
Accessing Grid Resources from Portals and Applications

FELICIA IONESCU, SILVIU POPESCU
Department of Electronics, Telecommunications and Information Technology

University Politehnica of Bucharest
Spl. Independentei Nr. 313 Sector 6 Bucharest - 60042

ROMANIA

Abstract: - The users of Grid-based applications and portals must be able to access Grid resources from different
contexts, using high-level abstraction and full control of access parameters. Globus Toolkit, which is the most
important solution for building Grid infrastructures, offers command line clients for access different resources such as
data transfer using Grid FTP protocol and job submission using Gram services. But these clients are difficult to be used
from different application and portals. This paper presents a complete and concise solution for the problem of access
Grid resources from portals and applications through development of context-independent Java clients for accessing
data transfer and execution management, and these clients can be used from applications and portals more efficiently
and simpler than using command line clients offered by Globus Toolkit.

Key-Words: - Grid technology, Globus Toolkit, GridFTP, GRAM, Data transfer, Job submission

1 Introduction
 Grid technology offer powerful computing resources for
parallel and distributed applications and is of a great
importance for research and education. The specific
characteristic of the Grid towards conventional
distributed systems is “coordinated resource sharing
and problem solving in dynamic, multi-institutional
virtual organizations” [1]. A virtual organization is
considered a set of users and institutions grouped
together by specific sharing rules of resources. A
resource is considered here a generic processing element
which can be particularized in data (that is stored in
files) and processing power (that applications need to
run).
 Grid technologies are now moving towards a service-
oriented view by the definition of the Open Grid Service
Architecture (OGSA) [2], which aims to standardize
practically all the services one finds in a Grid application
(job management services, resource management
services, security services, etc.) by specifying a set of
standard interfaces for these services. The base for the
OGSA could, in theory, be any distributed middleware,
but, for many reasons, Web Services [3] were chosen as
the underlying technology.
 Currently, the biggest role in development of Grid
applications has open source Globus Toolkit [4], which
includes a full range of core Grid services, commands
and programming tools to quickly develop Grid
applications or to run existing applications in a Grid
environment. Globus Toolkit version 4 (GT4)
implements WSRF (Web Services Resource Framework)
specifications of the OGSA architecture [5].

 In GT4, data transfer is done through specialized
protocols, such as GridFTP [6], build upon the FTP
protocol (File Transfer Protocol). GT4 also includes a
command line client for data transfer between Grid
nodes using GridFTP protocol. In Section 3 of this paper
we will present Java implementation of a client program
that makes Grid data transfer more flexible and simpler
for programmers than corresponding GT4 command line
client. This module can be included in different
applications and portals, allowing user access to Grid
resources.
 A special role in Grid systems is played by execution
management which refers to scheduling and running
execution tasks (jobs) on processing nodes. GT4 offers a
command line client for execution of jobs in Grid
environment, using GRAM (Grid Resource Allocation
and Management) services [6]. As for data transfer, we
have developed a Java program for access GT4
execution management services, and this module can be
included in different applications and portals.
 This paper presents the development of context-
independent Java programs for accessing Grid resources
(data transfer and execution management) from
applications and portals more efficiently and simpler
than using command line clients offered by GT4. The
paper is organized as follows: Section 2 presents a
general overview of Globus Toolkit; in Section 3, the
command line client and Java implementation of a client
that controls data transfer in Grid environment are
described; in Section 4, the command line client and
Java implementation of a client that controls execution
management of jobs in the Grid are described; Section 5
presents conclusions.

9th WSEAS International Conference on AUTOMATION and INFORMATION (ICAI'08), Bucharest, Romania, June 24-26, 2008

ISBN: 978-960-6766-77-0 431 ISSN 1790-5117

2 The Globus Toolkit 4 overview
 Globus Toolkit version 4 (GT4) is a set of utilities and
libraries built for serving Grid systems needs and
requirements. A special part of the Globus architecture is
a web service container which contains most important
services needed in Grid infrastructure. Using Service
Oriented Architecture (SOA) [7] leads to a great
flexibility and large perspective of development. In a
SOA new services can be created on top of the existing
ones in a loosely coupled fashion.
 The main components of the GT4 that can be used to
develop Grid applications are:

 Security management (GSI - Grid Security
Infrastructure);

 Data transfer (GridFTP, RFT – Reliable File
Transfer);

 Execution management (GRAM – Grid
Resource Allocation and Management);

 Data replication (RLS – Replica Location
Service, DRS – Data Replication Service);

 Resource monitoring and discovery (MDS –
Monitoring and Discovery System);

 The Globus Alliance continues to improve this tools
and services for better usage and integration in Grid
infrastructure.

