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Abstract. This paper presents some invariance properties of differential equations, used for generating truncated test-function 
(functions which differ from zero only on a certain interval and with only some derivatives f(1), f(2), ..f(n) continuous on the real 
axis). The functions are used for the multiplication of some received signals, in order to take into account the random variations 
of the integration period of these signals, the integration being proportional to the mean value of the signal. Such fluctuations are 
generated by the switching phenomena at the end of the integration. 
The paper presents also the properties of second order oscillating systems, considered as generating “practical” (i.e. truncated) test 
functions (PTF), in filtering and sampling procedures.  
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1.Introduction 
The mean value of the received signal over a 
certain time interval is necessary in averaging 
procedures. This signal, being determined by 
devices with higher accuracy, is considered 
constant and the operation is performed by an 
integration of the signal on this time interval, 
using an electric current, which is charging a 
capacitor. For determining this time interval some 
random variations will appear due to the 
stochastic switching phenomena, for instance 
when the electric current charging the capacitor is 
interrupted. For this reason, a multiplication of the 
received signal with a test-function (a function 
which differs from zero only on this time interval 
and with continuous derivatives of any order on 
the whole real axis) is necessary. In the ideal case, 
such a test-function should have a form similar to 
a rectangular unity pulse defined on this time 
interval. However, such test functions (similar to 
the Dirac function) cannot be generated by a 
differential equation. The existence of such an 
equation of evolution, beginning to act at an initial 
moment of time, would imply the necessity for a 
derivative of certain order n (denoted f(n)) to make 
a jump at this initial moment from the zero value 
to a nonzero value. But this is in contradiction 
with the property of the test-functions to have 
continuous derivatives of any order on the whole 
real axis, in this case represented by the time axis. 

It results that an ideal test-function cannot be 
generated by a differential equation. For this 
reason, we must use “practical” (i.e. truncated) 
test functions (PTF) which differ from zero only 
on a certain interval and with only some 
derivatives f(1), f(2), ..f(n) continuous on the real 
axis). We shall show what properties should be 
satisfied by a differential equation of evolution in 
this case. We shall study also the filtering 
properties of such test functions, since the 
received signal usually presents a noise added to 
the useful component (considered to be 
continuous). It will be shown that very good 
results can be obtained by using an oscillating 
second order system. 
 
 
2.Preliminaries 
The study begins with the investigation of 
differential equations of evolution available for 
the multiplication with the received signal [1], 
making the average procedure be insensitive as 
related to the variations of the integration period. 
Devices with higher accuracy [2, 3] can decrease 
the effect of this variation (the switching noise), 
but they cannot lead to a substantial improvement 
as long as the mathematical model is not 
established.  
The analysis begins by writing a test function 
under the form 
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 ϕ = exp [1/(τ2 – 1)]  (1) 
 
where τ = t – tsym (tsym is the middle of the 
integration period). For τ ∈ [-1, 1], one can 
consider the function ϕ having nonzero values. 

We are looking for a differential equation, 
which can have as solution a PTF. 
By numerical simulation (using equations Runge-
Kutta of 4-5 order in MATLAB) it has been 
obtained as solution a function f having a form 
similar to ϕ, but with a very small amplitude [1]. 
Continuing the analysis by studying a second 
order differential equation without free term, 
which has as possible solution the function ϕ, the 
numerical simulation (using the same Runge-
Kutta functions in MATLAB) presents as solution 
a function with a form similar to ϕ, but still with a 
small amplitude (the amplitude is only four times 
greater than the amplitude obtained for a first 
order differential equation). 
Then we try to obtain a function similar to a 
rectangular unit pulse. For this purpose, we 
consider a test function having the form  

ϕa = exp[0.1/(τ2-1)]  (2) 
Using a second order differential equation 
(without free term) under the form 
f(2)(τ) = [(0.6τ4 – 0.36τ2 – 0.2)/(τ2-1)] f(τ) 
(3) 
(suggested by the expressions of ϕa, ϕa

(2)) and 
with initial conditions for f, f(2) equal to the values 
of ϕa, ϕa

(a) at the initial time moment τ = -1 + 
0.01, we obtain as solution (using the same 
Runge-Kutta functions in MATLAB) a function 
very close to a rectangular unit pulse (the 
amplitude is close to the unit for more than 2/3 of 
the integration period). 
By using the same procedure like in [1],  
it results that for obtaining PTF we must use 
equations having the form: 
 d(2)f / dτ2 = a(τ2) f  (4) 
or the form: 
 df / dτ = τ b(τ2)  (5) 
All the differential equations presented in this 
paragraph and studied by numerical simulation 
belong to one of these two classes of differential 
equations. 
 
