MATHEMATICAL METHODS, COMPUTATIONAL TECHNIQUES, NON-LINEAR SYSTEMS, INTELLIGENT SYSTEMS

Semantic Image Annotation via Hierarchical Classification

Nicolas Tsapatsoulis Klimis Ntalianis
Cyprus University of Technology National Technical University of Athens
31 Archbishop Kyprianos Str., 9 Heroon Polytechniou Str.,
CY-3603, Limmasol, Cyprus 15780 Zografou, Greece

Abstract: In this paper we address some of the issues commonly encountered in automatic image annotation
systems such as simultaneous labeling with keywords corresponding to both abstract terms and object classes,
multiple keyword assignment, and low accuracy of labeling due to concurrent categorization to multiple classes.
We propose a hierarchical classification scheme which is based on predefined XML-dictionaries of tree form. Every
node of such a tree defines a particular classification task while the childs of the node correspond to classification
categories. The winning class (subnode) defines the subsequent classification task and the process continues until
the leafs of the tree are reached. The final classification task is performed at image segment level; that is every
image segment is assigned a particular keyword corresponding to a tree leaf. The path followed from the root of the
XML tree to the leafs along with the union of labels assigned to the image segments compose the list of annotation
keywords for the input image.
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1 Introduction chine learning emphasizing on classification. Seman-

tic labels may refer to an abstract term, such as in-
The last few decades we are facing an enormous in- door, outdoor, athletics, etc, or to an object class such
crease in the number of digital image collections that as human, car, tree, foam mats, etc. In contrary to
are available through the Web or in personal repos- object classes, abstract terms cannot be related to spe-
itories. The problem of searching these repositories cific image regions. Instead annotation using abstract
created the need for efficient and intelligent schemes terms consider an image as whole. On the other hand,
for content-based image retrieval (CBIR) [15]. CBIR semantic labels corresponding to object classes are as-
computes relevance based on the visual similarity of signed every time a particular object instance is en-
image low-level features such as color, texture and counter in an image. This object instance almost al-
shape [13]. Users can query by example and the sys- ways correspond to an image region (part of the im-
tem automatically returns images according to rele- age). In the literature of automatic semantic image an-
vance [16]. Early CBIR systems were based on the notation, proposed approaches tend to classify images
query-by-example paradigm [6], [7], which defines using only abstract terms or using holistic image fea-
image retrieval as the search for the best database tures for both abstract terms and ObjeCt classes. The
match to a user-provided query image. However, it latter is obviously wrong; semantic labeling using ob-
was quickly realized that the ultimate users were will- ject class labels is actually an object detection task.
ing to search for images by text-based mode, and, Therefore, region-based features must be used instead
therefore, the design of fully functional retrieval sys- of holistic ones. It is fair to say, however, that there are
tems would require support for semantic queries [14]. approaches [19] that use some kind of object detec-
In such systems images in the database are annotated tion in order to assign semantic labels to images [3].
with semantic labels, enabling the user to specify the Namely, given a set of training images with keywords
query through a natural language description of the vi- that describe image semantic contents, region—based
sual concepts of interest. This realization, combined low-level features of the training images are extracted.
with the cost of manual image 1abeling’ generated Sig_ Then, classifiers are constructed with low-level fea-
nificant interest in the problem of automatically ex- tures to give the class decision. The trained classifiers
tracting semantic descriptors from images. are, then, used to classify new instances and annotate

unlabeled images automatically. Since each classifier

Automatic annotation of digital images with se- . X .
g g is trained in the “one-vs-all” (OVA) mode (the concept

mantic labels is usually coped with by utilizing ma-
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of interest versus everything else), this semantic label-
ing framework is referred as supervised OVA. Need-
less to mention that both image classification using
abstract terms and semantic labeling via object detec-
tion are extremely difficult to solve; the latter being
solvable using strict constraints.

