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Abstract: - The dependence of the Marangoni flow and impurity distribution on the vertical temperature 
gradient is analyzed in the framework of a stationary model including the incompressible Navier-Stokes 
equation in the Boussinesq approximation and the convection-conduction and conservative convection-
diffusion equations. The computations are carried out in a 2D axisymmetric model by the finite-element 
numerical technique, for aluminum-doped silicon fibers grown from the melt by the edge-defined film-fed 
growth (EFG) technique with central capillary channel shaper and melt replenishment. The Marangoni effect 
is implemented for the free surface (meniscus) by the weak form-boundary application mode through 
COMSOL Multiphysics 3.4 software. It is proved numerically that controlling one of the most important 
process parameters – vertical temperature gradient from the EFG furnace – the best homogeneity of the crystal 
can be obtained over a wide range of values of the surface tension temperature coefficient. 

 
Key-Words:  Finite element technique; fluid flow; Boussinesq approximation; critical Marangoni number; 
control  

1  Introduction 
The demand for single or poly-silicon has increased 
dramatically due to the rapid expansion of the 
photovoltaic (PV) industry. Various growth 
techniques have been used for producing silicon 
wafers for a PV cell, like the Czochralski (Cz), 
floating zone (Fz) and edge-defined film-fed growth 
(EFG) methods. Among these, EFG is the first non-
conventional technique for crystalline silicon wafer 
production to enter into large-scale manufacturing in 
the photovoltaic industry [1], with ribbon growth of 
silicon meeting the actual demands of economical 
material consumption because it avoids silicon 
losses, such as during the blocking of ingots or 
sawing of wafers [2]. 

Identifying and investigating the metal 
impurities in silicon are fundamental tasks in 
semiconductor physics and device engineering. In 
solar cells, aluminum is usually present in the metal 
back contact as well as in the back surface field 
region. Due to a low diffusivity of interstitial 

aluminum in silicon, compared to the diffusivity of 
the transition metals, silicon is intentionally 
contaminated with aluminum during the growth 
process. If aluminum is already present as a grown-in 
impurity in the starting material, then it can act as an 
electrically-active defect with detrimental 
consequences to the charge carrier lifetime [3].   

Molten silicon is known to be an extremely-
reactive material [4], with strong thermal forcing in 
surface-tension-driven flows being realized during 
the growth process. The surface tension value and its 
temperature dependence are essential for describing 
surface-tension-driven flow (Marangoni-Bénard 
flow) on the free liquid surface (meniscus, i.e., the 
liquid bridge between the die and the crystal) [5]. It 
is generally accepted that thermal fluctuations are a 
serious drawback in growing a high-quality crystal. 
The existence of Marangoni convection for molten 
silicon has been revealed through crystal growth 
experiments using the Cz [6] and Fz [7] 
configurations. For the former, the dependence on 
the Marangoni-Bénard and Rayleigh-Bénard 
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instabilities on the coefficient dγ/dT of temperature 
dependence of the surface tension was confirmed. 
The contribution of the Marangoni effect to the 
instabilities and consequently to the impurity 
distribution in the crystal is governed by the 
magnitude of dγ/dT. Although a large amount of 
surface tension data has been reported for molten 
silicon [5], there is still some uncertainty concerning 
the absolute values and its temperature dependence, 
because the surface tension of molten silicon is quite 
sensitive to surface contamination, particularly 
oxygen. These reasons and the difficulty of an 
experimental investigation of the surface-tension-
driven Marangoni-Bénard convection for small 
Prandtl numbers (Pr = 0.01 for silicon) have been the 
motivation for a numerical analysis of the 
dependence of the Marangoni flow and impurity 
distribution on the vertical temperature gradient. The 
computations are carried out in the stationary case in 
a 2D axisymmetric model by the finite-element 
numerical technique using COMSOL Multiphysics 
3.4 software, for 38 different values of dγ/dT situated 
in the maximal range [-7×10-4; 0] Nm-1K-1 (i.e., for 
Marangoni numbers Ma between zero and 406.25), 
which contains all values reported in literature [5],  
and for three representative vertical temperature 
gradients in the furnace: kg1 = 5,000; kg2 = 50,000; kg3 
= 100,000 Km-1 situated in the range [5,000; 
100,000] Km-1 determined by experimental data [8].  
The numerical investigations prove the existence of 
three critical Marangoni numbers – Mac1, Mac2, Mac3 
– as reported for two-dimensional containers [9-11]. 
The best homogeneity of the dopant distribution in 
the crystal is obtained for Marangoni numbers 
situated in the first range [0; Mac1], where the 
downward flow (dγ/dT < 0) on the free liquid surface 
leads to a steady fluid flow. The length of this range 
increases if the vertical temperature gradient in the 
furnace decreases. This shows that the Marangoni-
Bénard instability can be controlled by a delay of the 
Marangoni convection [12], in order to optimize the 
crystal quality. 
 
