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Abstract: The paper describes an intelligent manufacturing control system, designed to optimise flat material 
cutting from visually inspected scenes. A vision processor reconstructs the 2D image of the material, moving 
on a linear conveyor, from a dual line scan camera. A number of image features are extracted to identify 
internal defects. A skeletonization algorithm produces the binary representation of the useful surface to be 
manufactured. The vision system generates the maximal number of user-defined patterns that optimally cover 
the useful surface. The vision pattern data is converted to path specification to command the pattern cutting 
trajectories for a SCARA robot.  
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1   Introduction 
 
The current trend in nowadays development of 
artificial vision systems is their increasing dedication 
to applications. This trend was a logic consequence 
of accepting that, as the complete understanding of 
the mechanisms of human and artificial vision might 
still necessitate an important number of years, 
designing specialised, application-oriented machine 
vision represents the for the moment the best 
solution to develop the field. 
    The most important direction in the area of 
potential applications of artificial vision in industry 
is actually provided by real-time inspection and 
measurement tasks. Examples of such applications 
are: checking the presence of objects or object 
features, estimating their location, inspecting relative 
poses of assembly components, examining part 
geometry and material surfaces.  
    The generic name of such tasks is Automated 
Visual Inspection (AVI). To be implemented, they 
impose a feature-based description of materials and 
parts, which became an attribute of flexibility in 
computer manufacturing. In high-technology 
automotive or microelectronics industries, CIM 
architectures integrate visually guided robots, 
leading thus to another class of generic tasks: Robot 
Vision Guidance (RV).  
 

    To perform connected AVI and RV tasks, visual 
servo architectures were designed, by classifying 
robot-vision systems according to the type of 
structure of the closed-loop motion controller and to 
its type of control law:  
• Hierarchical motion control structures 

(pipelined dynamic look-and-move schemes) vs. 
direct motion control structures (direct visual 
servo schemes). 

• Position-based control structures (using error 
signals defined in task space coordinates) vs.. 
image-based control structures (using error 
signals defined directly in terms of image 
features extracted from object's images).  

    Most of the actual limits of connected AVI-RV 
systems are due to image acquisition and low level 
processing. Thus, usually the optics and lighting 
devices are custom designed almost for any 
particular application. Then, the parallel image 
processing hardware cannot be fully exploited for 
handling the continuously increasing dynamics of 
industrial applications (600-2000 object/minute in 
discrete batch processes), because of the limitations 
in picture snap rates. One envisaged solution to 
enhance the applicability of artificial vision to 
manufacturing is the development of specific vision 
engineering concepts and tools.     
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     The class of artificial systems dedicated to mobile 
scenes is frequently used in mixed AVI-RV 
applications. At the level of the robot – partner of the 
machine vision processor, such applications are 
defined either as "pick-on-the-fly" or "consumer of 
vision data" tasks, executed at run time. 
 
 
2 System architecture and 2D image 
reconstruction from Line Scan Camera 
data 
 
The robot-vision system dedicated for visual 
inspection of flat materials (leather surfaces, metallic 
or glass sheets) and motion planning for multi-
purpose robotised processing (pattern drawing or 
cutting) is based on a multiprocessor pipelined 
architecture with the following resources: 
• Image acquisition is performed by a dual-camera 

system composed by two DALSA Line Scan 
cameras (LSC) with line resolution of 12048 ×  
pixels, each pixel being represented on 8 bits. 

• Materials are travelling on a conveyor belt, the 
motion of which is estimated by a LENORD 
encoder having the resolution of 1024 
pulses/rotation. The displacement pulses are 
input to an ADVANTECH I/O counter-timer 

board providing the feedback displacement data 
for the Central Management Subsystem (CMS), 
which triggers the image line snap compensating 
for speed variations in the belt motion. 

• The scene illumination is provided by linear 
neon tubes operated at 100 Hz by a MERCRON 
lighting controller, which equalises the light 
intensity over the total length of the neon 
sources. The tubes are placed at 20 cm above the 
conveyor belt. 

• A CORECO frame grabber and image processor 
stores the image lines from the two cameras and 
performs low level processing upon the 2D 
reconstructed image of the inspected material. 
The image processor, I/O counter-timer unit and 
CMS processor are integrated in an industrial, 
dedicated IBM computer providing also the 
man-machine interface at global application 
level. 

• An ADEPT Cobra 600TT robot system is 
connected via a serial communication line to the 
CMS processor, from which it receives the point 
– and path data to move its end-effector along 
the closed contours of the patterns optimally 
generated to cover the maximum useful area of 
the material's surface (Fig. 1). 

 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 1  Dual-LSC robot-vision system for inspecting materials on moving scenes. 

