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Abstract:Let Gl be the graph obtained fromKl by adhering the root of isomorphic treesT to every vertex ofKl.
In this paper we study the spectrum of the adjacency matrixA(Gl) for all positive integerl and give some result
about the spectrum of the adjacency matrixA(Gl).
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1 Introduction
Let G be a simple undirected graph onn vertices, and
let A(G) be a(0, 1)-adjacency matrix ofG. Since
A(G) is a real symmetric matrix, all of its eigenval-
ues are real.Without loss of generality, that they are
ordered in non-increasing order, i.e.,

λ1(G) ≥ λ2(G) ≥ ... ≥ λn(G),

and call them the spectrum ofG, The largest eigen-
valueλ1(G) is called the spectral radius ofG.

About the spectrum and the spectral radius of
graphs, a great deal of investigation is carried out
[1,2,3]. Specially, to the special graphs, for example
[4] studied the spectral radius of bicyclic graphs with
n vertices and diameterd, [5] studied the spectral ra-
dius of trees with fixed diameter.

Let T be an unweighted rooted tree ofk levels
such that in each level the vertices have equal degree.
Kl be a complete graph onl vertices. LetGl be the
graph obtained fromKl by adhering the root of iso-
morphic treesT to every vertex ofKl. Similar to the
definition of tree’s level, we agree that the complete
graphKl is at level1, and thatGl hask levels. Thus
the vertices in the levelk have degree1.

For j = 1, 2, 3, ..., k, Let nk−j+1 anddk−j+1 be
the number of vertices and the degree of them in the
level j. Observe thatnk = l is the number of vertices
in level1 andn1 the number of vertices in levelk(the
number of pendant vertices). Then,

nk−1 = (dk − l + 1)nk,

nk−j = (dk−j+1 − 1)nk−j+1, j = 2, 3, ..., k − 1

Observe thatdk is the degree of vertex of the complete
graphKl in Gl, d1 is the degree of the vertices in the

level k, nk = l . The total number of vertices in the
graphGl is

n =
k−1∑
j=1

nj + l

In general,using the labelsn, n − 1..., 1, in this
order, our labeling for the vertices ofGl is:

(1)First, we label the vertices ofKl with clock-
wise direction.

(2)For one of vertices of levelj(j = 1, 2, ..., k −
1), the bigger its labeling is , then the vertex of level
j + 1 adjacent to it should be labeled first.

(3)Label from level1 to levelk in turn.
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Fig.1. graphG4

6th WSEAS International Conference on E-ACTIVITIES, Tenerife, Spain, December 14-16, 2007     62



Above(Fig.1.) is an example of a such graphG4

for k = 3, n1 = 24, n2 = 8, n3 = 4, d1 = 1, d2 =
4, d3 = 5.

[6], [7] studied the spectrum of the adjacency ma-
trix A(Gl) for casel = 1 and l = 2 respectively. In
this paper we will study the spectrum of the adjacency
matrixA(Gl) for all positive integerl.

2 Preliminaries
We introduce the following notations:

(1) 0 is the all zeros matrix, the order of0 will be
clear from the context in which it is used.

(2)Im is the identity matrix of orderm×m.
(3) mj = nj

nj+1
, for j = 1, 2, ..., k − 1.

(4) em is the all ones column vetor of dimension
m.

For j = 1, 2, ..., k − 1, Cj is the block diagonal
matrix

Cj =


emj

emj

...
emj


with nj+1 diagonal blocks. Thus, the order ofCj is
nj × nj+1.

For example we use these notation with the graph
G4 in Fig.1.m1 = n1

n2
= 3,m2 = n2

n3
= 2, then

C1 = diag{e3, e3, e3, e3, e3, e3, e3, e3},

C2 = diag{e2, e2, e2, e2},

The adjacency matrixA(G4) in Fig.1. become

A(G4) =

 0 C1 0
CT

1 0 C2

0 CT
2 B4



whereB4 = A(K4) =


0 1 1 1
1 0 1 1
1 1 0 1
1 1 1 0


In general, our labeling yields to

A(Gl) =



0 C1

CT
1 0 C2

CT
2

... ...

... ... ...
... ... Ck−1

CT
k−1 Bl



whereBl = A(Kl) =


0 1 1 · · · 1
1 0 1 · · · 1
...

...
...

...
...

1 1 1 · · · 0


Apply the Gaussian elimination procedure we ob-

tained the following lemma:
Lemma 1. Let M =

α1In1 C1

CT
1 α2In2 C2

CT
2

. . .
. . .

. . .
. . .

