
On UML Modeling of Computational Interfaces & interactions in
the UML4ODP Computational Language

OUSSAMA REDA, BOUABID EL OUAHIDI
Mohammed-V University, Faculty of Sciences

Dept of Computer Sciences
Ibn Battouta P.O Box 10 14, Rabat

MOROCCO

DANIEL BOURGET
ENST Bretagne

Dept of Computer Sciences
Technopôle Iroise - CS 83818, 29238 Brest

FRANCE

Abstract:-We analyze in this work computational interfaces and interactions signatures in order to consistently
model them within the UML4ODP computational metamodel. Computational interfaces in the computational lan-
guage are of three kinds (signals, operations and streams). We show that computational interfaces are classified in
two main classes instead of three:Functional and stream interfaces. We also demonstrate that interactions are of
two kinds, namely;Parameterized and flowing interactions. Then, we show that only two kinds of parameterized
interactions have to be taken into account,Primitive andCompound interactions, primitives are beingincoming
or outgoinginteractions. Based on these, we provide a UML metamodel of interfaces and interactions signatures.
Finally, we show how our modeling choices prove to be pertinent to specify OCL constraints on refinements of
interactions to define end-to-end QoS and bindings between computational interfaces.

Key–Words:RM-ODP, UML4ODP, Computational language, Meta-modeling, Computational interface, Interac-
tion Signature.

1 Introduction

The ODP framework [1][2][3][4] defines a set of con-
cepts and an architecture for the construction of ODP
systems in terms of five viewpoints. The computa-
tional viewpoint supports three models of interactions,
each of which has an associated kind of computational
interface: signals and signal interfaces, flows and
stream interfaces, operations and operation interfaces.
RM-ODP is not prescriptive about the use of any par-
ticular formal description and specification techniques
for the specification of ODP systems. Over the past
several years, there has been a considerable amount of
research [5][6][7][8][9][10][11][12][13][14][15][16]
[17][18][19][20] in the field of applying the UML
Language as a formal notation with the ODP view-
points, particularly for the computational language.
The outcome of these works, amongst others, was
the adoption of the UML4ODPFDIS (Final Draft In-
ternational Standard)[21] which provides the neces-
sary needed framework for ODP systems specifica-
tion using UML 2.0 [22]. Works [14][15][17] within
the computational viewpoint have mainly addressed
the specification of the functional decomposition of
an ODP system using UML. [16][18][19][20] have
shown the UML4ODP computational metamodel con-
tains inconsistencies concerning the semantic rela-

tionship between interaction signatures concepts and
action templates, then proposed in reliable solutions.
In the same perspective we analyze computational
interfaces and interaction signatures concepts so as
to resolve residual inconsistencies in the UML4ODP
computational metamodel.
On the other hand, the second main focus of this work
is refinements of interactions into atomic ones. We
shall see how to refine any kind of interactions into
primitiveswhich are elementary interactions and pro-
vide OCL constraints relating to those refinements.
In doing so, we are indirectly addressing fundamen-
tal QoS issues.
The remainder of the paper is organized as follows. In
Section 2, we present concepts of computational in-
terfaces and interactions signatures provided by RM-
ODP. We address in section 3 the problem concerning
the relationship betweenInteraction Signaturesand
Action Templates. In section 4 we lead a conceptual
algebraic analysis ofcomputational interfacesandin-
teraction signatures notions in order to steadily de-
fine these concepts. We prove interactions are either
parameterizedor flows, then classifyparameterized
interactions inprimitives and compoundsones. We
also define the concept offunctional computational
interface. The result of this analysis is the definition
and introduction of new concepts to the computational

12th WSEAS International Conference on COMPUTERS, Heraklion, Greece, July 23-25, 2008

ISSN: 1790-5109 1019 ISBN: 978-960-6766-85-5

language. Section 5 deals with the introduction of
complementary concepts (incomingandoutgoingin-
teractions) to those given in section 4 in order to pro-
vide the final model of computational interfaces and
interaction signatures. In section 6 we discuss interac-
tion refinements rules and provide their specification
in OCL 2.0 [23] based on this discussion. A conclu-
sion and perspectives end the paper.

2 The Data Dictionary of computa-
tional interfaces & interaction sig-
natures concepts

In this section, we present interaction signatures con-
cepts as they are defined in the computational lan-
guage. These definitions will serve us to discuss the
ideas of the rest of the paper. the definitions are given
as follows:

A Computational interface template is an inter-
face template for either a signal interface, a stream
interface or an operation interface. Each interface has
a signature:

� a signal interface signature comprises a finite set
of Action Templates, one for each signal type in
the interface. Each action template comprises the
name for the signal, the number, names and types
of its parameters and an indication of causality
(initiating or responding, but not both) with re-
spect to the object which instantiates the tem-
plate.

