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Abstract: - The continuous operation of the telemetric network of seismoelectromagnetic stations at the 

southern frontal part of the Hellenic Arc, one of the most active geophysical and seismological laboratories of 

nature in Europe, has enabled the detection and identification of a number of electric, magnetic and 

electromagnetic phenomena which have been repeatedly reported as forerunners of earthquakes. Aiming to 

identify the nature of such signals several models have been proposed based upon the characteristics exhibited 

by the observed anomalies and different possible generation mechanisms. Most of the observed anomalies 

appear to coincide with the main characteristics featured by seismic electric signals (SES) and electric 

earthquake precursors (EEP) which are considered to be the main candidates for short-term earthquake 

precursors. This paper, though, discusses an electric potential anomaly, captured by electric field recordings, 

accompanying the Kythira M 6.9 earthquake on the 8
th
 of January, 2006, which exhibits different 

characteristics to the existing EEP and SES models, and presents the authors’ thesis regarding the nature of 

this particular signal along with a plausible generation mechanism. 
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1   Introduction 
  This research project investigates the nature and 

the possible generation mechanism of the electric 

earthquake precursor (EEP) preceding and co-ceding 

the M 6.9 Kythira earthquake on the 8
th
 of January, 

2006, located 36.21˚ North (latitude) and 23.41˚ 

East (longitude) in the frontal of the Southern 

Hellenic arc. The characteristic features of exhibited 

by the recorded EEP signal support the authors’ 

thesis [1,2,3,4] regarding the nature of EEP signals 

and their generation mechanism, which is based 

upon the propagating cracks theory [5,6]. It is the 

authors’ belief that EEP signals are transient electric 

potential anomalies external to the natural 

electromagnetic field of the Earth of ionospheric 

origin, i.e. the result of a different generation 

mechanism, despite the fact that they are observed 

upon surface measurements of the Earth’s electric 

field. A strong indication supporting that thesis is 

the fact that the EEP signal accompanying the 

Kythira earthquake was only observed upon the 

surface recordings of the electric field (Figure 1, 

subplot ‘a’) whilst there is no indication of the latter 

upon the simultaneous magnetic field recordings 

(Figure 1, subplot ‘b’). The square on both subplots 

in Figure 1 indicates the time of occurrence of the 

main earthquake. This observation contradicts 

several of the existing models aiming to describe 

preseismic electromagnetic phenomena [7,8,9]. To 

enhance our case that EEP signals are external 

additional distortions to the natural electric field of 

the Earth due to ionospheric variability and therefore 

they should not appear upon magnetic field 

recordings, the authors have employed a pattern 

recognition application with the incorporation of 

neuro-fuzzy technology. A neuro-fuzzy model has 

been developed and trained to predict [3,4] the 

recorded electric field signal during time-periods of 

minimal seismic activity. After the successful 

completion of the training process, the neuro-fuzzy 

model was activated upon the electric field 

recordings around the time of the Kythira 

earthquake, which resulted in the rejection of the 

observed EEP signal from the surface electric field 

recordings. The neuro-fuzzy model has ‘decided’ 

that the observed variation was not part of the 

Earth’s natural electric field due to ionospheric 

variability and therefore, it considerably suppressed 

the variation at its output. The behaviour of the 

neuro-fuzzy model, plus the fact that the EEP does 

not appear upon the simultaneous magnetic field 

recordings, lead us to believe that this EEP signal 

does not fall within the boundaries of existing 
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models describing preseismic electric phenomena. 

Instead, the authors present a scientific hypothesis 

regarding the nature of this particular EEP signal 

discussing a possible physical generation 

mechanism producing such a signal based upon the 

propagating cracks theory. 
 

 

2  EEPs as external additional 

distortions upon the Earth’s natural 

electric field 
  The propagating cracks theory proposed by 

Teysseyre and Nagahama [5,6] accommodates the 

superposition of signals from all the simultaneously 

propagating cracks in the surrounding seismogenic 

area. According to this theory EEP signals are the 

result of a different generation mechanism, 

independent to the source that causes the natural 

electric field of the Earth, i.e. ionospheric variability. 

This could well be the reason why the possible EEP 

signal accompanying the 2006 Kythira M 6.9 

earthquake was only recorded by electric field 

measurements whilst there was no indication of it 

upon magnetic field recordings. Based on that 

hypothesis the EEP signal could be the result of a 

continuous large upward shift of the sea-bed in the 

seismogenic area captured as an external additional 

electric potential anomaly upon the recordings of the 

natural electric field of the Earth.  
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Fig. 1  (a) recorded electric field signal from 

approximately 9 p.m. on the 29
th
 of December, 2005 

till 1 p.m. on the 11
th
 of January, 2006. 

(b) simultaneous magnetic field recordings. The 

sampling frequency of the recordings is fs = 1Hz. 

