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Abstract: - With the objective to provide hydrodynamic information of the water around Singapore, the Singapore 
Regional Model (SRM) has been developed within the Delft3D numerical modelling system. The results of this 
large-domain numerical model are necessarily a balance between the choices about domain, local resolution, model 
parameter settings and representation of forcing. Especially in the complex nearshore area around Singapore Island, 
however, high accuracy in prediction of water levels is required. To further improve the results of the deterministic 
Singapore Regional Model in the coastal area, an error correction scheme based on the local model (LM) approach 
is carried out, which is inspired from chaos theory and capable of forecasting the time series based on the 
underlying mechanism that may not be revealed in the deterministic model simulation. The efficiency of the error 
correction scheme has been tested on 3 stations in the Singapore Regional Model domain with 4 prediction 
horizons ranging from 2 hours to 96 hours. It is found that the error correction scheme significantly improves the 
accuracy of the tidal prediction with more than 70% of the root mean square error removed for 2-hour tidal forecast 
and around 50% for 96-hour tidal forecast. 
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1  Introduction 
In ship navigation and offshore operations, tidal 
prediction is of prime importance. Prediction could 
be made for time horizons from several hours to 
several days, which is helpful in the finalization of 
operational schedules and other coastal activities. 
The current practice of tidal prediction is undertaken 
by either using a tidal predictive deterministic model 
[1,2] or by a time series forecasting model [3,4].  

If the deterministic equations underlying the 
physical phenomena are known, in principle, they 
can be numerically solved to forecast the future state 
based on the knowledge of the initial conditions and 
the time evolution of forcing terms with a high 
prognostic capability. However, model resolution, 
parameter uncertainty and also the absence of or 

uncertainty in the prescribed forcing contribute to 
model errors. Numerical models tend to produce 
imperfect results despite our perfect knowledge of 
the governing laws [5]. 

The linear models, such as autoregressive 
moving average (ARMA) models, have dominated 
the field of time series forecasting for more than half 
a century. The signals are transformed into a small 
number of coefficients plus residual white noise in 
the linear models. However, such appealing 
simplicity can be entirely misleading even when 
weak nonlinearities occur. The inherent linearity 
assumptions may not be applicable to correct the 
numerical model simulation, where the model errors 
come from highly nonlinear resources.  
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Local model originates from chaos theory, and 
has gained popularity in nonlinear time series 
forecasting [6-8]. In the present study, an error 
correction scheme based on local model is applied to 
correct the outputs of the Singapore Regional Model. 
The improvements in the prediction accuracy over 
the numerical model are discussed in detail. 
 
 

2  Singapore Regional Model 
Singapore Strait is one of the busiest shipping routes 
in the world. Since the 1960s, the coastal area has 
been heavily utilized as ports or related industrial 
facilities with rapid economic development. The 
dedicated Singapore Regional Model has been 
constructed within the Delft3D modelling system, 
with the intention to provide hydrodynamic 
information of the water surrounding Singapore for 
accurate scheduling of harbor facilities, docking and 
sailing times [9]. 

As shown in Figure 1, the model domain coves 
large parts of seas around Singapore. Its open 
boundaries are located in the Andaman Sea, in the 
South China Sea and in the Java Sea. The Singapore 
Regional Model grid consists of around 38,500 grid 
cells in the horizontal plane. Grid sizes vary from 
about 200 m to 300 m around Singapore up to over 
15 km at the open boundaries. Singapore is located 
between two large water bodies: the South China Sea 
on the east and the Andaman Sea on the west. The 
water motion in Singapore Strait is driven by tides 
coming from both sides, by mean sea level 
differences between seas and by the wind. Therefore, 
the hydrodynamics of Singapore water is complex. 
Figure 1 also presents 3 stations studied in this paper, 
which are located at Jurong (1.31 N, 103.72 E), 
Tanjong Pagar (1.26 N, 103.85 E) and Bukom (1.23 
N, 103.78 E). 

The numerical tidal simulation covers a one year 
period from 1st January 00:00 1999 to 31st December 
23:00 1999, producing time series of 8760 hourly 
data for all grid points. Hourly tide data from the 
1999 Singapore Tide Tables and Port Information [10] 
for the same period are used as ‘observations’. After 
neglecting the first 480 data points to avoid 
initialization effect (in hindsight, 120 hours would 
have been sufficient), the Singapore Regional Model 
outputs are compared with the observations at these 3 
stations. The results are shown in Table 1 in terms of 
root mean square error (RMSE) and correlation 

coefficient (r). Examples of the model outputs are 
plotted in Figure 2, accompanied by the observations 
and the model errors, from which the discrepancies 
between the model outputs and the observations can 
be noticed especially at the tidal level extrema. 
 

 
Figure 1. Singapore Regional Model domain and the 
location of measurement stations. 
 
Table 1. Statistics of the model errors at the 
measurement stations. 

 Jurong Tanjong Pagar Bukom 
RMSE(cm) 18.30 17.57 17.54 

r 0.91 0.91 0.91 
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Figure 2. SRM outputs, observations and model 
errors at the measurement stations. 
 