� An operation interface signature comprises a set
of announcement and interrogation signatures as
appropriate, one for each operation type in the
interface, together with an indication of causal-
ity (client or server, but not both) for the inter-
face as a whole, with respect to the object which
instantiates the template.

Each announcement signature is an action tem-
plate containing both the name of the invocation
and the number, names and types of its parame-
ters.

Each interrogation signature comprises an action
template with the following elements : the name
of the invocation; the number, names and types
of its parameters, a finite, non-empty set ofAc-
tion Templates, one for each possible termination
type of the invocation, each containing both the
name of the termination and the number, names
and types of its parameters.

� A stream interface comprises a finite set of action
templates, one for each flow type in the stream

interface. Each action template for a flow con-
tains the name of the flow, the information type
of the flow, and an indication of causality for the
flow (i.e., producer or consumer but not both)
with respect to the object which instantiates the
template.
These concepts are the necessary and sufficient
ones for our proposals.

3 What is wrong with interaction
signatures ?

The matter with interaction signatures concepts is the
difficulty of expressingoperation signaturesin terms
of Action Templatessince it is not obvious whether
operation signaturesare kinds ofAction Templatesor
are constituents ofAction Templates. Another issue
concerning interaction signatures is the way we can
describe all of them in terms ofAction Templatesin
one blow. The problem with all this difficulty in mod-
eling is that the definitions of the concepts are not pre-
cise and leaves room to plenty of interpretations. To
eliminate this ambiguity one have to analyze the defi-
nitions on a conceptual level in order to bring out the
exact semantic relationships between those concepts.
In fact we show interactions are of two kinds:parame-
terizedinteractions and flows.Parameterizedinterac-
tions are composed byprimitive andcompoundinter-
actions,primitives are beingincomingand outgoing
interactions.
On the other hand, interface signatures are defined in
terms of three kind of computational interfaces. How-
ever when we analyze interface signatures concepts
we show that in fact there are only two relevant cate-
gories they are to be classified in. We shall see how in-
terface signatures can principally be classified in two
main classes, namely;Functionalinterface signatures
and stream interface signatures.

4 Functional interface signature
& Parameterized interaction signa-
tures

We begin by introducing the notation needed to
demonstrate our propositions.

Notation:
� The symbol

�
denote the intersection of alge-

braic sets (it has the same meaning as it is in clas-
sical set theory).

� Di, Pi and Ci are respectively the contracture of
Definition i, Proposition i and corollary i, where

12th WSEAS International Conference on COMPUTERS, Heraklion, Greece, July 23-25, 2008

ISSN: 1790-5109 1020 ISBN: 978-960-6766-85-5

i is an integer related to the order of their appear-
ance in the text.

� A � B denotes the set of elements which are in A
and are not in B.

� bby is the contracture ofby and only by.

Let SAinv, SAann, SAint, SAter, SAflo, denote
the sets of attributes that respectively describe signa-
tures ofInvocations, Announcements, Interrogations,
Terminationsand finallyFlows.

Definition 1:
An Action Templateis definedbby the name of

the action and its causality.

Proposition 1: All Interaction Signatures are
Action Templates.

Proof :
We have :

SAinv = SAann = SAint = SAter = � name,
numbers of parameters, names of parameters, types of
parameters, causality� and separately SAflo=� name,
causality, information type� .

The led set of these sets denoted SA which is
their intersection SA = SAinv� SAann � SAint �
SAter=� name, causality� is the set composedby and
only by both the name and causality of interaction
signatures. Moreover, the Action Templateconcept
is involved in the core description of all interaction
Signatures concepts, and since the UML semantic of
intersection is ageneralization, it follows that
all Interaction Signatures areAction Templates.

Proposition 2: Interaction Signatures but flows
are parameterized(i.e contain finite set of parameters
as well as their name and numbers).

Proof :
The sets SAinv� SA, SAann� SA, SAint� SA,

SAter� SA have the same elements since SAinv� SA=
SAann� SA = SAint� SA = SAter� SA =� numbers
of parameters, names of parameters, causality� .
Consequently, All Interaction Signatures butFlow
Signaturesare parameterized (i.e described by finite
sets of parameters as well as their names and num-
bers).

Now, when we separately take the set
SAflo� SA=� information type� we deduce that
flow signatures are of different nature than the other
Interaction Signatures.