 
    The dual-camera configuration was adopted for 
two main reasons: high-precision inspection 
requirements and significant widths of materials 
along the direction of the image lines (belt width). 
One important aspect considered is that, due to the 
big opening of the cameras objectives, the acquired 
images present important distortions along the 
direction of line acquisition from the sensors.  
    The control system was designed as a multi-robot 
structure. This characteristic might be useful when 
either the workspace of one single robot manipulator 

is insufficient to cover the entire belt width, or the 
subsequent pattern cutting cycle of one single robot 
is incompatible with the high rate of material arrival 
on the conveyor belt. The vision processor performs 
high-level image processing for surface inspection, 
defect detection, skeletonization, and optimal 
placement of patterns on the valid surface of the 
material. The mapping of motion data in robot base 
coordinates, and the communication with the robot 
controller are performed by the CMS unit. All this 
computation is executed while the material is 
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moving in front of the LSC, and is finished before 
the material reaches the downstream placed robot 
workstation.  
    The image acquisition model for the dual-LSC 
system, shown in Fig. 2, has three particularities: 
• image distortions are present only along the 

direction of the camera acquisition line [3]; 
• there is a zone of superposed images for the two 

cameras: the end of the acquisition line from 
camera 1 is significantly superposed over the 
beginning of the acquisition line from camera 2; 

• there is a zone of spatially shifted images for the 
two cameras: the image from camera 2 is 
anticipated with a fixed number of lines with 
respect to the image from camera 2. 

  
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2  The image acquisition model 
 
    To extract and further compensate for these model 
particularities, a camera-scene calibration procedure 
was designed, which uses a calibration device. This 
device is a pattern represented by a set of elements of 
known shapes, dimensions and positions in the real 
world of millimetres. The usage of this calibration 
device during the camera installation stage allows 
also an exact parallelism of acquisition lines of all 
cameras, also perpendicular to the belt direction. 
    The calibration pattern is symmetric along the 
direction of the conveyor belt, and contains a number 
of dark rectangular blobs on a light background, to 
estimate the model of the scene along the distortion 
direction.  
    The two cameras have their acquisition lines 
reciprocally offset along the belt's direction. LSC 1 
has its acquisition line positioned on the upper edge 

of the inferior blob row, whereas LSC 2 has its 
acquisition line positioned on the lower edge of the 
superior blob row. The following steps are carried 
out in the camera-scene calibration sequence: 

1. The calibration pattern is placed in the plane 
of the conveyor belt, with its two blob rows 
normally to the direction of motion of the 
belt. 

2. The position of each camera is adjusted with 
respect to the conveyor, by help of its 3-d.o.f 
rotation mobility (see Fig. 3): 

• The roll angle about the Z axis, normal to the 
belt plane, is first adjusted; this provides the 
parallelism (and horizontality) of the LSC 
acquisition lines. The proper roll orientation 
is achieved when only odd blobs are 
identified in the image. 

• The pitch angle is next adjusted about the X 
axis, normal to the belt's motion direction, to 
position the acquisition lines. The proper 
pitch orientation is achieved when the offset 
between the acquisition lines of the two LSC 
equals the dimension of the free space 
between the superior and inferior row of 
blobs, and all even and odd blobs are 
observed. 

• The rotation about the belt motion axis, Y, 
adjusts the value of the superposition zone 
between the two LSC images. The angles are 
adjusted until the first (last) blob, at the left 
limit (right limit) of the belt, is identified at 
the start (end) of its line in the LSC 1 (2) 
image 

3. The focus and the aperture are adjusted for 
each objective, until the best contrast 
(computed from black-white transitions in 
the grey level histogram of an image line) 
and luminosity are obtained from the image 
of a calibration sheet. 

4. The calibration function of the vision system 
is finally activated, for the automated 
computation of the scene parameters from 
the measured values of the calibration 
pattern. 
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Fig. 3  Geometric features of the image acquisition system. 
 
    As can be observed from Fig. 3, there might exist 
a horizontality error in the placement of the 
calibration device, whenever the belt's width has 
important values. Due to this fact, the parallelism 
errors between the OY axis (the axis of the 
calibration device along the belt's width) and the 
O’Y’ axis, corresponding to the conveyor width, 
must be considered [5]. 
    To estimate the parameters of the scene (of the 
conveyor), the system uses the mapping equations 
from the calibration coordinates, OY, to the scene 
coordinates, O’Y’: 
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    The scene parameters, obtained with the off line 
camera-scene calibration sequence, were used to 
map the location of the covering patterns, optimally 
generated by the vision system at run time, in the 
robot base coordinates ).,( 00,0 zyx             
    The final step of the camera-scene calibration 
consisted into adjusting the acquisition line scan rate 

according to the belt's speed. This is a 2-stage 
process: 
• First, a circular calibration disk of known radius 

was placed in the field of view of the camera, 
and the scan rate was varied in a loop-program, 
until the error between the maximal dimensions 
in pixels along the X and Y axes was about zero. 
The rations in [pixel/millimetre] along the X and 
Y directions were also computed for later 
coordinate conversions. 