 

3  Chaos Theory 
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Recent developments in nonlinear dynamics have 
demonstrated that irregular or random behavior in 
natural systems may arise from purely deterministic 
dynamics with unstable trajectories. Such types of 
nonlinear dynamical systems, which are highly 
sensitive to initial conditions, are popularly known as 
chaotic systems. According to Williams [11], chaos 
is a sustained and disorderly-looking evolution that 
satisfies certain special mathematical criteria and 
occurs in a deterministic non-linear system. 
 
3.1  Embedding theorem 
Takens’ time-delay embedding theorem [12] paved 
the way for the analysis of chaotic time series in 
chaotic systems. The theorem essentially states that 
the underlying structure of a complex, multi-
dimensional system can be equivalently viewed using 
a projection from a single variable in the phase space, 
which is an embedded space with dimensions 
consisting of various time lags of the variable itself. 

Given a scalar time series ix  from a dynamical 

system, it is possible to reconstruct a phase space in 
terms of the phase space vector  expressed as ix

( )( 1, , ,i i i i mx x xτ )τ− − −=x L  (1) 

where  is the embedding dimension, and m τ  is the 
time delay. According to the embedding theorem, the 
underlying structure cannot be seen in the space of 
the original scalar time series, rather only when 
unfolded into a phase space, or embedded space. 

In the phase space prediction model, the basic 
idea is to set a functional relationship between the 
current state  and the future state  in the form tx t T+x

( )t T T tf+ =x x  (2) 

where  is referred to as lead time or prediction 
horizon. The problem now is limited to find a good 
expression for the mapping function 

T

Tf . 

 
3.2  Local model 
Local model is an effective method of simulating the 
evolution of a dynamical system by means of local 
approximation, using only the most similar 
trajectories from the past to make predictions for the 
future [6-8]. Steps in the local model approach can be 
described as follows, 

• Step 1. Embedding the time series into a 
phase space 

• Step 2. Finding k  nearest neighbors in the 
phase space 
To predict a future state , a Euclidean 

metric is imposed on the phase space to find 
the  nearest neighbors of the current state 

, denoted by 
 

. 

t T+x

2, ,L

k
tx nx ( )1,n k=

• Step 3. Calculating the ‘expected’ future 
state 
Having constructed the phase space and 
pooled the k  nearest neighbors of the 
current state , the ‘expected’ vector of the 

future state 
tx

t T+x , denoted as ˆ t T+x , can be 

estimated through averaging as 

1

ˆ
k

t T n T
n

k+ +
=

⎛ ⎞= ⎜ ⎟
⎝ ⎠
∑x x  (3) 

• Step 4. Deriving the forecast scalar value 
In the phase space, the ‘expected’ future state 
ˆ t T+x  can be expressed in the form of 

Equation (1) as 

( )( )1
ˆ ˆ ˆ ˆ, , ,t T t T t T t T mx x xτ τ+ + + − + − −=x L  (4) 

The predicted scalar values ˆt Tx + , ˆt Tx τ+ − , … 

in the time series ix  can be retrieved 

according to the structure. 
 When making a local model forecast, the first 
step is to unfold the time series into a phase space, 
which typically involves the selection of an 
embedding dimension m  and a time delay τ . In the 
traditional standard approach, false nearest neighbors 
(FNN) and average mutual information (AMI) 
analyses are recommended to determine these 
parameters [13]. However, the standard approach has 
shown to provide suboptimal choices of the 
embedding parameters. Therefore, in this paper, an 
alternate inverse approach based on genetic 
algorithm (GA) is employed, which has demonstrated 
significant improvements over the standard approach 
[14,15]. 
 
3.3  Inverse approach 
In the inverse approach, genetic algorithm is used to 
simultaneously optimize the embedding dimension 

, the time delay m τ  and the number of nearest 
neighbors Genetic algorithm is a parameter search 
procedure based upon the mechanics of natural 
genetics, which combines the Darwinian theory of 

k . 
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evolution with a random, yet structured information 
exchange among a population of artificial 
chromosomes [16]. 

The evolving process in genetic algorithm is 
illustrated in Figure 3, while Figure 4 presents the 
flow diagram for genetic algorithm. In principle, an 
initial population of chromosomes { }, ,iP m kτ= , 

where , m τ  and k  are represented by binary bits, is 
randomly generated within the specified ranges of 
parameters, and is allowed to evolve through the 
following process: 

• Selection: A scheme is employed to select 
the chromosomes to reproduce offspring 
according to their respective fitness. The 
chromosome with higher fitness has a better 
chance of being selected. For every 
chromosome, local model is executed to 
evaluate the fitness in terms of root mean 
square error. 

• Crossover: Some portion of a pair of 
chromosomes selected from the population is 
exchanged according to some constraints in 
order to generate two new sets of parameters. 

• Mutation: One individual chromosome 
selected from the population is transformed 
to a new individual by inverting some of its 
binary values. 