Flow Signaturesare Action Templateswith an
(information type) attribute which is not significant
to the other interactions. Conversely, all Interaction
Signatures have parameters, their name and their
numbers as attributes which do not contribute to the
description of flows.

Definition 2:
A Parameterized interaction signature is an

Action Templatewith a finite set of parameters as well
as their numbers.

Corollary 1:
From P1, P2 and the definition of interface signa-

tures given in the previous section we have :

1. Interaction signatures are of two kinds:Param-
eterized interactions signaturesand flow inter-
actions signatures.

2. Operation Interfaces signatures and Signal Inter-
faces signatures are composedbby Parameter-
ized interaction signatures.

3. A stream interface signature is composedbby a
set of flow interactions signatures.

Definition 3: A Functional Interface Signature
is an interface signature composedbbyParameterized
interactions signatures.

Corollary 2: From D3 and the definition of inter-
face signatures given in the previous section we have
:
Interface Signatures are of two kinds, namely;Func-
tional Interface Signature and Stream Interface Sig-
natures.

5 UML metamodel for computa-
tional Interfaces & interaction sig-
natures

In this section we model computational interfaces and
interaction signatures by means of constructs of the
UML language.
Interactions in the computational language are of three
kinds (signals, operations and flows). We have shown
interactions are of two main kinds:Parameterizedin-
teractions and flows. Signals in the computational lan-
guage are defined as being atomic interactions that
constitutes the building blocks of the other kinds of
interactions. Similarly,parameterizedinteractions are
classified in two main categories:Primitive parame-
terizedinteractions (homologous of signals) andcom-
pound parameterizedinteractions (homologous of op-

12th WSEAS International Conference on COMPUTERS, Heraklion, Greece, July 23-25, 2008

ISSN: 1790-5109 1021 ISBN: 978-960-6766-85-5

erations). This classification is necessary to guaran-
tee that the metamodel given (see figure 1) serves as
a basis to define end-to-end QoS in open distributed
systems, and the operation of multi-party binding and
bindings between different kinds of interfaces (e.g.
stream to operation interface bindings).

ParameterizedInteractionSignature

-numberOfParameters : int

CompoundInteractionSignature

ProceduralInterfaceSignature

PrimitiveInteractionSignature

StreamInterfaceSignature

FlowInterfaceSignature

FlowSignature

+Type : flowInformationType

Parameter

+name : String
+type : ParameterDataType

InterfaceSignature

+causality : int

ActionTemplate

+name : String
+causality : String

1

incoming

outgoing

0..*

Figure 1: Functional interface signature & Parameter-
ized interaction signatures

In the computational language operations in a
computational interface consist of invocations and
announcements which areoutgoing interactions.
To each invocation in the interface corresponds
a finite non empty set of terminations which are
incoming interactions. In [19] we have shown that
invocations and announcements do play the same
role conceptually and practically. Thus, We define
Compound parameterizedinteraction signatures
as being composed by two kinds of interactions:
outgoing interactions and incoming interactions.
Indeed, invocations and announcements are identical
outgoing interactions. Moreover, invocations and
terminations which are (terminations) incoming inter-
actions are associated to each other by a one to many
correspondance, and since announcements can be
replied to or not during the interaction, we conclude
there is a correspondance betweenoutgoing and
incoming interactions. That is, for everyoutgoing
interaction corresponds a finite set (possibly empty)
of incominginteractions (see figure 1).
Signals in the computational language are the least
degree of representation of interactions between
computational objects. Since signals do provide
the constructing bricks of all other interactions, it
is tempting to make use of them in order to refine
interactions in their terms. To do so, the computa-
tional language imposes rules on these mappings so
as to provide for reliable refinements when required.
Primitive parameterizedinteractions do play the role
of signals. While operations are represented in terms
of signals,compound parameterizedinteractions can
be decomposed in terms ofprimitive parameterized
interactions which are now elementaryparameterized
interactions. This is exactly the purpose of the

following section.

6 A one refinement rule for interac-
tion signatures

In this section, we show how our unification choices
in modeling computational interface signatures and
interaction signatures concepts help us to specify
compact OCL constraints applied on computational
interface refinements.

Indeed, an operation or a flow can be resolved in
terms of a composition of several individual signals.
For instance, we can interpret an interrogation in
terms of a sequence of four signals: invocation emis-
sion (by the client object), invocation receipt (by the
server object), termination emission (by the server),
termination receipt (by the client). In opposition,
since the computational model do not provide the
precise semantics of flows, their mapping on signals
is not defined. In fact, a definition of flows using
signals depends upon the details of the interactions
abstracted in the specification of the stream interface
concerned and therefore is beyond the scope of the
ODP Reference Model [3].