 

3.Filtering Properties of Practical Test 
Functions 
One studies the behavior of such differential 
equations with a free term, which can be 
represented by an external signal u. In this case, 
the differential equation that should generate the 
PTF has the form: 
gn(τ2) df(n)/d(τ2)n + … + g0(τ2) f = u (6) 
on the time interval [-1, 1], with initial null 
conditions. It can be noticed that the solution f of 
this differential equation is also symmetrical as 
related to the point τ = 0 if the signal u can be 
written also as a function of τ2: 

u = u(τ2)  (7) 
This condition is fulfilled if u is represented by a 
continuous received signal u, constant on the time 
interval [-1, 1]. It can be noticed that the equations 
gn(τ2) df1 

(n)/d(τ2)n + … + g0(τ2) f1  = u1 
gn(τ2) df2 

(n)/d(τ2)n + … + g0(τ2) f2  = u2 

(8) 
imply that f = f1 + f2 is a solution of the equation: 
gn(τ2) df(n)/d(τ2)n + … + g0(τ2) f = u (9) 
where u = u1 + u2. This means that we can study 
the behavior of the system when the input (the 
free-term) is represented by the continuous 
(useful) signal and when it is represented by the 
noise (an alternating signal), and then simply adds 
the results so as to obtain the output of the system 
when the noise is overlapped to the useful signal. 
We begin by studying the system represented by 
the differential equation: 
 df / d(τ2) = f + u (10) 
(the term f being used for stability). This can be 
written also: 
 df / [2τ (dτ)] = f + u (11) 
or 
 df / dτ = 2τ f + 2τ u  (12) 
For u = 1 (the useful signal) and for initial null 
conditions, a function f which returns to zero at τ 
= 1 is obtained; simulations performed by Runge-
Kutta equations (in MATLAB) have shown an 
attenuation of about A = 3 for u having the form 
of sin10τ. It has been also noticed that the mean 
value of the output oscillations generated in these 
circumstances differs from zero. Thus, the 
influence of the oscillations cannot be rejected by 
integration on the time interval [-1, 1]. The same 
aspects have been noticed for an input represented 
by the function sin(100τ + ϕ); moreover, it has 
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been observed that the mean value of the output 
depends on ϕ (the initial phase of the input). 
We try now to use a simpler differential equation, 
without the term “f”: 
 df / d(τ2) = u   (13) 
which can be written as: 
 df / [2τ(dτ)] = u 
 df / dτ = 2τu   (14) 
The numerical simulations (performed by Runge-
Kutta equations in MATLAB) have shown similar 
aspects to those noticed in the previous case. The 
form of the output (in the conditions of a unit-step 
input, u = 1) and the attenuation of an alternating 
component (in the conditions of u = sin100τ) are 
almost the same; the mean value of the output 
oscillations (generated by an input of frequency 
100) still differs from zero and so this structure 
cannot be used for rejecting the influence of an 
alternating noise, added to the useful continuous 
signal. 
Studying the second order systems continues. 
First, we write the derivative d2 f / d(τ2)2 under the 
form 
 d2 f / d(τ2)2 = d / d(τ2) [df / d(dτ2)] = 
 [1 / (2τ)] d / dτ {[1 / (2τ)] df / dτ} = 
 [1/(4τ2)] d2f / dτ2 + [1 / (2τ)] (df / dτ) d / dτ [1 / 
(2τ)] = 
[1 / (4τ2)] d2f / dτ2 – [1 / (4τ3)] df / dτ  
  (14) 
In order to obtain a simpler differential equation 
at the previous relation for d2f  / d(τ2), one can add 
a term proportional to df / d(τ2) (and also equal to 
[1 / (2τ)] df / dτ) so that the second term in the 
expression of d2f / d(τ2)2 would disappear. So we 
must add a term written as [1 / (2τ2)] df / d(τ2) and 
finally we can write: 
 d2f / d(τ2)2 + [1 / (2τ2)] df / d(τ2) = [1 / (4τ2)] d2f  
/ dτ2   (15) 
We multiply this relation by 4τ2 (so as to obtain 
constant coefficients) and we also add a term “f” 
in order to avoid a parabolic output of the system 
in the conditions of a unit-step input. It results: 
 d2f / dτ2 + f = u (16) 
The output of the system is symmetrical as related 
to the point τ = 0 for a step input, while the 
differential equation can be written as 
4τ2 d2f / d(τ2)2 + 2df / d(τ2) + f = u (17) 
(we note that it depends on τ2). But the equation 
(16) corresponds to an oscillating second order 

system. It results that we can continue our 
analysis by considering in the most general case a 
linear second order system, having the transfer 
function: 
 H(s) = 1 / [T0s

