
Fault detection using virtual environment and wireless robot

Emil Voisan, Constantin Volosencu, Adrian Leu, Florin Dragan
Department of Automation and Applied Informatics

University Politehnica from Timisoara
Vasile Parvan, No. 2

Romania

Abstract: - Intelligent robots that are able to efficiently interact with working environment is an actual trend
today, the classic approach is to use robot sensors to discover surroundings and based on that readings to take
decisions. Our proposal is based on a virtual environment to describe the objects from the real environment
and based on this environment the decisions are taken and transmitted to the “real” robot.

Key-Words: - virtual, environment, robot, detection.

1 Introduction

1.1 Application overview
To study and develop robotic devices able to
efficiently interact with the working environment is
necessary to have a playground, a virtual room, to be
able to implement and test robot behavior before its
release on the real world, also this virtual
environment can be used to generate decisions for
the real robot when this is sensor less or sensors are
malfunctioning. To obtain a realistic behavior for
the real robot is necessary, for the virtual room, to
realistically represent the working environment.
 In this case, fault detection is based on the image
processing of pictures [5] taken for each defined
target from a specified area. In our specific
application modeled area is a part from our
laboratory and inspected surfaces are sides of desks
form this location. Faulty area is marked by a white
page post it on that side. Main objective is to
periodically inspect specified targets and to monitor
them for any modifications.
 Technologies involved in this project are falling
in several categories robotic devices: Dr. Robot
X80, virtual environment is created using Coin3d
and image processing techniques. Based on those
technologies a part from laboratory is reconstructed
into the virtual environment and based on this
environment virtual a real robot must visit each
object periodically.

1.2 Related work
There are several projects related to this project. We
present short connection with following:

- Playerstage [6] project – open source project
aimed to provide a common interface to various
robots from application point of view, also
offers possibility to simulate a robot population
behavior in 2D(Stage) or 3D(Gazebo) virtual
environment.

- Evaluation of Inhabitant’s Walking Habit in
Intelligent Space [1] is more related to this
project and is oriented on helping people with
disabilities, main purpose being development of
a model for interaction between intelligent space
and moving object that enters into simulated
area.

2 Technologies
There are two main technologies involved in this
project, one connected with the robot itself, X80
WiRobot, as a physical device and second is
Coin3D, related with development o the virtual
environment.

2.1 X80 WiRobot
WiRobot is an integrated hardware and software
robotic system developed by Dr Robot, and includes
the mechanical structure, electronic modules and
software development kit.

Fig 1 WiRobot X80

9th WSEAS International Conference on AUTOMATION and INFORMATION (ICAI'08), Bucharest, Romania, June 24-26, 2008

ISBN: 978-960-6766-77-0 190 ISSN 1790-5117

2.1.1 Hardware overview
The mechanical structure is pre-built with electronic
components such as multimedia controller, motion
sensing controller and various peripherals. Also it
has a wireless module responsible with
communication with a pc-based software
component.
 Mechanical and control components:

• Two 12V motors;
• 17,8 cm driving wheel;
• Dimensions: 38 cm diameter, 25,5 height;
• Weight: 3,5 kg;
• Fine speed and position control based on

two 1200 count per wheel-cycle quadrature
encoders;

 Electronic system components:
• Fully integrated WiFi system supporting

both UDP and TCP/IP protocol;
• Full color video and two-way audio

capability;
• Collision detection sensors: 3 sonar range

sensors and 7 IR range sensors;
• Two pyroelectric sensors for human motion

detection.
• Temperature, acceleration/tilting sensors.

2.1.2 SDK overview
It is a PC-based software framework for robotic
system development, containing facilities for
memory management, system communication and
user interface and utilities for audio, video, sensor
data acquisition and motion control.
 Programs developed using this SDK runs on PC
sending and receiving data to a WiRrobot via a
wireless connection. The firmware on the embedded
controller takes care of low level operations: motion
control, audio-video capture and compression, audio
playback and wireless communication.

Fig 2. Software Architecture

User programs use a SDK component to
communicate with WiRobot controller. All data
transfers between user program and WiRobot are
managed by a Gateway program which
communicates with SDK component on shared
memory.