In this paper we propose a unified framework,
based on hierarchical classification, for semantic im-
age annotation with both abstract terms and object
class labels. To do so we model the structure of se-
mantic labels using an XML-dictionary having a tree
form. Root labels correspond to abstract terms while
leafs correspond to object classes. Classification is
performed in various steps, each step providing dif-
ferent semantic labels to (automatically) choose from.
In this way there is no need to handle the classifica-
tion problem with an extremely large number of la-
bels concurrently available (such a classification task
is obviously highly unreliable both in terms of clas-
sifiers’ training and automatic annotation accuracy).
Instead, classification is performed using a few labels
at a time, depending on the tree branches at the current
level in the hierarchy. In order to allow for semantic
labeling at the object class level we use an innovative
method for image segmentation using region-growing
toward “meaningful” objects. Each image segment is
then evaluated against the object class models to be
assigned the best matching label. Given that each im-
age is composed -in general- of several regions it is
possible one image to be assigned several semantic
labels corresponding to object classes. Classification
into abstract terms is achieved using holistic instead of
region-based features of images. In fact, the MPEG-7
visual descriptors [8] are used for both image and im-
age region classification; the difference is that in the
first case the shape descriptor is excluded while in the
second case all descriptors are computed per image
segment. Concept (semantic label) models were build
using the Support Vector Machines (we have used the
libSVM [5] library integrated with Weka [17])

The paper is organized as follows: Section 2 in-
troduces the overall system operations performed dur-
ing automatic image annotation. In Section 3 we dis-
cuss the creation of the XML dictionary that is used
for semantic annotation. In Section 4 we deal with
the MPEG-7 descriptors used in concept modeling.
Learning and training stuff preparation is explained
in Section 5. In Section 6 we present the image seg-
mentation process used for object detection and label-
ing. In Section 7 we present the evaluation protocol
we have employed along with extended experimen-
tal results. Finally conclusions are drawn and further
work hints are given in Section 8.
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2 System Architecture

The proposed system operates on two different
modes: learning and automatic annotation. Learning
is involved for the creation of concept models being
either abstract terms or object classes and is further
explained in Section 5. Automatic image annotation
uses the concept models and image processing tech-
niques for the creation of keywords assigned to indi-
vidual images. The overall annotation process is il-
lustrated as a flowchart in Figure 1. Every time an
input image is fed to the system the following pro-
cedures take place: (a) The XML-dictionary tree is
loaded (details on the form of this dictionary will be
given in Section 3), (b) the MPEG-7 visual descrip-
tors of the whole image are computed (see Section 4
for more information), (c) starting from the root of the
XML tree the appropriate concept models are loaded
(if, for example, at root level there are the concepts
‘indoor’ and ‘outdoor’ only the models for these con-
cepts are used), (d) the image is classified to one of
the currently loaded concepts using MPEG-7 descrip-
tors computed in step (b) (it must be mentioned here
that the confidence of classification is also computed
so as to identify situations where there is no match to
one of the existing concepts), (e) once the leaf level
of the XML tree is reached the appropriate concept
class models are loaded (note that these models de-
pend on the classifications made in the previous steps,
i.e., the path followed within the XML tree), (f) in-
put image is partitioned into large homogeneous areas
using a segmentation technique which is driven by the
currently loaded object class models (see Section 6 for
details), (g) each image partition is evaluated against
the loaded object class models and the winning class
is assigned as a label to the corresponding partition
(note that classification confidence is always involved
to identify no match to a particular object class), and
(h) the list of object class labels attached to the indi-
vidual image partitions along with the abstract terms
assigned to the whole image at the various levels of
the XML tree compose the list of keyword labels that
must be assigned to input image.

3 Hierarchy of Concepts

Dictionaries used for manual image annotation have
usually a tree structure (see Figure 2 for an exam-
ple). Broader concepts (‘indoors’, ‘outdoors’) corre-
spond to higher level nodes (short distance to root)
while specific items or object classes correspond to
leafs or lower level nodes. We have adopted a similar
structure for the dictionaries used in automatic anno-
tation. An example of such a dictionary, used for an-
notating images taken from athletics, in XML format
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Figure 1: Flowchart of automatic image annotation
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Figure 2: The tree structure of an annotation lexicon
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- <root>
- <IndoorEvent>
- <Jumping>
+ <HighJump>
- <PoleVault>
<Athlete />
<Pillars />
<HorizontalBar />
<Pole />
</PoleVault>
+ <longlump>
+ <TripleJump>
</Jumping>
- <Throwing>
+ <DiscusThrow>
+ <HammerThrow>
+ <JavelinThrow>
+ <ShotThrow>
</Throwing>
+ <Running>
</IndoorEvent>
- <OutdoorEvent>
+ <Marathon>
+ <Walking>
</OutdoorEvent>
</root>