The recorded time-series have been decimated by a 

factor of 256, and filtered by a Chebyshev lowpass 

filter to prevent aliasing, in order to reduce the 

workload and the processing time required to 

sufficiently train the neuro-fuzzy model. The square 

indicates the time of the occurrence of the Kythira M 

6.9 earthquake at approximately 11:35 a.m. on the 

8
th
 of January, 2006. 

 
 

  In order to identify whether the EEP was the 

outcome of a different generation mechanism than 

the Earth’s natural and due to ionospheric variability 

electric field, we have resolved to a pattern 

recognition experiment with the incorporation of 

soft computing technology. A neuro-fuzzy model, 

i.e. a neural network with intrinsic fuzzy logic 

abilities [10], has been developed and trained to 

identify the recorded electric field signal using the 

data recorded before the occurrence of the possible 

electric earthquake precursor. Then, propagating 

through the electric field recordings, the neuro-fuzzy 

model forecasts the next sample of the recorded 

signal based upon a number of previously recorded 

data. The purpose of the experiment is to monitor 

the output of the neuro-fuzzy model and identify 

whether it follows the detected EEP signal as if it 

was a part of the natural due to ionospheric 

variability electric field; or rejects it as an external 

distortion by considerably suppressing the EEP 

aiming for the actual value of the natural due to 

ionospheric variability electric field alone. 
 

 

3  Neuro-fuzzy model training and 

operation 

  To train and evaluate the performance of the neuro-

fuzzy model, 4096 data samples of electric field 

recordings (Figure 1, subplot ‘a’) have been selected 

[2], corresponding approximately to the time-period 

from 9 p.m. on the 29
th
 of December, 2005 to 1 p.m. 

on January the 11
th
, 2006, which includes the 

possible electric earthquake precursor. The original 

sampling frequency of the recorded data is fs = 1 Hz 

but the overall data set has been decimated by a 

factor of 256 because it is very costly in processing 

time [11] to train a neural network with such a heavy 

workload. A sliding window consisting of four 

previous inputs, at n-12, n-24, n-36 and n-48 [12], 

propagating though the time-series forms the four 

input vectors of the neuro-fuzzy model. The first 

2548 samples in the time-series, are used to train the 

neuro-fuzzy model to predict the next sample (n+1) 

in the time-series [13], whilst the following part of 

the time-series remains unseen by the neuro-fuzzy 

model. The initial 2048 data samples of the training 

data set were shown to the neuro-fuzzy model 

during training, whilst the last 500 (2049 to 2548) 

data samples remained unseen by the network and 
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were used to monitor its performance and prevent 

overtraining the model.  

  An initial structure for the neuro-fuzzy model is 

obtained by applying grid partitioning [1] on the 

first half of the input data set. This initial model is 

subjected to training with a hybrid algorithm [10], 

i.e. a combination of the least squares estimator and 

the backpropagation algorithm. During a forward 

pass an input vector is fed to the neuro-fuzzy model 

and the least squares estimator is used to adapt its 

consequent parameters, which define the rules and 

output membership functions (MFs) of the model. A 

training error is computed by subtracting the output 

of the neuro-fuzzy model, for the current set of 

parameters, from the required output, i.e. the actual 

value of the electric field signal at data sample n+1. 

The training error is deployed during the backward 

pass through the neuro-fuzzy model by the 

backpropagation algorithm in order to adapt its 

premise parameters, which determine the shape and 

dimensions of the input MFs. After every training 

epoch the neuro-fuzzy model is tested against the 

last 500 samples of the training data set to prevent 

overtraining [13]. The final neuro-fuzzy model holds 

the parameters set which produced the minimum 

checking error. The structure of the developed 

neuro-fuzzy model is shown in Figure 2. The neuro-

fuzzy model has four inputs (layer 1) with two input 

membership functions per input (layer 2), and it is 

guided by sixteen rules (layer 3). The contribution of 

each rule to the output of the neuro-fuzzy model is 

determined by the output MF (layer 4) allocated to 

it, whilst the bias neuron (dashed line in Figure 2) 

sets a weighting factor to each rule. The neuron in 

layer 5 defuzzifies the normalised weighted outputs 

of all rules to produce a crisp output (layer 6). 

 
 

 

 

 

 

 

 

 

 

 

 

 
 

 

Fig. 2  Neuro-fuzzy models’ architecture. Black 

nodes: inputs to and output from the neuro-fuzzy 

model. White nodes: neurons. Dashed node: rules’ 

bias neuron. 

3.1  Experimental Results 
  The result of the application of the neuro-fuzzy 

pattern recognition model upon the full electric field 

signal after training the neuro-fuzzy model is shown 

in Figure 3, where the square on subplot ‘a’ 

indicates the time occurrence of the main 

earthquake. Comparing subplots ‘a’ and ‘b’ on 

Figure 3, it is made apparent that there is a 

significant suppression of the density of the possible 

recorded EEP signal. The output of neuro-fuzzy 

model follows closely the recorded electric field 

signal until the moment of occurrence of the 

possible EEP, at approximately data-sample 2752. 

