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Abstract: - The Hausdorff measure computation of fractals is very difficult in fractal. In this paper, we present 
a novel method using the genetic algorithm to compute the Hausdorff measure of a Sierpinski carpet. The 
encoding method, decoding method and fitness computation are discussed in detail. The exact Hausdorff 
measure of the Sierpinski carpet is concluded through the implementation of the genetic algorithm.  
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1 Introduction  
Take a unit square in the Euclidean plane R2 and 
denote it by F0. Dividing each side of F0 into four 
equal parts, sixteen equal small squares are got with 
length 1/4. Removing the interior of all small 
squares except for the four ones lying on the 
vertexes of F0, we get a set denoted by F1. If the 
above procedure is repeated for each small square in 
F1, the set F2 is obtained. Repeating the above 
procedure infinitely (such as Fig. 1), we have 

. The non-empty set  

is called the Sierpinski carpet yielded by F0. By [1, 
2, 3], the Hausdorff dimension s of F is 1, and the 
Hausdorff measure H(F) of F meets the following 
condition: 
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where there are the following four mappings: 
4/)(1 xxS =  
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and , = {U | 

U is a union of some small squares  in the 

m-th structure}. 
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Fig. 1: the structure of the Sierpinski carpet 

 
From the computing expression of H (F), we 

know that it is very difficult to compute the exact of 
the Sierpinski carpet. The genetic algorithm, which 
is a self adaptive and global optimizing probability 
search algorithm inspired by evolution, is 
introduced and investigated by John Holland (1975) 
and by students of Holland (e.g., DeJong, 1975). 
The algorithm encodes a potential solution to a 
specific problem on a simple chromosome-like data 
structure and applies recombination operators to 
these structures so as to preserve critical 
information. The algorithm is robust, and the range 
of problems to which the genetic algorithm have 
been applied is quite broad [4, 5, 6]. Especially for 
the large complex nonlinear system, the genetic 
algorithm has particularly predominant capability. 
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In this paper, we will focus on the Sierpinski carpet 
with compression ratio 1/4. Section 2 discusses the 
encoding and decoding method, and fitness 
computation in detail. The experimental results and 
the future work will be given in Section 3.  
 
 

2 Realization of Genetic Algorithm 
2.1 encoding 
During the process of calculating the Hausdorff 
measure, the method of binary code with fixed 
length is used. The encoding method is as follows: 

if  is contained in the set , then its 

corresponding code is 1, otherwise its 
corresponding code is 0. In this way, a code list of 
4m length can show whether each one of the 4m  
equal small squares in the m-th structure is chosen 
or not. In order to solve the problem easily, the 
origin is regarded as the starting point here, and 
every small square is encoded according to the 
anticlockwise order.  

miiiF ...21
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Now let’s state the detail encoding method with 
the second structure. In the second structure, there 
are 42=16 equal small squares altogether. If we 
regard the origin as the starting point and encode 
every one according to the anticlockwise order, the 
marks of the 16 squares are as shown in Fig. 2. We 
choose every one of the 16 squares one by one 
according to their marks from small to large. If a 
square is chosen, we use 1 to represent on the 
corresponding position of the individual code, 
otherwise use 0. For example, 1001 0010 0100 
0000 represents that four squares of the 16 squares 
in the second structure are chosen and their marks 
are 1, 4, 7 and 10 respectively (such as Fig. 2).  

 
Fig. 2: small squares of the second structure 

2.2 decoding 
During the calculation of the Hausdorff measure, an 
individual represents a choice. Then it is the 
decoding method that any binary digit 1 of the 
individual represents which of the 4m equal small 
squares is chosen, namely that the corresponding 
small square is the result which functions act on F0. 

The detail of decoding is as follows:  
(1) Firstly, divide the whole code into four equal 

length groups, every small square that is 
represented by 0 or 1 in the first group is inside the 
square S1(F0), and every small square that is 
represented by 0 or 1 in the second group is inside 
the square S2(F0), and every small square that is 
represented by 0 or 1 in the third group is inside the 
square S3(F0), and every small square that is 
represented by 0 or 1 in the forth group is inside the 
square S4(F0). 