• Then, the number of corresponding encoder 
pulses encn  was read for the obtained acquisition 
rate. This value was stored to be further used at 
run time as feedback signal for line acquisition 
triggering, irrespective of the belt speed 
variations. 

 
 
3  Pattern generation for maximal 
covering of skeletonized material 
surfaces 
 
Once the 2D grey level image of materials 
reconstructed by successive line acquisition, and 
stored in the computer’s memory, several 
transformation processes are performed upon this 
image. 
    The material's image is first binarised with two 
thresholds, HLHL   ,, thrthrthrthr < . The binary value 

b
, jif  for each pixel ),( ji  of the 2D image with grey 

levels *
, jif  is computed as follows 

Z 
Y

H
1=

17
m

m

Camera 1 Camera 2

Y’ (Conveyor) 

Y (Calibration) 

Left margin of the calibration 
model, taken as origin of the 

coordinate system.
X (Belt  
direction) 

α 

L1=1408 mm 
L2=3305 mm 

H (2592mm)= 
(Hleft +Hright)/2 

Y1 

Y’1 

 
Y2 

Y

636 mm 

H2=31mm 

Proceedings of the 1st WSEAS International Conference on VISUALIZATION, IMAGING and SIMULATION (VIS'08)

ISSN: 1790-2769 58 ISBN: 978-960-474-022-2



 

⎪⎩

⎪
⎨
⎧

∪∈

∪∈
=

 ][    ,1
]255,(),0[   ,0

HL
*
,

HL
*
,b

,
thrthrf

thrthrf
f

ji

ji
ji    (4) 

 
    The two thresholds are either automatically 
computed (the system uses the maximal contrast 
curve in the grey level image), or user defined, 
according to a try-and-use preliminary search for 
each particular class of materials (metallic, leather 
etc). Hence, any pixel on the material's surface 
having the colour outside the range of levels 

],[ HL thrthr  will be represented as a black, 
foreground pixel, whereas all remaining pixels of the 
material, with colours inside the specified range, will 
create the white, background representation of the 
material's surface to be optimally covered by patterns 
[2]. 
    Internal defects of materials (holes, dark areas and 
tree-shaped scratches or incisions) are identified as 
blobs, i.e. connected zones of pixels having the same 
colour (the 33×  neighbourhood of 8 surrounding 
pixels is taken for each one). Very small blobs are 
filtered out; the remaining ones are queued in a list of 
blobs of the segmented image. Blob detection is 
performed by a "fill" type algorithm, which marks 
foreground pixels after their inspection column-by-
column and line-by-line. 
    Whenever an unmarked (background) pixel is 
found, the program starts to explore a new blob. 
Every found "defect"- blob is assigned a new ID 
value in the blob queue of the image. During the 
blob search process, other blob features are 
calculated in parallel: area, perimeter, centre of mass, 
orientation, minimum rectangle box, which may be 
further used for analysis and statistics reports [4]. 
    Usually, peripheral material zones (less than extd  
from its outer contour and less than intd  from the 
blob contours) must be eliminated from further 
processing, due to quality problems. This reduction 
of material surface is obtained by expanding the 
contours of the defect blobs (marking its exterior 
pixels closer than intd  with the blob's colour), 
respectively by contracting the perimeter of the 
material (marking its interior pixels closer than extd  
with the background colour).  
    The next algorithm was used: 

1. Save the coordinates of the first pixel found 
during blob detection, part of its frontier. 

2. Create and store a list of all contour pixels, 
starting from this pixel and visiting its 
neighbours 

3. Repeat steps 1 and 2 extd , respectively intd  
times for material contracting and defects 
expanding. 

4. Mark the pixels from the list respectively 
with the background/defect blob colour 
(black). 

5. Create a new list of contour pixels from the 
new frontiers.  

    The efficiency of the method is visible; only the 
pixels that have to be modified are traversed and the 
dimension of the object’s frontier only determines 
the supplementary memory to be used [1]. 
    A solution combining the Greedy and 
Backtracking techniques, rather than a polynomial 
algorithm was chosen to solve for the optimal 
covering of the reduced material surface with 
rectangular patterns, of user defined dimensions. 
Backtracking was used as one of the most known 
methods for solving problems for which the solution 
is represented as an array 

AnAxnxx ××∈= ...1)...1( , where Ai  are finite 
sets. Moreover, it is necessary that the solution 

),...,1( xnx  satisfy some internal constraints, which in 
this case apply to the rectangle patterns as follows:  

• all the points belonging to the rectangles 
must be not marked (not present in the 
defect blob list); 

• once a rectangle is determined, its area is 
subtracted from the material's area to be 
used; 

• the edges of the rectangles are parallel to 
the axes visvis yx ,  of the image plane. 