 
2  The Mathematical Model 
The Marangoni flow and impurity distribution 
induced by vertical temperature gradients in the 
furnace is analyzed in the framework of a stationary 
model including the incompressible Navier-Stokes 
equation in the Boussinesq approximation (the 
temperature-dependent density appears only in the 
gravitational force term), and the convection-
conduction and conservative convection-diffusion 
equations [13]: 
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(1) 
The axis-symmetric solutions are searched in the 
cylindrical-polar coordinate system (rOz) (see Fig. 
1). In this system, the unknowns are: velocity vector 

 
Fig. 1: Schematic EFG crystal growth system 
showing the domain boundaries (a) and dimensions 
(b) used in the numerical model. 
 
u  = (u,v), temperature T, impurity concentration c, 
and pressure p. The material parameters are: ρl - 
reference melt density, β - heat expansion 
coefficient, η - dynamical viscosity, k - thermal 
conductivity, Cp - heat capacity, D - impurity 
diffusion, and g  - gravitational acceleration. The 
system (1) is considered in the two-dimensional 
domain whose boundary is from Ω1 to Ω10, as 
represented on Fig. 1(a). 

The fluid density is assumed to vary with 
temperature as 

( ) ( )[ ]TzrTzr l ∆βρρ −−= ),(1, ,               (2) 
and the surface tension γ in the meniscus is assumed 
to vary linearly with temperature as 

( ) ( )T)z,r(T
dT
dz,r l ∆γγγ −+=   ,      (3) 

where ∆T = (T0+Tm)/2 is the reference temperature at 
the free surface, γl  is the surface tension at the 
temperature ∆T, and dγ/dT is the rate of change of 
surface tension with the temperature. The main 
parameter of the Marangoni-Bénard convection is 
the Marangoni number 

( )
αη

γ
⋅

⋅−
⋅=

hTT
dT
dMa 0m   ,           (4) 

where η is the dynamic viscosity, α = k/ρl Cp  is the 
thermal diffusivity,  and h the meniscus height. 

For solving the system (1), boundary conditions 
on Ω1 to Ω10 are imposed, with the Oz-axis 
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considered as a line of symmetry for all field 
variables: 
- Flow conditions: On the melt/solid interface, the 

condition of outflow velocity is imposed, i.e., 

ku 0v
s

l

ρ
ρ

= , where k  represents the unit vector of 

the Oz-axis. On the melt level in the crucible, the 
inflow velocity condition is imposed (melt 

replenishment), ku 02
0

2

2

v⋅
−

−=
RR

R

c

. On the 

meniscus free surface, we set up the 
slip/symmetry condition, 0=⋅nu , 

( )( )[ ] 0p
T

=∇+∇+−⋅ nuuIt η , where t  and n  
represent the tangential and normal vectors, 
respectively. The other boundaries are set up by 
the non-slip condition 0u = . 