3 GT4 File Transfer System (GridFTP)
A major component in the Globus Toolkit 4 is
represented by the file transfer system: GridFTP. This
system is safe, robust, efficient, protected and optimized
for data transfers in broadband WANs.

3.1 Overview of the GridFTP system
 GridFTP extends the FTP (File Transfer Protocol)
protocol so that it could face the problems in Grid
infrastructures where special security policies are
required and large quantities of data have to be
transferred. From the security point of view, GridFTP
has full support for Grid Security Infrastructure (GSI).
 The GridFTP architecture model works on the same
principles of the FTP model. It uses at least two
independent socket connections: one for control, which
transmits the commands and receives the answers and a
channel for the actual data transfer. For connecting to a
server, a control connection is open which is used for
client-server communication through short command
messages. A mutual authentication is accomplished
between the client and the server based on X.509
certificates. When a data transfer is required one or more
data channel connections are open which are used only
for data flow.

 GridFTP supports advanced features, like striping
and parallelism, which can significantly improve data
transfer performance for large data sets. Parallelism
refers to the number of data connections used for transfer
between one source and one destination. Striping [8]
refers to transfers which use more than one data source.
Data connection exists between each source and the
destination and different stripes of the necessary data are
transferred from each source reassembling the contents
at the destination.
 Other important features added to GridFTP protocol
are automatically negotiation of TCP buffer size and data
channel authentication which improve data security.
 GT4 contains a command line client for GridFTP
transfer operation (globus-url-copy), which supports
most of the features described above. For executing file
transfers, the client authenticates to the server with a
proxy certificate and receives authorization for transfer.

3.2 Implementation of a GridFTP Java client
 We wanted to implement a Java module to extend the
possibilities of globus-url-copy command, and, also to
be used in different contexts (JavaServer Pages or
applications).
 The access to the Grid resources can be addressed
using Java Commodity Grid (CoG) Kit [9], that provides
the basic APIs to the Grid to allow access to GridFTP
servers, the classic GRAM services, MyProxy server
[10] and other Grid components. Java CoG Kit allows
Grid users, Grid application developers, and Grid
administrators to use, program, and administer Grids
from a higher-level framework.
 Using Java COG (more specifically the COG-jglobus.
library), we developed GridTransferBean module,
which can be used for GridFTP access.
 The module permits doing data transfers from a
server to local host or controlling the transfer between to
server (third-party transfer). It supports features like data
connection parallelism and striping. The striped transfer
depends on the starting mode of the server. The server
must control several data nodes which will be used for
data striping.
 In this module we define an “appended” transfer for
appending the contents of a file when the file exists at
the destination. If appended option is not used, the
destination file is overwritten.
 For transfer of multiple files between a source and a
destination, we defined a “multiple” transfer that doesn’t
reinitialize the data connections and use those already
created.
 For a transfer to be started, a mutual authentication
must be done between server and client based on X509
certificates signed by a trusted certificate authority. We
use authentication based on a proxy file, which contains

9th WSEAS International Conference on AUTOMATION and INFORMATION (ICAI'08), Bucharest, Romania, June 24-26, 2008

ISBN: 978-960-6766-77-0 432 ISSN 1790-5117

a proxy certificate. The proxy file must exist on the host
that is running a client implemented with
GridTransferBean class. This proxy file should be
already created during users’ authentication to the Grid
infrastructure.
 In Fig. 1, the activity diagram of a GridFTP transfer
using GridTransferBean class is shown. For initializing
a transfer we need to set the parameters needed for
source and destination like host names, server ports and
file names. A typical transfer starts by invoking the
doTransfer() method which returns a TransferOk string
if the operation was successful, otherwise an exception is
thrown and an error message is returned. Based on the
type of transfer selected through the parameters, the
different methods from the activity diagram are called by
the method doTransfer().

Fig.1 GridFTP transfer using GridTransferBean class.