    The function verifying these conditions returns a 
Boolean value, which, if true, causes the execution 
of the following sequence of steps, performed by the 
back (int Level) function: 

1. A matrix called m_modBuf is filled with 
zeros in the area occupied by the rectangle. 
Matrix pixels are accessed with 
m_modBuf+(line-1)*image_length+column. 

2. The yx,  coordinates of the upper left and 
lower right corners of each new found 
rectangle will be stored in an array called 
rectangle. 

3. The function back is called again with 
incremented argument Level+1, trying to 
find the yx,  coordinates of rectangle 
number Level+1 (see Fig. 4). 

    The set AnAA ××= ...1  is the space of all possible 
solutions. The elements Ax ∈  satisfying the internal 
constraints are the result solutions, as arrays 
containing the corner's coordinates for the set of n  
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found rectangles, which cover a greater material 
surface as compared to the previous solution. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 5  The Backtrack-Greedy  algorithm for optimal 

surface covering 
 
    Normally, when using the backtracking method, 
the interest is to determine all the result solutions, 
eventually for selecting among them that one which 
maximizes a cost function. For the current 
application, the cost function is the useful material 
surface covered by rectangular patterns.  
    The method avoids the generation of all possible 
result solutions (elements of the cross product A ). A 
value is assigned to element 1,...,  , nkAkxk =∈  only 
after values were assigned to 11 Ax ∈ ,…, 

)1()1( −∈− kAkx . The method continues to assign a 
value to )1()1( +∈+ kAkx  only if xk  together with 

)1(,...1 −kxx  verify the continuation condition 
),..,1( xkxCk . If this condition is not satisfied, then 

another choice must be made for Akxk ∈ , which is 
possible unless all possible values in the set Ak  were 
exhausted. If the set Ak  was exhausted, it is 

necessary to reduce k  to 1−k  and to select another 
result solution for the element )1()1( −∈− kAkx . This 
happens when there is no more space left to place a 
rectangle, irrespective of its orientation. The search 
for solutions is terminated when the maximal 
number of iterations, experimentally defined, is 
reached.  
    To optimise the Backtracking algorithm, the 
Greedy programming technique was used. This 
method applies to problems for which a set A  of n  
elements is given, and a subset AB ∈  must be 
determined, meeting certain conditions to be 
accepted. Because more than one solution may exist, 
a selection criterion is specified to provide in such 
cases the unique, optimal solution from the possible 
ones. If B  is a possible solution and BC ∈ , then C  
is also a possible solution.  
    Using the camera-scene calibration parameters, 
the rectangle coordinates are mapped to the robot 
base frame ),,( 000 zyx , and sent to the robot 
controller via a dedicated communication line. 
 
 
4   Experimental results 
 
The dual-LSC robot-vision system was implemented, 
calibrated and tested in the Robotics and CIM 
laboratory of the University Politehnica in 
Bucharest. The application consisted in inspecting 
leather pieces of about 2m 4.0 , which randomly 
shaped and located holes and incisions. Rectangle 
patterns were placed on the materials after defect 
detection and surface reduction (Fig. 6).  
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Fig. 6. Binary image of sample, after pattern 
covering. 
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    A series of experiments was carried out, 
respectively with rectangular patterns of dimensions 
[cm]:  

D1=30 x 50, D2=50 x 70, D3=70 x 90, D4=110 x 130 

    For each type of pattern, the Backtracking 
algorithm was run with 1050 and 800,550,300,50  

iterations. The percentage p[%] of the accepted 
surface, covered by rectangle patterns, is indicated in 
Table 1, where 

areablobExpandedareabackgrdduced

nopatternD
p i

____Re
_100

−
⋅⋅

=  

  

 
Table 1 Percentage of surface covering with the Backtracking – Greeding procedure 

 
Pattern 

dimensions 
5030 ×  7050 ×  9070 ×  11090 ×  130110 ×  

1050 91.2 80 73.6 66.6 55.5 
800 88.7 77.1 68.4 58.3 55.5 
550 88.7 77.1 68.4 58.3 55.5 
300 88.7 74.2 68.4 50 44.4 

 
N

um
be

r o
f 

ite
ra

tio
ns

 

50 87.5 71.4 68.4 50 44.4 

 
    As can be observed from Table 1, the number of 
covering patterns increases as the number of 
iterations augments, and/or the dimensions of the 
rectangle's edges become smaller. However, over 
300 iterations, the result solutions do not improve 
significantly. For 300 iterations the execution time 
was of 4.4 seconds, which did not overrun the 6.2 
seconds travelling time of the material from the 
vision inspection station to the robot workstation. 
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