- Thermal conditions: On the melt/solid interface, 
we set the temperature as T = Tm. On the free 
surface, we impose thermal insulation, i.e., 

0)( =+∇−⋅ un TCTk plρ . For the other boundaries, 
we have the temperature condition T = T0. 

- Concentration conditions: On the melt/solid 
interface, the flux condition is imposed, which 
expresses that impurities are rejected into the 

melt according to ( cK1
D
vc

0
0 −−=

∂
∂
n

) . On the 

melt level in the crucible, the concentration of 
aluminum in silicon is c = C0. The other 
boundaries are established by 
insulation/symmetry, 0)( =+∇−⋅ un ccD . 

Imposing the above boundary conditions, on 
the free surface the Marangoni effect is modeled by 
using the weak form of the boundary application 
mode. Thus, on the free surface (meniscus), the 
boundary condition expresses that the gradient 
velocity field along the meniscus is balanced by the 
shear stress,  
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where ),( zr tt=t  and ( )zr nn ,=n . The sign of the 
rate dγ/dT, in general, depends on the material, with 
downward (dγ/dT <0) or upward (dγ/dT >0) flow on 
the free liquid surface. 

In order to investigate numerically the impurity 
distribution induced by the Marangoni convection 
and vertical temperature gradients kg, we consider 38 
values of dγ/dT situated in the range [-7×10-4; 0] 
Nm-1K-1, and three representative values of kg1 = 
5,000, kg2 = 50,000 and kg3 = 100,000 Km-1 situated 
in the range [5,000; 100,000] Km-1. For every value 

of the vertical temperature gradient, the dependence 
of the fluid flow and dopant distribution on the 
corresponding 38 Marangoni numbers is established. 
The critical Marangoni numbers are found, 
following the computed steady or turbulent behavior 
of the fluid flow. In these numerical investigations, 
the considered diffusion coefficient of aluminum in 
liquid silicon is that reported recently by the new 
determinations of Garandet [4]. The material 
parameters used in the mathematical model for the 
considered EFG system are given in Table 1 (Refs. 
[4,5,8,14]). 

 
Table 1: Material parameters for silicon.  
Description (units) Value 
β         heat expansion coefficient (K-1) 
c         impurity concentration (%) 
C0       alloy concentration (%) 
Cp       heat capacity (J kg-1K-1) 
dγ/dT  rate change of the surface   
           tension (N m-1K-1) 
D        impurity diffusion (m2s-1) 
Dl       die length (m) 
g         gravitational acceleration (m s-2) 
h         meniscus height (m) 
k         thermal conductivity (W m-1K-1) 
kg        vertical temp. gradient (K m-1) 
K0       partition coefficient 
η         dynamical viscosity (kg m-1s-1) 
R         crystal radius (m) 
Rcap     capillary channel radius (m) 
Rc        inner radius of the crucible (m) 
R0       die radius (m) 
ρl        density of the melt (kg m-3) 
u        velocity vector 
v0        pulling rate (m s-1) 
T         temperature (K) 
T0        temperature at  z = h (K) 
Tm       melting temperature (K) 
∆T       reference temperature (K) 
z          coord. in the pulling direction 

5.5×10-6

 
 

1040 
See text 

 
5.8×10-8

45×10-3

9.81 
0.5×10-3

64 
50000 
0.002 
7×10-4

1.5×10-3

0.5×10-3

23×10-3

2×10-3

2550 
 

1×10-7

 
 

1685 
 

 
 
3  Numerical results 
The computations are made using the two-
dimensional axis-symmetric hypothesis for an 
aluminum-doped silicon ribbon of radius  R = 
1.5×10-3 m grown with a pulling rate v0 = 10-7 ms-1. 
The boundaries presented in Fig. 1 are determined 
from the peculiarities of the considered EFG growth 
system. Thus, a crucible with inner radius Rc = 
23×10-3 m is considered, which is continuously fed 
with the melt, such that the melt height in the 
crucible is maintained as constant at 45×10-3 m. In 
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the crucible, a die with radius R0 = 2×10-3 m and 
length is introduced, such that 2/3 of the die 45×10-3 
m is immersed in the melt. In the die, a capillary 
channel of radius Rcap = 0.5×10-3 m, i.e., capillary 
number Ca = 5.5×10-5, is manufactured through 
which the melt rises to the top of the die, where a 
small meniscus of height h = 0.5×10-3 m is formed. 