Figure 3: An example of an XML dictionary related
with athletics domain

is shown in Figure 3. We will explain the hierarchi-
cal classification approach we follow with the aid of
this scheme. For this purpose we assume that (a) for
each node there is a trained multiclass classifier able to
classify an input image (or image segment for lowest
level nodes) to one of the categories defined by node
childs, and (b) for each concept there is a confidence
estimator mechanism (we have implement these con-
fidence estimators using one-SVM classifiers [18]).
Let I an input image, z € RY a feature vector ex-
tracted from I, and ®Y(z) = [¢Y(x) ¢4() ... 4, ()]
a mapping function RV — [0 1] x [01] x ...[0 1]. If

M times
function ®Y(z) denotes the classifier at node y the

winning class is computed by:

ey

Let also ¢?(z) denote a confidence estimation
function of the i-th subnode of node y (¢! (z) per-
forms a mapping ®Y — [0 1]). In case the confi-
dence value corresponding to the winning class subn-
ode Y, (z) is higher than a specific threshold T (an
indicative value is T' = 0.4) the label corresponding
to subnode ¢¥ will be assigned to input image I and
the next classification task will be performed on node
c¥ with the categorization classes corresponding to its

¢ = argmaz;(¢Y)
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subnodes.

Let us now present an example to clear things out.
By referring to Figure 3 the first classification task in-
volves the classes ‘Indoor’ and ‘Outdoor’. Assum-
ing that the winning class is ‘Indoor’ and the confi-
dence, that input image is indeed an indoor image, is
higher than 7" then input image is assigned the label
‘Indoor’. The next classification task involves classes
‘Jumping’, ‘Throwing’, and ‘Running’ (childs of node
‘Indoor’). Assume now that the process continues fol-
lowing the path ‘Jumping’— ‘PoleVault’. The last
classification task involves classes ‘Athlete’, ‘Pillars’,
‘HorizontalBar’, and ‘Pole’ and is applied to all image
segments created by image segmentation (see Sec-
tion 6). As a result it is possible all the previous la-
bels to be assigned to input image, provided that at
least one of image segments classified to each one of
these categories. The last thing to mention is that the
classification process stops at the tree level where a
non-confident classification occurred.

4 Image and Region-based features

Automatic image annotation has gained great atten-
tion in the research community because it deals with
a real world problem which is laborious to be handled
with human intervention exclusively: Searching in
image repositories of thousands of images which they
have not got explicit metadata assigned to them by hu-
mans. In the MPEG-7 framework there is a special
foresight for this problem through the definition of the
MPEG-7 visual descriptors [8]. These descriptors are
low-level image features proposed after an extended
evaluation procedure [11]. No doubt that much of
the attention paid recently to automatic image anno-
tation and CBIR systems is due to the MPEG-7 visual
content description interface, which provide a uni-
fied framework for experimentation. Furthermore, the
MPEG-7 experimentation model [12] provides parcti-
cal ways for the computation of the MPEG-7 descrip-
tors.

MPEG-7 visual descriptors include the color, tex-
ture and shape descriptor. A total of 22 different kind
of features are included, nine for color, eight for tex-
ture and five for shape. The various feature types are
shown in Table 1. In the third column of this Table
is indicated whether or not the corresponding feature
type is used in holistic image and/or image segment
description during automatic annotation. The number
of features shown in the fourth column in most cases
is not fixed and depends on user choice; we indicate
there the settings in our implementation. The domi-
nant color features include color value, percentage and
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Table 1: MPEG-7 visual descriptors used in the proposed classification scheme

Descriptor Type

# of features Usage level Comments

Color DC coefficient of DCT (Y channel) 1 Both Part of the Color Layout descriptor
DC coefficient of DCT (Cb channel) 1 Both Part of the Color Layout descriptor
DC coefficient of DCT (Cr channel) 1 Both Part of the Color Layout descriptor
AC coefficients of DCT (Y channel) 5 Both Part of the Color Layout descriptor
AC coefficients of DCT (Cb channel) 2 Both Part of the Color Layout descriptor
AC coefficients of DCT (Cr channel) 2 Both Part of the Color Layout descriptor
Dominant colors Varies None Includes color value, percentage and variance
Scalable color 16 Both
Structure 32 Both They used in both holistic image and image

