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Investigation on the spectrum of graphg;
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Abstract: Let G; be the graph obtained froifd; by adhering the root of isomorphic tregsto every vertex ofi;.
In this paper we study the spectrum of the adjacency mal(ik ) for all positive integer and give some result
about the spectrum of the adjacency mattiég; ).
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1 Introduction level k, n; = [ . The total number of vertices in the

Let G be a simple undirected graph arvertices, and graphg; is

k—1
let A(G) be a(0,1)-adjacency matrix of7. Since n — Z” oy
A(Q) is a real symmetric matrix, all of its eigenval- = !
ues are real.Without loss of generality, that they are

ordered in non-increasing order, i.e., In general,using the labets,n — 1...,1, in this
order, our labeling for the vertices 6f is:
AM(G) > Ma(G) > ... > M\ (G), (1)First, we label the vertices d&; with clock-
wise direction.
and call them the spectrum @éf, The largest eigen- (2)For one of vertices of level(j = 1,2, ...,k —
value, (G) is called the spectral radius Gf. 1), the bigger its labeling is , then the vertex of level

About the spectrum and the spectral radius of ; 1 1 adjacent to it should be labeled first.
graphs, a great deal of investigation is carried out (3)Label from levell to levelk in turn.

[1,2,3]. Specially, to the special graphs, for example 29 2120

[4] studied the spectral radius of bicyclic graphs with 23 19 1817
n vertices and diametet, [5] studied the spectral ra- 2

dius of trees with fixed diameter.

Let 7 be an unweighted rooted tree bflevels 32 1 20 15
such that in each level the vertices have equal degree. %}4
K; be a complete graph dnvertices. Letg; be the 36 ‘ .
graph obtained frond; by adhering the root of iso- 35 29 13

morphic trees” to every vertex of;. Similar to the
definition of tree’s level, we agree that the complete
graph K is at levell, and thatj; hask levels. Thus
the vertices in the level have degreé.

Forj =1,2,3,...,k, Letng_;;1 andd,_; 4 be

the number of vertices and the degree of them in the 33 34

level j. Observe that;, = [ is the number of vertices 2

in level 1 andn; the number of vertices in levé{the 1 26 27 12

number of pendant vertices). Then, 5 28 1
ng—1 = (dr — 1+ D)ny, 4 L 6 s 5 9 10

ng—j = (dk—jr1 — D)ng—jy1,5 = 2,3, ...,k — 1

Observe thatly, is the degree of vertex of the complete Fig.1.graphg,

graphK; in G, d; is the degree of the vertices in the
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Above(Fig.1.) is an example of a such gragh o011 -1
fork =3,n = 24,ny = 8,ng =4,d; = 1,dy = 101 -+ 1
4,ds = 5. whereB; = A(K)) = : o
[6], [7] studied the spectrum of the adjacency ma- o C
trix A(G;) for casel = 1 andl = 2 respectively. In it -0
this paper we will study the spectrum of the adjacency Apply the Gaussian elimination procedure we ob-
matrix A(G;) for all positive integet. tained the following lemma:
Lemma 1. Let M =
2 Preliminaries ol G
Cl 0421n2 02
We introduce the following notations: or
(1) 0 is the all zeros matrix, the order ofwill be 2
clear from the context in which it is used.
(2 is th% identity matrix of ordem x m. ety Crs
(3)mj = n,—il,for] = 1,2,...,]{7—1. 0571 Oékfnk-i-Bl
(4) e, is the all ones column vetor of dimension
m. Let
Forj = 1,2,....k — 1, Cj; is the block diagonal B =a;
matrix
and
€m;
€m. n;_1 1 .
CJ: J ﬁ]:a]*#m,]ZQ,?),,k,ﬁ]fl#o
€m; .
If 3; #0forallj =1,2,....,k — 1, then
with n; ;1 diagonal blocks. Thus, the order 6f; is o .
Nj X Mjy. detM = 57" By ..0. 50 (B — L+ 1) (B + 1) )

For example we use these notation with the graph
Q4 in Flg1m1 =M 3,m2 = D2 — 2, then

ng ng

Proof. Apply the Gaussian elimination procedure,
without row interchanges, td/ to obtain the block