The stationary incompressible Navier-Stokes 
model for fluid flow, stationary heat transfer and 
mass transfer, along with the weak form of the 
boundary condition are implemented with the 
COMSOL Multiphysics 3.4 software, and the system 
(1) is solved by the finite-element numerical 
technique. According to the considered geometry, 
17,072 triangular elements and 150,803 degrees of 
freedom are considered. The effect of the Marangoni 
forces is computed in the stationary case for the three 
values kg1 = 5,000, kg2 = 50,000 and kg3 = 100,000 
Km-1 of the vertical temperature gradient in the 
furnace situated in the range [5,000; 100,000] Km-1 
and for different Marangoni numbers Ma situated in 
the range [0; 406.25] (see Eq. (4)), which 
corresponds to those 38 considered values of the 
surface tension rates. 

The computed fluid flows and their behaviors 
(downward steady flow, appearance of small 
turbulences, and increasing of turbulences in the 
meniscus) reveal the following critical Marangoni 
numbers Mac which depend on the vertical 
temperature gradients: 
1. For kg1 = 5,000 Km-1, there is only one Mac  

value (Mac1 = 75.4) situated in the range [0; 
406.25]; 

2. For kg2 = 50,000 Km-1, there are three  values of 
Mac situated in the range [0; 406.25]:  Mac1 = 
7.54, Mac2 = 39.46 and Mac3 = 69.64; 

3. For kg3 = 100,000 Km-1, the values of Mac are: 
Mac1 = 3.65, Mac2 = 19.73 and Mac3 = 35.4. 

These critical values are essential in the fluid flow 
behavior and in the dopant concentration. 

For the considered vertical temperature 
gradients kg1, kg2 and kg3, if Ma is situated in the first 
range [0; Mac1], then the steady downward flow 
(dγ/dT < 0) on the free liquid surface push the 
maximum of the dopant concentration Cmax at the 
triple-point, as it can be seen in Figs. 2 & 3(a-c). The 
computed fluid velocity distribution shows that in 
the case for which we consider the forced flow, i.e., 
Ma = 0 (see Fig. 2), with a rate of 10-7 ms-1 at the 
solid-liquid interface (the pulling rate) if the ratio 
ρl/ρs is neglected, and consequently 9×10-7 ms-1 on 
average in the capillary channel (taking into account 
the surface ratio between crystal and channel), then 
the maximum forced velocity is 18×10-7 ms-1. This 
maximum is situated in the center of the capillary 

channel; if the vertical temperature gradient 
increases, then perturbations appear.  

Figure 2: Computed fluid flows and maximum 
values of the dopant distribution for the Marangoni 
number Ma = 0 in the case of kg1 = 5,000 Km-1 (a), 
kg2 = 50,000 Km-1 (b) and kg3 = 100,000 Km-1 (c). 
 

For the case in which the surface driven flows 
are taken into account (Fig. 3), the Marangoni 
convection perturbs the forced flow: the arrows 
presented in Fig. 3 denote the flow of the velocity 
field caused by the surface tension driven flow 
(downward flow on the meniscus). The maximum 
velocity of the fluid flow in the meniscus is situated 
on the free surface, and it increases if the Marangoni 
number increases. This dependence and the 
magnitude of the maximum velocity are in 
agreement with the equilibrium of the viscous and 
Marangoni forces, 

h
MaU υ

⋅≈  , 
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where ν is the kinematic viscosity [13]. 
 