segment description

Texture Intensity average 1 Both Part of the Homogeneous Texture descriptor
Intensity standard deviation 1 Both Part of the Homogeneous Texture descriptor
Energy distribution 30 Both Part of the Homogeneous Texture descriptor
Deviation of energy’s distribution 30 Both Part of the Homogeneous Texture descriptor
Regularity 1 None Part of the Texture Browsing descriptor
Direction lor2 None Part of the Texture Browsing descriptor
Scale lor2 None Part of the Texture Browsing descriptor
Edge histogram 80 Both Includes the spatial distribution of five types

of edges

Shape Region shape 35 Segment A set of angular radial transform coefficients
Global curvature 2 Both Part of the Contour Shape descriptor
Prototype curvature 2 Both Part of the Contour Shape descriptor
Highest peak 1 Both Part of the Contour Shape descriptor
Curvature peaks Varies Both Describes curvature peaks in term of ampli-

tude and distance from highest peak

variance and require especially designed metrics for
similarity matching. Furthermore, their length is not
known a priori since they are image dependent (for ex-
ample an image may be composed from a single color
whereas others vary in color distribution). The previ-
ously mentioned difficulties cannot be easily handled
in machine learning schemes, therefore we decided to
exclude these features for the current implementation
of our system. The texture browsing features (regu-
larity, direction, scale) have not been included in the
description vectors (for image and image segments)
because in the current implementation of the MPEG-
7 experimentation model [12] the corresponding de-
scriptor cannot be reliably computed (it is a known
bag of the implementation software). The shape de-
scriptor features are computed only on specific image
regions (they are not used in the holistic image de-
scription). The number of Peaks values of the contour
shape descriptor vary depending on the form of an in-
put object. Furthermore, they require a specifically
designed metric for similarity matching because they
are computed based on the HighestPeak value. For
these reason they have been excluded also from the
segment description vector at this stage.
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S Data preparation and Concept
modeling

It is already stated that dictionary concepts for seman-
tic annotation or retrieval can be divided into two cat-
egories: abstract terms and object classes. The lat-
ter occupy a fraction of the images that contain them.
Hence, most images are a combination of various con-
cepts and, ideally, the assembly of a training set for
each semantic class should be preceded by 1) care-
ful semantic segmentation, and 2) identification of the
image regions containing the associated visual feature
vectors. In practice, the manual segmentation of all
database images with respect to all concepts of inter-
est is infeasible. On the other hand, automated seg-
mentation methods are usually not able to produce
a decomposition of each image into a plausible set
of semantic regions. Manual annotation (for training
purposes) of images with abstract terms is much eas-
ier since it does not require explicit identification of
image regions. In both situations we have used the
NOTIS [9] software for manual annotation of training
data. The overall work took place within the BOEMIE
project [2] and for this reason we chose the athletics
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application domain. Athletics is a highly hierarchical
domain and fits well with the proposed approach. The
semantic domain as far as the images is concerned is
modeled through an ontology with a structure similar
to the XML dictionary shown in Figure 3. Based on
this dictionary we manually annotated 1046 images
containing a total of 3546 concept instances of 33 dif-
ferent concepts.

Concept classifiers were created using a multi-
class SVM methodology [10]. The LIBSVM package
of Chen and Lin [13] was employed for this purpose.
The input to the SVM were the concept MPEG-7 fea-
ture vectors of the relevant images and image seg-
ments. Eighteen multiclass classifiers corresponding
to the nodes (non leafs) of the XML tree were created
and used for automatic classification. Ten of them
were involved in object classification and the remain-
ing were used for abstract term classification.

In addition to multiclass classifiers a total of 33
one-SVM classifiers were build for confidence esti-
mation purposes. In particular a Support Vector Ma-
chine was trained for each concept. The margin, that
is the distance of an unseen concept feature vector to
the separating hyperplane, is a measure of confidence
for the category membership of the respective image.
By varying the acceptance threshold for the margin,
precision and recall of the concept categories can be
controlled. Confidence estimators were used as con-
cept detectors; that is, irrespectively of the result of
the classification task performed on a parent node the
winning class is accepted as a label for the input image
if the confidence of detection -for the concept corre-
sponding to the winning class- is higher than a prede-
fined threshold.