. . .
. . . αk−1Ink−1 Ck−1

CT
k−1 αkInk + Bl


Let

β1 = α1

and

βj = αj −
nj−1

nj

1
βj−1

, j = 2, 3, ..., k, βj−1 6= 0.

If βj 6= 0 for all j = 1, 2, ..., k − 1, then

detM = βn1
1 βn2

2 ...β
nk−1
k−1 (βk − l + 1)(βk + 1)l−1. (1)

Proof. Apply the Gaussian elimination procedure,
without row interchanges, toM to obtain the block
upper triangular matrix

β1In1 C1

β2In2 C2

β3In3

. . .

. . .
. . .

βk−1Ink−1 Ck−1

βkInk + Bl


Hence,

detM = βn1
1 βn2

2 ...β
nk−1

k−1 det(βkInk
+ Bl),

since

det(λI −Bl) = (λ− l + 1)(λ + 1)l−1,

so

detM = βn1
1 βn2

2 ...β
nk−1

k−1 (βk − l + 1)(βk + 1)l−1.

Thus, (1) is proved.#
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3 The spectrum ofA(Gl)

Let D =

−In1

In2

−In3

. . .
(−1)k−1Ink−1

(−1)kInk


we can easily see that

D(λI + A(Gl))D−1 = λI −A(Gl)

Let
φ = {1, 2, ..., k − 1}

and
Ω = {j ∈ φ : nj > nj+1}

Observe thatnk−j = (dk−j+1 − 1)nk−j+1, j =
2, 3, ..., k − 1 andnk−1 = (dk − l + 1)nk. Observe
also that ifj ∈ φ − Ω thennj = nj+1 andCj is the
identity matrix of ordernj .

Theorem 1.Let

S0(λ) = 1, S1(λ) = λ,

Sj(λ) = λSj−1(λ) − nj−1

nj
Sj−2(λ), for j =

2, 3, ..., k − 1,

S−k (λ) = (λ + 1)Sk−1(λ)− nk−1

l
Sk−2(λ)

and

S+
k (λ) = (λ− l + 1)Sk−1(λ)− nk−1

l
Sk−2(λ).

Then
(i) If Sj(λ) 6= 0, for j = 1, 2, ..., k − 1, then

det(λI −A(Gl)) = (S−k (λ))l−1S+
k (λ)

∏
j∈Ω

S
nj−nj+1
j (λ). (2)

(ii)The spectrum of A(Gl) is σ(A(Gl)) =
(∪j∈Ω{λ : Sj(λ) = 0}) ∪ {λ : S−k (λ) = 0} ∪ {λ :
S+

k (λ) = 0}.
Proof. SupposeSj(λ) 6= 0 for all j = 1, 2, ..., k − 1.
We apply lemma 1 toM = λI + A(Gl)

λI + A(Gl) =

λIn1 C1

CT
1 λIn2 C2

CT
2

... ...

... ... ...
... λInk−1

Ck−1

CT
k−1 λInk

+ Bl



We have

β1 = λ = S1(λ) 6= 0,

β2 = λ− n1

n2

1
β1

= λ− n1

n2

1
S1(λ)

=
λS1(λ)− n1

n2
S0(λ)

S1(λ)
=

S2(λ)
S1(λ)

6= 0

Similarly, for j = 3, 4, ..., k − 1, k

βj = λ− nj−1

nj

1

βj−1
= λ− nj−1

nj

Sj−2(λ)

Sj−1(λ)

=
λSj−1(λ)− nj−1

nj
Sj−2(λ)

Sj−1(λ)
=

Sj(λ)

Sj−1(λ)
6= 0

Thus

βk + 1 =
Sk(λ)

Sk−1(λ)
+ 1

=
(λ + 1)Sk−1(λ)− nk−1

l
Sk−2(λ)

Sk−1(λ)

=
S−k (λ)

Sk−1(λ)
,

βk − l + 1 =
Sk(λ)

Sk−1(λ)
− l + 1

=
(λ− l + 1)Sk−1(λ)− nk−1

l
Sk−2(λ)

Sk−1(λ)

=
S+

k (λ)

Sk−1(λ)

Therefore, from Lemma 1,

det(λI + A(Gl))

= Sn1
1 (λ)

Sn2
2 (λ)

Sn2
1 (λ)

...
S

nk−1
k−1 (λ)

S
nk−1
k−2 (λ)

S+
k (λ)

Sk−1(λ)

(S−k (λ))l−1

Sl−1
k−1(λ)

= Sn1−n2
1 (λ)Sn2−n3

2 (λ)...S
nk−1−nk

k−1 (λ)

×S+
k (λ)(S−k (λ))l−1

= (S−k (λ))l−1S+
k (λ)

∏
j∈Ω

S
nj−nj+1
j (λ)

Sincedet(λI −A(Gl)) = det(λI + A(Gl)). Thus (i)
is proved. Similar to the proof in [7], we can get (ii)
by (i) . #

Let R+
k andR−k be thek × k symmetric tridiago-

nal matrices
R+

k =
0

√
d2 − 1√

d2 − 1 0
√

d3 − 1
√

d3 − 1
. . .