2.2 Coin3D
Is a library set used to create 3D graphic
applications. Portable over a wide array of operating
systems: UNIX/Linux, Windows and Mac OS X and
compatible with SGI Open Inventor [2].
 Main components:

• Coin – C++ API for 3D graphical libraries,
is a abstract level over OpenGL with many
complex optimization, transparent for
programmer.

• Graphical Interfaces – libraries to interface
Coin with GUI on host operating system:
Microsoft GUI on Windows or Qt, Xt on
XWindow[4].

• Import/Export libraries – for managing
various file formats.

 Coin3D is based on OpenGL and offers a variety
of graphical objects that can be used, modified or
extended according to application.
 Objects form this library includes database
primitives such as: objects of the rendering engine,
shape, properties and group nodes, also interactive
manipulators and components material editor, light
editor and visualization windows. Is based on an
object orientated system and offers capabilities to
transfer data between applications based on a
specific file format.

Fig. 3 Coin3D Structure
Based on OpenGL, Coin3D offers a programming
model and a interface to OpenGL. Is independent to
the graphical interface system, a library, specific to
interface, will bound them together.
 Coin3D main focus is creation of 3D objects, all
information regarding those objects, shape, size,
color, texture, placing in 3D space is stores into a

SDK SDK SDK

Shared Memory

Gateway

WiRobot

WiFi

Coin3D Component Library

Node
Kits

Manipulators

Coin3D Toolkit

Intercharge
File Format

Windows OpenGL
Library

9th WSEAS International Conference on AUTOMATION and INFORMATION (ICAI'08), Bucharest, Romania, June 24-26, 2008

ISBN: 978-960-6766-77-0 191 ISSN 1790-5117

scene database, this database being used to generate
a 3D image from existing information.
 Coin3d is a high level programming language
that uses OpenGl routines to create 3D content.
Objects defined in Coin3D encapsulate data
regarding display, reading, writing and other state
information. Each object can be subjected to
various operations such as: selection, search in
database, computation of its bounding box. Such an
object will be displayed when its associated display
method is called.
 Coin3D facilities:

• Scene database - includes: properties, node
kit, sensors. It is use to create a hierarchical
3D scene.

• Node kits – mechanism to group nodes.
• Manipulators – objects from database

available for user interaction.
• Components – render window library

(specific to particular windows system: Xt,
Qt, Microsoft Windows), material editor,
display tools, etc.

3 Fault detection – application set-up
In case of this application fault detection presumes
patrolling a designated area and inspecting general
appearance of target objects. For this particular case
the working environment is a part of our laboratory
(Fig. 5) and idea of fault, means changing of
appearance for target objects.

Fig. 4 Application structure

From application point of view main application
parts are Virtual Environment, Trajectory
calculation, Fault detection and robot as part of the
real environment (Fig. 4).

3.1 Virtual Environment
Recreates the real environment into which robot will
operate. As a restriction, it must be accurate because
all decisions transmitted to robot are based on the
information acquired from this.
 Virtual environment contains several objects:
chairs, desks, book shelf. Visual recreation of those

objects is done with the help of Coin3D, for each
object a specific class to describe general
characteristics has been developed. Particular
parameters for each object, including position are
stored into a database. New objects can be inserted
into virtual environment only before application is
launched.

Fig 5. Virtual Room
 Each object is constructed from basic shapes like
Cube, Sphere, and Cylinder parameterized and
translated accordingly to recreate specific part of the
object. All those basic shapes are graphical
primitives offered by Coin3D toolkit.
 Floor pattern, has no correspondence into the
real environment and is used for robot positioning
and trajectory calculation.
 One specific problem is robot movement into
virtual environment. In this case is based on a
asynchronous event, alarm, that for each occurrence
will translate the object with a small amount until it
reaches its intermediate/final destination.