In [20] we specified those constraints based on
their definitions provided in RM-ODP [3] which are
given as follows :

� In a signal interface corresponding to a client
operation interface there is a signal -invocation
submit- corresponding to each invocation with
the same parameters. in the case of an interface
containing interrogations, a signal - termina-
tion deliver - corresponding to each possible
termination with the same parameters as that
termination.

� In the signal interface corresponding to a server
operation interface there is a signal -invocation
deliver- corresponding to each invocation with
the same parameters. in the case of an interface
containing interrogations there is a signal -
termination submit- corresponding to each
possible termination with the same parameters
as that termination.

In the definitions above the correspondance rules
do neither depend on the causality of computational

12th WSEAS International Conference on COMPUTERS, Heraklion, Greece, July 23-25, 2008

ISSN: 1790-5109 1022 ISBN: 978-960-6766-85-5

interfaces nor the causality of interactions. What
only matters is the existence of a corresponding
refining interaction with the same parameters. Thus
we can redefine those rules in one unified rule
applied to parameterized interactions establishing
a correspondance betweenprimitive and compound
parameterizedinteractions. This rule is given as
follows :

Compound into primitive refinement rule:

FOR EACH COMPOUND PARAMETERIZED
INTERACTION THERE IS A CORRESPONDINGPRIM-
ITIVE PARAMETERIZED INTERACTION WITH THE

SAME PARAMETERS.

We can break down this rule to bring OCL
sub-expression out of it which establishes a corre-
spondance betweenparameterized interactions.
That is, two parameterized interactions related
by a refinement relationship must have the same
parameters. The OCL sub-expression is given in what
follows:

Context ParameterizedInteractionSignatureinv:

def: hasSameParameters(PIS:
ParamterizedInteractionSignature): Boolean =
self.Parameter� forAll(Px : Parameter�
ParamterizedInteractionSignature� Exists(
Py: Parameter� Px.name = Py.name
and
Px.type = Py.type))

The final OCL constraint to refineCompound
interactions intoprimitives interactions is given in
what follows:

Context ParameterizedInteractionSignatureinv:

Let CIS : ParameterizedInteractionSignature =
ParameterizedInteractionSignature.oclAsType(
CompoundInteractionSignature)

Let PIS : ParameterizedInteractionSignature =
ParameterizedInteractionSignature.oclAsType(
PrimitiveInteractionSignature)

CIS � forAll(c �
PIS � Exists(P �
CIS.hasSameParameters(PIS)))

This constraint establishes a correspondance be-
tweenprimitive and compoundinteractions offunc-
tional computational interfaces, thus providing for

end to end QoS characteristics to be defined, as well
as allowing for different kind of computational inter-
faces to be bound (e.gfunctional to stream interfaces
bindings).

7 Conclusion and perspectives

In this work we model computational interfaces and
interactions signatures by introducing new concepts
that prove to be relevant to specify minimal OCL
constraints on interactions refinements that serves as a
basis to the definition of end-to-end QoS and bindings
between different types of interfaces. We mainly
show a computational interface is eitherfunctionalor
stream. we also show thatfunctional interfaces are
composed byparameterizedinteractions which are
divided in two categories:primitivesandcompounds
interactions.primitivesare eitherincomingor outgo-
ing interactions.
Interactions between given computational interfaces
are only possible if a binding (i.e. some commu-
nication path) has been established between them.
Binding in the Reference Model is defined with
reference to binding actions. Use of such actions
is called explicit binding. There are two kinds
of binding actions: primitive binding actions and
compound binding actions. Primitive binding actions
enable binding of an interface of the object which
initiates the action to another interface (of another
object, or itself). Compound binding actions enable a
set of interfaces to be bound, using a binding object
to support the binding [1][3].
On the other hand, a primitive binding action binds
two computational object directly. A compound
binding action uses primitive binding actions linking
two or more computational objects via a binding
object.
The UML4ODP computational metamodel lacks the
specification of binding refinements. Thus, there is a
need to provide for such a refinement to be realized.
We are looking forward to provide for such refine-
ments, especially by establishing a correspondance
between PRIMITIVE interactions andPRIMITIVE

BINDING actions from one side andCOMPOUND

interactions andCOMPOUND BINDING actions on the
other side.
Finally, since all kinds of interactions may be mapped
into primitive interactions (signals), many rules relat-
ing to interactions can be reduced to rules applied on
primitive interactions (signals). We are investigating
how to define all the rules relating to interactions in
terms of rules corresponding only toprimitives.