. . .√
dk−1 − 1 0

√
dk − l + 1√

dk − l + 1 l − 1


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andR−k =
0

√
d2 − 1√

d2 − 1 0
√

d3 − 1
√

d3 − 1
. . .

. . .√
dk−1 − 1 0

√
dk − l + 1√

dk − l + 1 −1


Observe that

R+
k = R−k + diag{0, 0, ..., 0, l}.

Theorem 2. For j = 1, 2, 3, ..., k − 1, let Rj be the
j × j leading principal submatrixR+

k . Then

det(λI −Rj) = Sj(λ), j = 1, 2, ..., k − 1,

det(λI −R−k ) = S−k (λ),

det(λI −R+
k ) = S+

k (λ).

Proof. It is well know [8] that the characteristic poly-
nomialsQj of thej×j leading principal submatrix of
thek × k symmetric tridiagonal matrix

H =



a1 b1

b1 a2 b2

b2
... ...
... ... ...

... ak−1 bk−1

bk−1 ak


satisfy the tree-term recursion formula

Qj(λ) = (λ− aj)Qj−1(λ)− b2
j−1Qj−2(λ)

with

Q0(λ) = 1 and Q1(λ) = λ− a1.

In our case,a1 = a2 = ... = ak−1 = 0, ak = l −
1(or ak = −1) and

bk−1 =
√

nk−1

nk
=

√
dk − l + 1,

bj =
√

nj

nj+1
=

√
dj+1 − 1

for j = 1, 2, 3, ..., k − 2.

For these values, the above recursion formula gives
the polynomialsSj(λ), j = 0, 1, 2, ..., k − 1, S+

k (λ)
andS−k (λ).

This completes the proof.#

Theorem 3. Let Rj , j = 1, 2, ..., k − 1, R+
k andR−k

as above. then
(i)σ(A(Gl)) = (∪j∈Ωσ(Rj)) ∪ σ(R+

k ) ∪ σ(R−k ).
(ii) The multiplicity of each eigenvalue of the ma-

trix Rj , as an eigenvalue ofA(Gl), is at leastnj−nj+1

for j ∈ Ω, 1 for the eigenvalues ofR+
k andl − 1 for

the eigenvalues ofR−k .
Proof. (i) is an immediate consequence of Theo-
rem 1 and Theorem 2. From the strict interlacing
property[9] for a symmetric tridiagonal matrix with
nonzero codiagonal entries, it follows that its eigen-
values are simple. Hence the eigenvalues ofRj , j =
1, 2, ..., k− 1, R+

k andR−k are simply. Finally, we use
(2) and theorem 2 to obtain(ii).#

Theorem 4. The largest eigenvalue ofR+
k is the

largest eigenvalue ofA(Gl).
Proof. It can be proofed by the strict interlacing prop-
erty immediately.#

For example, for the graphG4 in Fig.1.

R+
3 =

 0
√

3√
3 0

√
2√

2 3



R−3 =

 0
√

3√
3 0

√
2√

2 −1


andΩ = {1, 2}. The eigenvalues ofA(G4) in Fig.1.
are the eigenvalues ofR1, R2, R

+
3 andR−3 , they are

R1 : 0
R2 : −1.7320 1.7320
R−3 : −2.5139 −0.5720 2.0860
R+

3 : −1.9459 1.2521 3.6938

The spectral radius ofG4 in Fig.1. isλ1(A(G4)) =
3.6938

4 Conclusion

We studied the spectrum of the adjacency matrix
A(Gl) for all positive integerl with an effective way.
Let Rj , j = 1, 2, ..., k − 1, R+

k andR−k as in section
3. We found that:

(1)σ(A(Gl)) = (∪j∈Ωσ(Rj))∪ σ(R+
k )∪ σ(R−k ).

(2) The multiplicity of each eigenvalue of the ma-
trix Rj , as an eigenvalue ofA(Gl), is at leastnj−nj+1

for j ∈ Ω, 1 for the eigenvalues ofR+
k andl − 1 for

the eigenvalues ofR−k .
(3)The spectral radius ofR+

k is the spectral radius
of A(Gl).

It is very convenient with conclusions (1),(2),(3)
to calculate the spectrum of the adjacency matrix
A(Gl).
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