(2) Secondly, respectively divide every group 
above into four equal length groups, every small 
square that is represented by 0 or 1 in the first group 
of every group above is respectively inside the 
square S1 S1(F0) and S1 S2(F0) and  S1 S3(F0) 
and S1 S4(F0), and every small square that is 
represented by 0 or 1 in the second group of every 
group above is respectively inside the square 
S2 S1(F0) and S2 S2(F0) and S2 S3(F0) and 
S2o S4(F0), and the rest may be deduced by analogy. 

o o o

o

o o o

(3) Finally, continue dividing every group of the 
second step into four equal length groups until there 
is only one digit 0 or 1 in every group.  
 
2.3 calculation of fitness 
Here fitness function is F(U)= )(Uμ /|U|, then 
finding minimum value is transformed into finding 
maximum value, where )(Uμ  represents the 
value of dividing the number of 1’s in the individual 
code by 4m, and |U| represents the maximum 
distance of two random vertexes of eight vertexes 
of two random small squares. In order to calculate 
the maximum distance of any set U, a construction 
function series of every square in U must be found 
first, and then the coordinates of all vertexes of all 
small squares in U can be calculated.  
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Step 1: calculate the coordinates of all vertexes 
of all small squares. The detail calculation is as 
follows. 

(1) Work out the construction function series of 
all small squares as introduced above. 

(2) Calculate the coordinates of the left bottom 
vertex of all small squares. The detail is as follows: 

Suppose A, B, C and D are four equal small 
squares in the m-th structure, and they are inside the 
square E that is one of the squares in the (m-1)-th 
structure (such as Fig. 3). If the coordinates of the 
left bottom vertex of the square E is (x0, y0), the 
coordinates of the left bottom vertex of small 
squares A, B, C and D are listed as follows: 
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Where l represents the length of the side of the 
square E, and l=1/4m-1. 

 
Fig. 3: square E and four small squares of the next 

structure 
 

(3) Calculate the coordinates of the other 
vertexes of all small squares. The detail is as 
follows: If a small square is one of squares in the 
m-th structure and the coordinates of the left bottom 
vertex is (x, y), the coordinates of other vertexes are 
(x, y) + (1/4m, 0), (x, y) + (1/4m, 1/4m), (x, y) + (0, 
1/4m) in anticlockwise order. 

Remark All coordinates of all vertexes of all 
small squares are saved in a global variable whose 
name is “location” in turn in order to decrease the 
time of calculating individual fitness. 

Step 2: Calculate the individual fitness. 
(1) Find the coordinates of the small squares 

chosen in the current individual according to the 
result of step 1. 

(2) Calculate the diameter |U| and the number of 
1’s in the individual code. 

(3) Calculate the corresponding fitness. 
 
 

3 Experimental Results and Analysis 
During the calculation of the Hausdorrf measure, 
the selection method is to preserve the best 
individual, the main crossover method is the 
one-point crossover, and the mutation method is the 
gene mutation. The values of the key parameters are 
the following: the crossover probability pc=0.9, the 
mutation probability pm=0.001, the population size 
popsize=50, the generation number gen=100. The 
initial population is generated randomly. According 
to above-mentioned ideas, we have programmed. 
The result of the experiment is what Table 1 shows.  

Table 1: values of H (F)  

m H(F) 
computation times 
(unit: second) 

1 1.41421 1 
2 1.41421 1 
3 1.41421 1 
4 1.41421 3 
5 1.41421 120 
6 1.41421 21106 
7 1.41421 4200658 

 
The main conclusions of this paper are the 

following. 
(1) From Table 1, we can conclude that the 

Hausdorff measure of the Sierpinski carpet with 
compression ratio 1/4 H (F) =1.41421. 

(2) It is predicated that the genetic algorithm 
will be an effective method to estimate the 
Hausdorff measure of fractals. 
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