3.2 Real Environment

Fig 6. Real Environment
As presented, working environment is part of our
laboratory (Fig 6), and recreates only objects that
can interfere with robot path.
 It is important to ensure that the real environment
and the virtual one are synchronized. This involves

Virtual
Environment

Trajectory
Calculation

Fault
detection

Real
Environment

9th WSEAS International Conference on AUTOMATION and INFORMATION (ICAI'08), Bucharest, Romania, June 24-26, 2008

ISBN: 978-960-6766-77-0 192 ISSN 1790-5117

two aspects: keeping the same proportions in object
construction into the virtual environment as objects
in real world and using the same starting point for
both virtual and real object.

2.1.1 WiRobot
It is relatively easy to operate such a robot and
application is not requiring special capabilities
for robot. From the movement point of view
there are implemented a series of routines that
permits to move the robot to move robot
forward or backward for a specified distance, or
to rotate with specified degrees (in this case 90).
From the picture capabilities point of view,
based on the SDK, it is possible to take a picture
and to transfer to the base workstation where all
computations are done.

3.3 Trajectory calculation
 Robot trajectory consists on several check points
that must be reached by robot in order to do fault
tests. Robot movement is achieved in discrete steps
of 50 cm (selected to match the floor pattern).
 Robot has the freedom to do four types of
movement: forward, backward, left and right. For
each step robot chooses direction to move based on
following algorithm: For each possible direction
calculates the distance between coordinates of the
resulting position and the coordinates of the target
position Fig. 7. The robot will move along available
direction that provides shortest distance to the target
position.

Fig. 7 Robot direction
To establish if a direction is available, is used a
matrix that encodes with values of 0 or 1 status of
each box from the floor. In the virtual representation
of the working environment unavailable zones are
marked with red Fig. 5.

3.4 Fault detection
 Detectable faults are color modification for target
surfaces. For each picture taken an arithmetic mean
is calculated based on the RGB value for each pixel.

 In order to obtain the reference values for each
target, before entering into fault detection mode,
robot must perform a calibration. Into the calibration
mode robot will visit each target node and take a
initial picture which stands as reference for
comparison when robot runs in fault detection mode.
 It is considered that in the calibration mode none
of the target objects is faulty.

4 Conclusion
Proposed solution has the advantage that can use
relatively cheap robots that require only movement
capability and possibility to take pictures. Also
computational power of the robot is irrelevant, main
decisions are taken by the on the platform that runs
the virtual environment, in this case a regular PC
with Windows XP. In fact all decisions are moved
to that platform, rendering the robot to a simple
participant to the environment.
 An important disadvantage for this solution is the
fact that it is possible to loose synchronization
between virtual robot and real robot, fact that
requires an external factor to place the robot into a
known position.
 As future development presence of sensors
capable to detect if new objects walk into the
working environment and to reflect that into the
virtual environment will greatly improve reliability
of such a system. Also based on such sensors it is
possible to resynchronize real and virtual robot
without any external intervention.

References:
[1] P. Szemes, H. Hashimoto, E. Voisan, F. Dragan

Evaluation of Inhabitant’s Walking Habit in
Intelligent Space. IECON, 2003. pp.1390-1395,
2003.11, Roanoke, Virginia

[2] J. Wernecke, The Inventor Mentor Programming
Object-Oriented 3D Graphics with Open
Inventor. Addison-Wesley, 1994.

[3] J. Friel, Practical Guide to Image Analysis,
ASM-Intl. 2000.

[4] J. Wernecke, The Inventor Toolmaker, Addison-
Wesley, 1994.

[5] J. Bronstein, Y. Koren, Real-time obstacle
avoidance for fast mobile robots., IEEE
Transactions on Systems Man and Cybernetics
vol. 19, no. 5, pp 1179-1187.

[6] B. Gerkey, R. Vaughan, A. Howard. The
Player/Stage Project: Tools for Multi-Robot and
Distributed Sensor Systems. ICAR 2003, pages
317-323, Coimbra, Portugal, June 2003.

R

d[0]

d[1]

d[2]

d[3]

T

9th WSEAS International Conference on AUTOMATION and INFORMATION (ICAI'08), Bucharest, Romania, June 24-26, 2008

ISBN: 978-960-6766-77-0 193 ISSN 1790-5117