 The type of transfer can be one of those summarized
below:

 localTransfer – a local transfer is considered a
transfer from the server to the local machine;

 appendTransfer – this type of transfer has
relevance if the destination files already exist
and is used to append the content of a source file
to a destination file;

 stripedTransfer – specifies that a server started
in “stripe” mode is used, transferring data stripes
from more data nodes;

 multipleTransfer – this is used when more files
are needed for transfer and will reuse the
connections already created to transfer the files.

 When this module is used from a Java application,
the class GridTransferBean can be included in
application package and transfer parameters can be
obtained from different variables of the program. When
the module is used from a JSP page, the desired transfer
parameters can be obtained from a HTML form.
 We have used this module embedded in JSP pages,
which are resources (assets) of shareable learning objects
in a Grid-based e-learning platform [11].

4 GT4 Execution Management
Execution management tools are concerned with the
initiation, monitoring, management, scheduling, and/or
coordination of remote computations. GT4 supports the
Grid Resource Allocation and Management (GRAM)
interface as a basic mechanism for these purposes.

4.1 Overview of the GT4 GRAM services
GRAM is composed of a set of services deployed in
GT4 Java container (Java WS Core) that can be used in
conjunction with different local schedulers (Fork, PBS,
LSF, Condor, etc.), which control execution over local
resources. Fork is a scheduler designed by Globus team
for local use purpose, which uses standard Unix fork()
method to spawn simple processes.
 GRAM uses very well defined structures named jobs.
A job is an execution structure which passes through a
number of states during its lifetime. For example, states
like StageIn or StageOut refers to the process of
transferring files prior or after the job execution. When a
job executable is executed, the job stays in Active state;
when a job has finished execution it is put in Done state,
which refers to a successful execution or Failed state,
which shows that the execution was unsuccessful.
 GRAM services use several others GT4 services to
accomplish different tasks (Fig. 2). GRAM uses RFT
(Reliable File Transfer) service for file transfer prior and
after the job execution process; RFT needs GridFTP
server access for explicitly call data transfer commands.
GRAM also needs Delegation service for credential
delegation to other services like RFT.
 For job submission operation, Globus Toolkit
provides a command line client, globusrun-ws, which
requires different parameters such as: the job executable
program, execution parameters, files to be transferred
prior or after job execution. Also, a complex cleanup
operation to remove unnecessary files created by the job
executable could be needed.
 All this parameters can be specified in an XML job
description file. The Globus Alliance defines a job
description file XML Schema [12], which can be used to
create from simple to complex job files in XML format.

9th WSEAS International Conference on AUTOMATION and INFORMATION (ICAI'08), Bucharest, Romania, June 24-26, 2008

ISBN: 978-960-6766-77-0 433 ISSN 1790-5117

4.2 Implementation of a GRAM Java client

We wished to implement a GRAM client as a Java
module (package) that can be integrated in an application
or a web interface (like a JSP page).
 We have developed JobSubmit class that uses an
instance of org.globus.exec.client.GramJob class
provided by GT4 API, which allows job operations such
as: creating, submitting and destroying. This class
implements GramJobListener interface, which specifies
methods for notifications about job status.
 In order to access GRAM services and execute
further delegations, the client needs a proxy certificate
that is given through a file. The delegation is needed
when the job has to access other Grid services or when
file staging is required.
 A job can be submitted by calling the submit()
method after initializing specific parameters like
destination host, the scheduler that will be used (we use
by default Fork) and the job description file. If the job
has been sent with success, a job uniquely identifier is
returned, otherwise an exception occurs an error message
is returned.
 Fig. 3 shows the steps executed by different software
components for job submission using Java client
(JobSubmit class) included in a JSP page and using
GRAM services, Delegation, RFT service and GridFTP
servers.

Fig.2 GRAM architecture.

 The job description files are translated to a format
readable for the local scheduler by using GRAM
scheduler adapter.

