021

)1(0 UU . For 1=t we obtain

Proceedings of the 9th WSEAS International Conference on Automatic Control, Modeling & Simulation, Istanbul, Turkey, May 27-29, 2007 214



















=

500.0000.1999.0999.0

000.1999.0999.0500.0

999.0999.0500.0000.1

999.0500.0000.1999.0

)1(V

 952.351 =Σ , 952.352 =Σ , 252.03 =Σ

 56.3694 =Σ ; 84.22707)1(=E and so on.

 992.85992.13)';(=−=nVS .

 Construct the matrix VS .
 Use the formula

 () 40151,1, ,;
~

YYYYjYjY vvvvvvV ==+= −+

for 4,1=j and one obtains the matrix



















=

999.1499.1999.1499.1

4999.1999.1499.1999.1

999.1499.1999.1499.1

499.1999.1499.1999.1

~
V .

 The matrix VK
~
 has the elements



















=

492.14492.13492.14492.13

494.10494.10494.10949.10

486.23486.25486.23486.25

488.22488.19488.22488.19

~
VK



















−−−−

−−−−

−−−−

−−−−

=∆

408.2228.2319.2219.1

928.1919.1919.1009.2

218.3418.3308.3428.3

118.3908.2128.3818.2

)1(U

)1()1()2(UUU ∆+=



















−−−−

−−−

−−−−

−−−−

=

408.2288.0319.1219.1

071.0919.0918.0009.2

218.2418.2308.3428.1

118.2908.2128.1818.1

)2(U

 2=t . The matrix)2(V has the elements

)2(2

1

1
)2(

jXu
jX

e

v
λ−

+
= , 10=λ

 4,1;4,1 == jX .























⋅⋅

⋅⋅

⋅

⋅

=

−−

−−

−

−

0.001.01049.31058.2

0.01004.11004.10.0

0.00.00.01095.3

0.00.01059.10.0

)2(

1211

88

3

10

V

 }1;0{)2(∉jXv . The algorithm must continue.

References
 [1]. APPLEGATE L. David, BIXBY E. Robert,
CHVATAL Vasek, COOK J. William, TSP cuts which do
not conform to template paradigm, Computational
Combinatorial Optimization (M. Junger, D. Naddef,
editors), Springer, 2001.
 [2]. APPLEGATE L. David, BIXBY E. Robert,
CHVATAL Vasek, COOK J. William, The Traveling
Salesman Problem: A Computational Study, Princeton
Universitary Press, 2006.
 [3]. CHRISTOF T. , REINELT G., Parallel Cutting
Plane Generation for the TSP. In Parallel Programming
and Applications (R. Fritszon, L. Finino, editors), IOS
Press, page 163-169, 1995.
 [4]. FREEMAN A. James, SKAPURA M. David,
Neural Networks: Algorithms, Applications and

Programming Techniques, Addison-Wesley Publishing
Company, 1991.
 [5]. JAIN K. Anil, MAO Jianchang, MOHIUDDIN K.
M. , Artificial Neural Networks: A Tutorial, IEEE, March,
1996.
 [6]. KRÖSE Ben, Van der SMAGT Patrick, An
Introduction to Neural Networks , Chapter 5, University
of Amsterdam, Eighth Edition, November 1996.
 [7]. PADBERG M. W., Rinaldi G. , A Branch-and-
Cut Algorithm for the Resolution of Large-Scale
Symmetric TSP, SIAM Review 33, page 60-100, 1991.
 [8]. POPOVICIU Nicolae, BONCUT Mioara, A
Complete Sequential Learning Algorithm for RBF

Neural Networks with Applications , WSEAS
Transactions on Systems, Issue 1, Volume 6, January
2007, pages 24-32.
 [9]. SYED SAAD ALZHAR A. , RBF Neural
Networks Based Self-Tuning Adaptive Regulator,
WSEAS Transactions on Systems, Issue 9, Volume 3,
Nov. 2004.

Proceedings of the 9th WSEAS International Conference on Automatic Control, Modeling & Simulation, Istanbul, Turkey, May 27-29, 2007 215