2 + 1]   (18) 
Beginning to work from initial null conditions at 
the zero moment of time (the time origin can be 
translated from –1 to zero, since the coefficients 
of the differential equation are independent on 
time). In the conditions of a unit-step input, the 
output of the system has the form of 1 – cos (τ / T-
0), being equal to zero (together with its 
derivative) at the moment of time 2πT0. As it can 
be noticed, the output has the form of a practical 
test function. Thus an integration of this output on 
the time interval (0, 2πT0) is practically 
insensitive at the switching phenomena appearing 
at the sampling moment of time. 
Analyzing the influence of the oscillating system 
upon an alternating input of angular frequency ω, 
we can observe that the oscillating system 
attenuates about (ω/ω0)2 times such an input (ω0 
being equal to 1/T0). The integration on the time 
interval [0, 2πT0] leads to a supplementary 
attenuation of about  [(1/(2π)((ω/ω0)] times. The 
oscillations with the form: 
 yosc = asin(ω0t) + bcos(ω0t) (19) 
generated by the input-alternating component, 
have lower amplitude and give a null result after 
integration over the time interval [0, 2πT0]. So the 
simplest structure generating a PTF, in the 
conditions of a unit-step input and providing a 
very good attenuation for the influence of an 
alternating input component (the noise), is 
represented by an oscillating second order system, 
beginning to work at initial null conditions on a 
time period [0, 2πT0]. 
 
 
5 Experimental results 
At the beginning of our experimental studies, an 
oscillating second order system for processing the 
received electrical scheme has been made, using 
an operational amplifier for lower frequency, with 
resistors R0 connected at the (-) input and 
capacitors C0 connected between the output and 
the (-) input (the well-known negative feedback); 
no resistors and capacitors were connected 
between the (+) connection and the “null” (as 
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required by the necessity of compensating the 
influence of the polarizing currents at the input of 
the amplifiers). The output of the oscillating 
system has been integrated over a period using a 
similar device (based on an operational amplifier 
with a resistor Ri connected at the (-) input and a 
capacitor Ci connected on the negative feedback 
loop), at the end of the period the integrated signal 
being sampled. Even in such conditions, of a very 
simple electrical scheme, for a unit step input, the 
output of the oscillating system was less than 0.1 
after a period. This means that the amount 
integrated at the sampling moment of time has 
been decreased 10 times (by an order of 
magnitude), using a very simple device based on 
an oscillating system, as compared to the case 
when an asymptotically stable second order 
system would have been used. Moreover, such an 
electrical scheme is a robust structure as related to 
the variation of temperature. The time constants Ti 
– for the integrating system- and T0 –for the 
oscillating system –have the form 
 Ti = RiCi,  T0 = R0C0  (20) 
If the resistors R0, Ri and the capacitors C0, Ci are 
made from the same material, the coefficient for 
temperature variation will be the same. Thus the 
ratio 
A(2πT0)/Ti = A(2πR0C0)/(RiCi) =  

= 2πA(R0/Ri)(C0/Ci) `(21) 
(representing the result of the integration) is 
insensitive at temperature variations.  
This electrical scheme will be improved in two 
main directions: by adding some elements for 
decreasing the output of the oscillating system at 
the time moment 2πT0 and by replacing the 
operational amplifiers with active elements 
working at higher frequencies, in order to increase 
the working frequency. 
 
 
6.Conclusions 
The new aspects of this tackling way consist in 
investigating step-by-step and in detail the 
invariance properties of the differential equations 
used for generating PTF (functions which differ 
from zero on a time interval and which possess 
some continuous derivatives f(1), f(2), ...f(n)  on the 
whole real axis). Such a function must multiply 
the received signal before this signal is integrated 
on this time interval, so that the result of the 

integration should be insensitive as related to the 
random variations of the integration period 
(variations caused by the switching phenomena). 
It has been shown that a “mirror” symmetry of a 
PTF as related to the middle of this time interval, 
implies the necessity for the function f to be 
written under the form  
g (τ2), τ being the difference between t and tsym 
(the middle of the time interval). Numerical 
simulations investigated some models of second 
order differential equations for generating such 
functions and it was shown that the best results (a 
pulse similar to a unit rectangular pulse) were 
obtained using the differential equation: 
f(2)(τ) = [(0.6τ4 – 0.36τ2 – 0.2)/(τ2-1)] f(τ) 
(22) 
with initial conditions chosen in a suitable 
manner. The filtering properties of such PTF have 
been also studied, and it was shown that the 
simplest structure generating PTF, in the 
conditions of a unit-step input and providing a 
very good attenuation for an alternating input 
component (the noise added to the useful signal) 
is represented by an oscillating second order 
system. 
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