C1 = diag{es, e, €3, €3, €3, €3, €3, €3}, upper triangular matrix
Cy = diag{ez,e2,e2,e2}, Bil,, Ci
. . o I, C
The adjacency matrix(G,) in Fig.1. become A ?
ﬂBIna
0 C; 0
A(Gs) = C{ 0 O Be—11In,,_, Cr-1
0 C7 By Brln, + By
01 1 1 Hence,
hereB, = A(K,) = Lol nigna  gNk—1
whereBy = A(Ky) = | | | 01 detM = (7' 852...0.% 1 det(By1n, + By),
1 1 10 .
In general, our labeling yields to since
0 det(\[ — B)) = (A — 1+ 1)(A+ 1)1,
ct o o

A(G) =
detM = B7 By .35 7 (B — 1+ 1) (B + 1)L

ct, B Thus, (1) is proved#
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3 The spectrum of A(G))

Let D =

—1I,
In,
I,

(_1)k_11”k—1 &
(*1) Ink

we can easily see that
D\ + A(G))D™ ' = X — A(G)
Let
p={1,2,...k—1}
and
Q:{j€¢:nj>nj+1}
Observe thatn,_; = (dp—j+1 — )nk—jq1,J =
2,3,...,k—1landng_1 = (dx — [ + 1)nk. Observe

also that ifj € ¢ — Q thenn; = n;,, and(j is the
identity matrix of ordenm;.

Theorem 1.Let

So(A) =1,51(A) = A,

Si(A) = ASja(N) — FEESja(N) for i =
2.3,k —1,
ST(A) = (A+ DSk (A) — ”’“l‘l Sk_a(N)
and
+ NE—1
S (A) = (A =14+ 1)Sk—1(A) = == Sk—2(A).
Then

(i) If S;(A) #0,forj =1,2,....,k — 1, then

N | A SV )

JEQ

det(AN — A(G)) = (Sg A) 1SF(A

(iDThe spectrum of A(G;) is o(A(G)) =
(Ujea{A : S§(A) =0} U{A S, (A) =0} U {X:
S (A) =0},

Proof. SupposesS;(\) # Oforall j =1,2,...,k — 1.
We apply lemma 1 td/ = A\l + A(G))

A+ A(G) =

A, Ci

T A, C
c3

>\Ink 1 Ck}—l
Ckfl My, + By

We have
B1=A=51(\) #0,
ni 1 ni 1
S N S
& na i na S1(A)
CASI(A) = ESe(A) Sh(N) 20
B S1(A) - SN
Similarly, forj =3,4,....k — 1,k
_ nj—1 1 nj—1 SJ 2(A)
o= A= n; B 1_)\_ -1(N\)
A8 () = S (A )_ SJ(A)
5100 S 7
Thus
S
Or+1 = 7Sk—1()\)+1
O F DS (V) — LS (N
o Sk—1(A)
_ 5
Sk—1(A)
_ Sk
B—1l+1 = S,H(/\)_Hl
A= DS () — LS ()
o Sk—1(A)
s
Sk—1(A)

Therefore, from Lemma 1,

det(A + A(Gr))
SE2(0) SpET ) SE() (Sy (W)Y
SO LT S () S0
= STRSET) ST

xS*( )(5,;( ))

( l IS
jGQ

= S

Sincedet(A — A(G;)) = det(A + A(G;)). Thus (i)
is proved. Similar to the proof in [7], we can get (ii)
by (i) . #

Let R} andR; be thek x k symmetric tridiago-
nal matrices

+ _
Rk —
0 do —1
Vda — 1 0 ds —1
Vds —1 K
A/ dp—1 —1 0 Vd —1+1
Vdie —1+1 -1
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andR; =
0 Vdz — 1
Vds —1 0 Vds — 1
Vids —1
A dg—1—1 0 Vde —1+1
Vdy —1+1 —1
Observe that

R = R; + diag{0,0,...,0,1}.

Theorem 2. Forj = 1,2,3,...,k — 1, let R; be the
j x j leading principal submatrile. Then

det()\l - Rj) = S]()\),] = 1, 2, ceey k— 1,

det(\ — Ry) = 5 (V)
det(\ — R}) = Sit(N).

Proof. It is well know [8] that the characteristic poly-
nomialsQ; of thej x j leading principal submatrix of
thek x k symmetric tridiagonal matrix

al b1
b1 a9 bg
by
H =
ar—1 brp—1
be—1  ax

satisfy the tree-term recursion formula
Qi) = (A —a)Qj—1(N) = b7_1Q;2())
with
Qo(A\) =1 and Q1(\)=X—a;.