6 Image Segmentation

Image segmentation is required to form candidate im-
age regions for object detection and subsequent im-
age labeling. Although there are several image seg-
mentation algorithms used in the image analysis re-
search community none of them produces segments
that match real objects. The majority of them cre-
ate homogeneous regions that share common color or
intensity properties. In order to create ‘meaningful’
objects during the image segmentation step we em-
ploy the confidence estimators of the concepts cor-
responding to object classes. Initially an input im-
age I is decomposed into image partitions P;, such
as I = |J F;. Image partitioning is achieved with the
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Figure 4: Flowchart of the image segmentation pro-
cess

aid of the well-known JSEG [4] algorithm. By set-
ting the merging threshold m of this algorithm to low
values (e.g., m = 0.05) over-segmentation, which al-
lows for more accurate object contour detection, is ob-
tained. The next step involves a region growing proce-
dure. Initial segments P; are grown toward maximiza-
tion of the confidence values corresponding to object
class models. The growing process stops whenever
merging with adjacent segments does not increase the
confidence value of the best matching model. All
grown regions (which may overlap) are saved as can-
didate objects. The final decision, however, depends
on the results of the classification task performed in
the parent node as well on the confidence of the win-
ning class (see also Section 5). Figure 4 illustrates the
flowchart of the proposed model driven segmentation
approach.

7 Experimental results

The basic aim of our experimental study was to iden-
tify the overall performance of the proposed automatic
image annotation scheme. In addition we examined
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Table 2: Concept detection results

Concept Precision Recall
Indoor 0.852 0.873
Outdoor 0.786 0.815
Jumping 0.813 0.841
Running 0.825 0.838
Throwing 0.846 0.862
Marathon 0.541 0.557
Walking 0.469 0.448
High Jump 0.608 0.623
Long Jump 0.411 0.453
Pole Vault 0.651 0.672
Triple Jump 0.439 0.477
Sprint 0.705 0.726
Long distance 0.618 0.624
Discus Throw 0.554 0.568
Hammer Throw 0.568 0.581
Javelin Throw 0.497 0.522
Shot Throw 0.601 0.639
Total 0.644 0.656

the difference in identifying abstract term and object
class labels. Finally, we compared object class label
identification using holistic and region based features.
We have used the manually annotated data mentioned
in Section 5 as ground truth. The training date were
taken from 628 images containing 2098 concept in-
stances. The remaining 418 images and 1448 con-
cept instances were used for testing. Table 2 presents
precision and recall per concept (only abstract term
concepts are shown). Table 3 compares detection of
object class concepts using holistic and image seg-
ment features. Though in both cases the results are far
from being satisfactory it is clear that image segment
features increase significantly the precision/recall fig-
ures. By comparing Tables 2 and 3 it is obvious that
abstract terms are more easily and accurately identi-
fied than object class labels. This is not a surprise
since object detection in non-constraint environments
is a very hard (even unsolvable) problem.

8 Conclusion

In this work, we have presented a unifying frame-
work for automatic image annotation with semantic
labels. The proposed method performs classification
tasks along the paths defined by an XML-dictionary
tree, and thus, minimizes the number of classes to
which categorization is performed. The result of clas-
sification at a parent node defines the subsequent clas-
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sification task, whereas confidence estimation of the
detected concepts is used to decide on label accep-
tance or not. Our evaluation study included 1046 im-
ages and 3546 concept instances. The main conclu-
sions drawn from this study are: (a) Classification to
abstract terms achieves high rates of both precision
and recall, (b) Object detectors (that is labeling cor-
responding to image segments) perform rather poor
but they still be better than detectors which use holis-
tic image features, and (c) involvement of the pro-
posed image segmentation scheme enhances signif-
icantly the object detection task. Further work in-
volves: (a) improvement of concept modeling through
investigation of alternatively machine learning tech-
niques and training data filtering, (b) examination of
the appropriate subset of the MPEG-7 feature set to
identify subspaces that may increase classification ac-
curacy, (c¢) improvement of the proposed image seg-
mentation method in order to achieve plausible ob-
jects with higher probability, (d) investigation of ways
for including the dominant color features in the im-
age and image segment feature vectors, and (e) experi-
mentation with other domains and benchmark datasets
such as the Corel database.
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