The process is continued until an entirely new 
population is generated with the hope that the fitter 
parents will create a better generation of children, 
such that the average fitness of the population will 
tend to increase with each new generation. The 
fitness of each child in the new generation is 
evaluated, and the process of selection, crossover and 
mutation is repeated. Successive generations are 
created until the user-defined threshold for the fitness 
or number of maximum generation is reached. 
 

 
Figure 3. Schematic illustration of evolving process 
in genetic algorithm. 
 

 
Figure 4. Flow diagram for genetic algorithm. 

 
 

4  Results and Discussion 
In the proposed error correction scheme, the first 480 
data points (1st January 0:00 – 20th January 23:00) are 
discarded from the data sets due to the initialization 
effect in the Singapore Regional Model. The data 
points from 481 to 7320 (21st January 0:00 – 1st 
November 23:00) are used to train the local model in 
determining the optimal m , τ  and  for each 
prediction horizon required at each station, while the 
remaining data from 7321 to 8760 (2nd November 
0:00 – 31st December 23:00) are used as validation 
data to testify the efficiency of local model in error 
prediction.  

k

Table 2 summarizes the error forecasting 
efficiency of the local model approach through 
evaluating the respective residual root mean square 
error as well as the correlation coefficient after error 
correction. For the prediction horizon T=2 hours, 
more than 70% of errors have been removed from the 
Singapore Regional Model outputs at the 
measurement stations. Figure 5 shows examples of 
the error forecasting using local model with 
prediction horizon fixed to 2 hours. The 2-hour 
forecast successfully resolves the rising and falling 
tendencies of the model errors, generating trivial 
residual errors oscillating about zero. The 
corresponding scatter diagrams are depicted in Figure 
6. The Singapore Regional Model is found to over-

MATHEMATICAL METHODS, COMPUTATIONAL TECHNIQUES, NON-LINEAR SYSTEMS, INTELLIGENT SYSTEMS

ISSN: 1790-2769 168 ISBN: 978-960-474-012-3



predict the reality, while the scatter is reduced in the 
local model corrected tidal levels. When the 
prediction horizon progresses, it becomes more 
intractable to capture the trajectories of the state 
vectors in the unfolded phase space. This makes the 
model error time series less predictable. Therefore, as 
anticipated, the accuracy of prediction decreases 
when T increases. However, even for T=96 hours, the 
local model forecast successfully removes almost 
50% of the errors. Moreover, the correlation 
coefficient between the corrected model outputs and 
the observations remains larger than 0.97 for all the 
prediction horizons compared to the original 0.91 
without error correction. The plots of residual root 
mean square errors against forecast horizons at the 
measurement stations are shown in Figure 7, together 
with the root mean square error before correction. A 
slight increasing trend is observed from the curve. 
 
Table 2. Residual RMSE and correlation coefficient 
at the measurement stations. 

Jurong Tanjong Pagar Bukom 
 RMSE 

(cm) 
r 

RMSE 
(cm) 

r 
RMSE 
(cm) 

r 

SRM 18.30 0.91 17.57 0.91 17.54 0.91 
T=2 Hr 5.24 0.99 5.09 0.99 4.87 0.99 

T=24 Hr 6.08 0.99 6.31 0.99 5.54 0.99 
T=48 Hr 7.64 0.98 8.51 0.98 6.84 0.98 
T=96 Hr 9.91 0.97 9.06 0.97 9.07 0.97 
Average 7.22 0.98 7.24 0.98 6.58 0.98 
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Figure 5. Error forecasting at the measurement 
stations using local model when T=2 hours. 
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Figure 6. Scatter diagrams of SRM outputs, LM 
corrected tidal levels from observations at the 
measurement stations. 
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Figure 7. RMSE vs. prediction horizon at the 
measurement stations. 
 
 

5  Conclusion 
The concept of improving the tidal prediction 
accuracy of a deterministic numerical model using 
the local model approach, which is a nonlinear time 
series predictive algorithm inspired from chaos 
theory, is discussed in this paper. The embedding 
parameters required for the phase space 
reconstruction and the local model prediction are 
optimized using genetic algorithm. By predicting the 
model errors at the measurement stations, systematic 
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errors can be modeled by the error correction scheme, 
while the physical dynamics remain described by the 
deterministic model. The accuracy of tidal prediction 
is significantly enhanced. More than 60% of the 
errors have been removed on average. The 
performance of local model deteriorates slightly with 
increasing prediction horizons. 

In spite that local model is more efficient in 
terms of accuracy and computational cost compared 
to the Singapore Regional Model, nonlinear time 
series forecasting is not an alternative to the 
numerical models. Local model forecasting can only 
be carried out where observations are available with 
a rather limited prediction horizon, while the 
numerical model is able to predict over the entire 
model domain in a finer grid structure with a higher 
prognostic capability, and hence provides good 
understanding of the physics of the ocean flows. 
However, local model is the starting point for an 
effective data assimilation scheme. Once the forecast 
at a few measurement stations are carried out with a 
higher accuracy, the entire domain can be benefited 
by distributing the errors from the limited number of 
stations using an optimal interpolation algorithm, 
such as the Kalman filter (KF) and Artificial Neural 
Networks (ANN). 
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