12th WSEAS International Conference on COMPUTERS, Heraklion, Greece, July 23-25, 2008

ISSN: 1790-5109 1023 ISBN: 978-960-6766-85-5

References:

[1] ISO/IEC, Basic Reference Model of Open Dis-
tributed Processing-Part1: Overview and Guide
to UseISO/IEC CD 10746-1, 1994.

[2] ISO/IEC, RM-ODP-Part2: Descriptive Model
ISO/IEC DIS 10746-2, 1994.

[3] ISO/IEC, RM-ODP-Part3: Perspective Model
ISO/IEC DIS 10746-3, 1994.

[4] ISO/IEC, RM-ODP-Part4: Architectural seman-
tics ISO/IEC DIS 10746-4, 1994.

[5] M.W.A. Steen et al., Applying the UML to
the ODP Enterprise Viewpoint, Computing Lab-
oratory, University of Kent at Canterbury,
http://www.cs.ukc.ac.uk/pubs/1999/819, 1999.

[6] P.F. Linington et al., The specification and
testing of conformance in ODP systems,
http://citeseer.nj.nec.com/170353.html, 1999.

[7] M. W. A. Steen et al.,Formalising ODP Enter-
prise Policies, IEEE Com. Soc. Press, EDOC’99,
1999.

[8] X. Blanc et al., Using the UML Language
to Express the ODP Enterprise ConceptsIn
Proceedings of the 3rd International Enter-
prise Distributed Object Computing Conference
(EDOC’99), Germany, pp. 50-59, September
1999. IEEE Computer Society Press.

[9] J. Aagedal et al.,ODP Enterprise Language:
UML PerspectiveIn Proceedings of the 3rd 29
International Enterprise Distributed Object Com-
puting Conference (EDOC’99), Germany, pp. 60-
71, September 30 1999. IEEE Computer Society
Press.

[10] M. W. Steen and al.ODP Enterprise View-
point SpecificationIn Computer Standards & In-
terfaces, 22(3):165-189, September 2000. Else-
vier.

[11] OMG, Relationship of the Unified Modelling
language to the Reference Model of Open Dis-
tributed ProcessingOMG document ormsc/2001-
01-01, Version 1.4, January 2001.

[12] Interoperability Technology Associa-
tion for Information Processing, Japan,
Guide for Using RM-ODP and UML Pro-
file for EDOC Document available at
http://www.net.intap.or.jp/e/odp/intap-guide.pdf.

[13] , ID. Hashimoto et al.,UML 2 Models for ODP
Engineering/Technology ViewpointsIn Proc of
the Second International Workshop on ODP for
Enterprise Computing (WODPEC 2005), pages
32-Enschede, The Netherlands, September 2005.

[14] B. Bordbar et al.,Using UML to specify QoS
constraints in ODP, Computer Networks Journal
pp. 279-304, 2002

[15] D.H.Akehurst et al.,Addressing Computational
Viewpoint Design, Seventh IEEE International
EDOC, IEEE Computer Society, 2003

[16] R. Romeo et al.,Action Templates and Causal-
ities in the ODP Computational Viewpoint, 1St
International Workshop on ODP in the Enter-
prise Computing (WODPEC), Monterey, Califor-
nia USA pp. 23-27 2004.

[17] R. Romeo et al.,Modelling the ODP Compu-
tational Viewpoint with UML 2.0IEEE Interna-
tional Enterprise Distributed Object Computing
Conference, 2005.

[18] O. Reda et al.Resolving the ODP Computational
Viewpoint Interaction Signatures in Terms of Ac-
tion Templates using UMLICTIS’O7 : Informa-
tion and Communication Technologies Interna-
tIonal Symposium , April 3-5, Fes, Maroc, 2007

[19] O. Reda et al.Specification of OCL Constraints
on ODP Computational Interfaces7th WSEAS
International Conference on Applied Informatics
And Communications (AIC’07), August 24-26,
Athens, Greece, 2007

[20] O. Reda et al.Towards a Refinement of the
Open Distributed Systems Interactions Signatures
WSEAS transactions on communications, Apr
2007, vol. 6, pp. 601-607

[21] ITU-T Recommendation X.906 — ISO/IEC
19793, Information technology Open distributed
processing Use of UML for ODP system specifi-
cations, SC 7/WG19 and ITU-T, 2007.

[22] OMG, UML 2.0 Superstructure Specification,
OMG document formal/05-07-04, 2005 .

[23] OMG, OCL 2.0 Specification, version 2.0 OMG
document ptc/05-06-06, 2005.

12th WSEAS International Conference on COMPUTERS, Heraklion, Greece, July 23-25, 2008

ISSN: 1790-5109 1024 ISBN: 978-960-6766-85-5