In our casea; = as = ...
1(or a;=-1)and

bt =[S = VAT T,

= ag—1 = 0,ap = 1 —

R L
bj = nj+1_ djp1—1

for 7=1,2,3,....k—2.

For these values, the above recursion formula gives

the polynomialsS;(A),j = 0,1,2,....k — 1,SF()\)
andS, (A).
This completes the proof#

Theorem 3. Let R;,j = 1,2,....k — 1, R} andR;
as above. then

() (A(G) = (Ujeno(Ry)) Uo(Rf) Uo(Ry).

(i) The multiplicity of each eigenvalue of the ma-
trix R;, as an eigenvalue of(G,), is at least; —n,41
for j € Q, 1 for the eigenvalues oRkF and! — 1 for
the eigenvalues ok, .
Proof. (i) is an immediate consequence of Theo-
rem 1 and Theorem 2. From the strict interlacing
property[9] for a symmetric tridiagonal matrix with
nonzero codiagonal entries, it follows that its eigen-
values are simple. Hence the eigenvaluefpfj =
1,2,...,k—1, R;r andR, are simply. Finally, we use
(2) and theorem 2 to obtain(ii}#

Theorem 4. The largest eigenvalue aR; is the
largest eigenvalue ol (G;).
Proof. It can be proofed by the strict interlacing prop-
erty immediately#

For example, for the grapf, in Fig.1.

0 V3
Ri=|+V3 0 V2
V2 3

0 V3
Ry=1 V3 0 V2
V2 -1

andQ = {1,2}. The eigenvalues ofi(G,) in Fig.1.
are the eigenvalues @i, R, R andR;, they are

Rll 0

Ry: —1.7320 1.7320

Ry : —25139 —0.5720 2.0860
R : —1.9459 1.2521 3.6938

The spectral radius of4 in Fig.1. isA(A(Gy)) =
3.6938

4 Conclusion

We studied the spectrum of the adjacency matrix
A(G;) for all positive integeli with an effective way.
LetR;,j = 1,2,....k — 1, R; andR;, as in section
3. We found that:

(Do(A(G1)) = (Ujeao (Rj)) Ua(R)) Uo(Ry).

(2) The multiplicity of each eigenvalue of the ma-
trix R;, as an eigenvalue of(G;), is at least; —n,41
for j € Q, 1 for the eigenvalues oJRkF and! — 1 for
the eigenvalues ok, .

(3)The spectral radius @k, is the spectral radius
of A(gl)

It is very convenient with conclusions (1),(2),(3)
to calculate the spectrum of the adjacency matrix
A(Gr).



6th WSEAS International Conference on E-ACTIVITIES, Tenerife, Spain, December 14-16, 2007

References:

[1]

Dragan Stevanocic', Bounding the langest
eigenvalue of trees in terms of the largest ver-
tex degreelinear Algebra and its Applications
360, 2003, pp. 35-42.

[2] AiMei Yu, Mei Lu and Feng Tian, On the spec-

[3]

[4]

[5]

[6]

[7]

[8]

[9]

tral radius of graphd,inear Algebra and its Ap-
plications387, 2004, pp. 41-49.
M.N.Ellingham, X.Zha, The spectral radius of
graph on surfacesJournal of Combinatorial
Theory Ser B 78, 2000, pp. 45-46.

ShuGuang Guo, On the spectral radius of bi-
cyclic graphs withn vertices and diametet,
Linear Algebra and its Application422, 2007,
pp. 119-132.

J.M. Guo, J.Y. Shao, On the spectral radius of
trees with fixed diameteL,inear Algebra and its
Applications413(1), 2006, pp. 131-147.

Oscar Rojo, Ricardo Soto, The spectra of the ad-
jacency matrix and Laplacian matrix for some
balanced treed,inear Algebra and its Applica-
tions403, 2005, pp. 97-117.

Oscar Rojo,The spectra of some trees and
bounds for the lagest eigenvalue of any tree,
Linear Algebra and its Application414, 2006,
pp. 199-217.

L.N.Trefethen,D.Bau Ill, Numericaal Linear Al-
gebra,Society for Industrial and Applied Math-
ematics1997.

G.H.Golub,C.F.Van Loan, Matrix Computation,
second ed.Johns Hookins University Pree, Bal-
timore,1989.

66