The sudden rise of the magnitude of the recorded 

signal over the next few samples ‘confuses’ the 

neuro-fuzzy model and for a sort time it becomes 

unstable, hence the overshooting observed at the 

models output between data-samples 2780 and 2830. 
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Fig. 3  (a) recorded electric field signal - the square 

indicates the time of the occurrence of the Kythira M 

6.9 earthquake at approximately 11:35 a.m. on the 

8
th
 of January, 2006; (b) neuro-fuzzy model output 

indicating rejection of the possible EEP signal as an 

external addition upon the electric field recordings; 

(c) error signal – the difference between the 

recorded electric field signal the output signal from 

the neuro-fuzzy model. The error signal highlights 

the close proximity of the neuro-fuzzy model’s 

output signal to the recorded electric field before and 

after the occurrence of the possible recorded EEP 

signal as well as the continuous incremental 

rejection of the latter at the time of its occurrence. 

 

 

Because of the adaptive nature [14] of neural 

networks after a sort time of approximately fifty 

samples the neuro-fuzzy model adapts accordingly 

to compensate for the new information received at 

 i/p     i/p MF    rule    o/p MF   weighted    o/p 

                                                   sum o/p 

      nodes - black: i/p - o/p, white: neurons 

                  dashed: bias neuron 
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its input and becomes stable once-more. Following 

data-sample 2830 the neuro-fuzzy model ‘decides’ 

not to follow the information received at its input, 

i.e. the signal shown by subplot ‘a’ on Figure 3, 

while predicting the next sample of the time-series at 

its output. Instead it tries to approximate the 

magnitude of the natural electric field alone, thereby 

considerably suppressing the possible recorded EEP 

signal. Around data sample 3510 the neuro-fuzzy is 

affected by a sudden drop in the magnitude data 

received at its input (the end of the possible EEP 

signal). Once-more the neuro-fuzzy model 

temporarily becomes unstable and thus the 

overshooting observed between data-samples 3530 

and 3585. The remarkable observation in this case is 

that once the model becomes stable again, which is 

almost immediately after the end of the observed 

EEP signal around data sample 3595, its output 

approximates closely again the recorded electric 

field signal.  

  The fact that the neuro-fuzzy model follows 

closely the recorded electric field signal before 

(signal to difference ratio of 30.45 dB) and after 

(signal to difference ratio of 28.39 dB) the 

occurrence of the EEP signal, and the rejection of 

the latter (signal to difference ratio of -39.68 dB) at 

the time of its occurrence (Figure 3 – subplot ‘c’) 

makes us believe that the neuro-fuzzy model treats 

the EEP signal as an external additional distortion 

upon the natural and due to ionospheric variability 

electric field of the Earth. 
 
 

4  Conclusions 
  Existing models describe electric earthquake 

precursors as signals preceding large seismic events 

obtained upon recordings of the Earth’s electric and 

magnetic fields. The possible electric earthquake 

precursor, though, accompanying the Kythira M 6.9 

earthquake exhibits some ‘weird’ characteristics. 

Firstly, the possible EEP signal was only captured 

by electric field recordings whilst there was no 

indication of it upon the simultaneous magnetic field 

recordings. Secondly, the duration of the EEP signal 

is enormous in comparison to other detected EEP 

candidate signals, lasting for a couple of days rather 

than a couple of hours. Finally, EEP signals were 

believed to precede earthquakes. This is partly true 

in this case as indeed the possible EEP signal 

attributed to the Kythira earthquake does precede the 

main seismic event which occurred at 11:34’ a.m. on 

the 8
th
 of January, 2006. The rising edge of the EEP 

signal occurred almost 36 hours prior the main 

seismic event around 1 a.m. on January the 7
th
, 2006. 

The EEP, though, outlasted the main seismic event 

with its falling edge occurring approximately 25 

hours later, around 1 p.m. on the 9
th
 of January, 

2006.  

  Therefore, it is the authors’ belief that this 

particular EEP signal was the result of a continuous 

large upward shift of the sea-bed in the seismogenic 

area which lasted approximately three days from the 

7
th
 to the 9

th
 of January, 2006. This could justify the 

long duration of the possible EEP signal and the fact 

that it bounds the main earthquake. Furthermore, the 

nature of the signal produced by this generation 

mechanism provides a possible explanation why the 

EEP signal was only observed upon electric field 

recordings. This theory, supported also by the 

outcome of the neuro-fuzzy pattern recognition 

experiment, suggests that this particular EEP signal 

is an external transient electric potential anomaly 

from a different source (propagating cracks) to the 

natural and of ionospheric origin electric field of the 

Earth. This results to the detection of the possible 

EEP signal as an external additional distortion upon 

electric field recordings, and not as a genuine part of 

the natural electric field of the Earth due to 

ionospheric variability, which also justifies why 

there is no indication of the latter upon the 

simultaneous magnetic field recordings. 
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