 
Figure 3: Computed fluid flows and maximum 
values of the dopant distribution for the first critical 
Marangoni numbers Mac1 in the case of kg1 = 5,000 
Km-1 (a), kg2 = 50,000 Km-1 (b) and kg3 = 100,000 
Km-1 (c). 
 
These behaviors of the fluid flow show that if Ma 
increases in the corresponding ranges [0; Mac1], then 
a better mixing of the dopant distribution takes place 
near the free meniscus surface, and hence Cmax 
decreases slowly from 2.029×C0 (which corresponds 
to Ma = 0, Fig. 2) to 2.028×C0 (which corresponds 
to Ma= Mac1, Fig. 3). 

These investigations prove that, for any 
vertical temperature gradients kg1, kg2 and kg3, the 
fluids flow and dopant distributions are similar for 
Ma in the range [0; Mac1]. The most important point 
is the length of the interval [0; Mac1], which depends 
on the size of the vertical temperature gradient. For 
practical crystal growers, this information offers the 

possibility to change the configuration of the 
equipment and process parameters (vertical 
temperature gradient) for optimization of the crystal 
quality. 

Concerning of the second (Mac2) and third 
(Mac3) critical Marangoni numbers, computations 
show that if Ma increases in the ranges (Mac1; Mac2], 
(Mac2; Mac3] and (Mac3; 406.25] for kg2 and kg3, or if 
Ma increases in the range (Mac1; 406.25] for kg1, the 
velocity of the fluid flow in the meniscus increases, 
and turbulences in the fluid flow take place. More 
precisely, if Ma increases in the range (Mac1; Mac2] 
for kg2 and kg3 (or if Ma increases in the range (Mac1; 
406.25] for kg1) then very small turbulences in the 
fluid flow lead to an increase of Cmax, which is 
located at the triple-point. If Ma increases in the 
range (Mac2; Mac3], then turbulences in the fluid 
increase, and Cmax is pushed inside at the level of the 
melt/crystal interface, at a distance on the same 
order as the meniscus height from the external 
crystal surface (see Fig. 4). 

 
Figure 4: Computed fluid flows and maximum 
values of the dopant distribution for the Marangoni 
numbers in the range (Mac2; Mac3]: Ma = 46.42 for 
kg2 = 50,000 Km-1 (a) and Ma = 29.01 for kg3 = 
100,000 Km-1 (b). 
 

If Ma increases in the range (Mac3; 406.25], 
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then higher turbulences move Cmax at the triple-point 
which increases considerably. 

Investigations show that for smaller vertical 
temperature gradients we obtain a wide range [0; 
Mac1] of values of the surface tension temperature 
coefficients which assures the best homogeneity of 
the crystal. 
 
 
4  Conclusions 
The dependences of the Marangoni flow and 
impurity distribution on the vertical temperature 
gradient in aluminum-doped silicon fibers, grown 
from the melt by the EFG method, are determined 
numerically by the finite-element technique in the 
framework of a stationary model including 
incompressible fluid flow in the Boussinesq 
approximation, heat and mass transfer, and the 
Marangoni effect. The computed fluid flows and 
their behaviors (downward steady flow, appearance 
of small turbulences, and increasing of turbulences 
in the meniscus) reveal the existence of three critical 
Marangoni numbers, Mac1, Mac2 and Mac3, which 
depend on the vertical temperature gradients. The 
wide range [0; Mac1] over which the downward 
steady flow induce the best homogeneity of the 
dopant distribution is obtained for the smaller 
considered vertical temperature gradient. This 
suggests to practical crystal growers that a possible 
feedback control for delaying the Marangoni 
convection can be obtained by decreasing vertical 
temperature gradient in the furnace. This control can 
be realized by other choices of the process 
parameters, e.g., by applying magnetic fields [15], 
which suggest further developments near the future. 
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