Fig. 3. Job Submission using Java client – Sequence Diagram

9th WSEAS International Conference on AUTOMATION and INFORMATION (ICAI'08), Bucharest, Romania, June 24-26, 2008

ISBN: 978-960-6766-77-0 434 ISSN 1790-5117

 In the submit() method are accomplished most of the
operations with the job entity. After creating the security
context using credentials obtained from the proxy file a
GramJob instance is created and a job is submitted to the
destination’s ManagedJobFactoryService, which is the
service used as endpoint for job submission. By default
https protocol is used for transport and port 8443 for
connection.
 By implementing the GramJobListener interface, a
stateChanged() method is provided that is called every
time a job status changed. We use this to store the job
status in a class parameter. At any time, the job status
can be retrieved calling getJobStatus() method. The job
resource is destroyed when the job state is Done or
Failed, which means the job has finished. This behavior
is intended for interactive jobs for which the user have to
wait to finish and is not always a desirable scenario. We
could also use “batch mode” for submitting the job and
without waiting for the job to finish. In this way the job
status can be retrieved at a later time based on the job
handler returned by the submit() method.
 The job submission process presented above uses a
job description file to set job parameters. The class
JobFileCreate can be used to create a job description file
in the XML schema format provided by Globus. This
class contains a createJobFile() method, which receives
different input parameters. Thus different job files can be
created: with an executable using a variable number of
parameters, using a variable number of stageIn, stageOut
or cleanup elements.
 As for GridFTP client, this Java GRAM client can be
used from a Java application, or from a JSP page,
allowing flexible execution context and simpler
programs than using command line client provided in
Globus Toolkit.

 5. Conclusion
 The access of Grid resources from applications and
portals is an important operation in Grid environments.
In this paper we have presented the implementation of
two context-independent Java clients, for GridFTP data
transfer and for GRAM job execution that make Grid
data transfer and job execution more flexible and simpler
for programmers than corresponding GT4 command line
clients.
 We have included these clients in the portal of a Grid-
based e-learning platform and in shareable learning
objects. Thus, after proper authentication, users can
easily submit execution jobs or starting GridFTP
transfers through friendly interfaces.

Acknowledgment
This work was developed under Romanian Grant
CNCSIS code 44 (UPB part 14) started in 2006.

References:
 [1] I. Foster, C. Kesselman, S. Tuecke, The Anatomy of

the Grid: Enabling Scalable Virtual Organizations,
Intern. Journal of Supercomputer Applications and
High Performance Computing, Vol. 15 No. 3, 2001,
pp. 200-222.

[2] I. Foster, C. Kesselman, J.M. Nick, S. Tuecke. The
Physiology of the Grid: An Open Grid Service
Architecture for Distributed System Integration,
Proc. of Open Grid Service Infrastructure WG,
Global Grid Forum, June 2002

[3] H. Kreger. Web Services Conceptual Architecture,
IBM Technical Report WCSA 1.0, 2001.

[4] Globus Project, www.globus.org
[5] M. Little, J. Webber, S. Parastatidas, Stateful

Interactions in Web Services: A Comparison of WS-
Context and WS-Resource Framework, Web Services
Journal. April 30, 2004.

[6] Grid FTP protocol, http://www.globus.org/toolkit/
docs/4.0/

[7] http://www-306.ibm.com/software/solutions/soa/
[8] W. Allcockm J. Bresnahan, R. Kettimuthu, M. Link,

C. Dumitrescu, I. Raicu, I. Foster, The Globus
Striped GridFTP FrameWork and Server, SC`05,
ACM Press, 2005.

[9] G. von Laszewski, J. Gawor, S. Krishnan, and K.
Jackson, Commodity Grid Kits Middleware for
Building Grid Computing Environments in Grid
Computing, Communication Networking and
Distributed Systems, John Wiley and Sons, 2003.

[10] Jim Basney, Marty Humphrey2, Von Welch, The
MyProxy online credential repository, Software –
Practice and Experience, 2005, 1-17

[11] Felicia Ionescu, Vlad Nae, Elena-Cristina Stoica,
Development of a Grid-based Learning Management
System, Proceedings of the 11th WSEAS
International Conference on Computers, Agios
Nikolaous, Crete Island, Greece, July 26-28, 2007,
pp. 294-298

[12] http://www.globus.org/toolkit/docs/4.0/execution/
wsgram/schemas/gram_job_description.html

9th WSEAS International Conference on AUTOMATION and INFORMATION (ICAI'08), Bucharest, Romania, June 24-26, 2008

ISBN: 978-960-6766-77-0 435 ISSN 1790-5117

