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Abstract:- This work presents the use of statistical techniques for data imputation for its use in artificial neural 
networks training. The Multiple imputation techniques used are: Metric Matching, Bayesian Bootstrap and 
Regression-based Minimal Square imputation. It is presented an application example for illustrating the 
appropriate use of these techniques.  
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1 Introduction 
Artificial intelligence [2, 4, 5, 9, 29] is one of the 
scientific areas with greater diffusion and application 
in the last years. Every day is more common to find 
tools for industrial, commercial or academic use that 
involve the use of intelligent techniques in the 
resolution of critical and recurrent problems. Neural 
networks [5, 9, 10, 20] could be considered as one of 
the spread and more used techniques of artificial 
intelligence due to their simplicity, implantation 
facilities and design characteristics.  
The wide use of neural networks in different human 
knowledge areas has created data processing 
requirements and additional necessities for the 
training systems. Users are interested, among other 
things, having tools that allow them to filter the 
input data, to select the best patterns and variables 
for the training and to fill missing values.  
On the other hand, statistical data analysis 
techniques [3, 7, 12, 19, 21, 22] have been applied to 
an increasing number of knowledge areas in recent 
years. They are particularly appropriate for the study 
of great volumes of data in which it is impossible, 
due to its size, to observe structural characteristic 
easily.  
One of the most frequent problems that neural 
networks users face is when the data have certain 
observations or patterns with missing values in some 
variables. Traditionally this problem has been solved 
by means of the following alternatives:  
• Eliminating the patterns that present missing values 
(Case Deletion).  
• Estimating these values (Simple Imputation).  
These ad hoc methods in spite of being simple to 
implement bring serious problems which have been 

enough documented [14]. The first strategy presents 
two disadvantages: I. For data with many variables, 
the elimination can produce a high proportion of 
eliminated patterns, which is the case of a low 
missing values percentage but an incomplete patterns 
elevated percentage, II. If the patterns with missing 
observations are different from those completely 
observed, the network could present bad 
generalization results.  
The Simple Imputation is the most common method 
for solving the missing values problem for two 
attractive reasons [24]: I. Once the values have been 
imputed, any Software can be used, because it would 
be already obtained a complete data set [13], II. In 
many cases, the imputations are created by the 
person who have collected the data and have a good 
knowledge about them; therefore the analyst can 
have better results trusting in such imputations that 
training considering the previously made 
eliminations.  
The Simple Imputation presents, nevertheless, a big 
problem that can make it of small utility: Even 
considering that the missing values are not 
previously known, a neural networks training based 
on imputed data treat them as if they were the real 
ones, therefore, the obtained conclusions do not 
show the uncertainty produced by the absence of 
such values. Statistically, the variability or 
correlation estimations can be strongly biased. 
The technique that will appear in this work, known 
as Multiple Imputation [24, 25, 27] maintains the 
two main virtues of the Simple Imputation and 
corrects its greater defects. The main idea of this 
technique is: for every missing value several values 
are imputed, presenting a series of possibilities that 
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take into account the variability produced by the 
absence of the missing value. This is not the only 
technique for estimating missing values; there exist 
numerical methods that sometimes give better results 
[18, 28]. If there is sufficient time and resources 
available, it is possible to think about techniques 
adapted for each problem in particular, but actually 
missing values is not a study object but it can be 
considered as a disadvantage and the proposed 
Multiple Imputation solutions is less complicated to 
implement. 
 
The work is structured as follows: Section 2 presents 
the multiple imputation techniques for missing 
values estimation. Section 3 contains an example for 
evaluating the suggested techniques presented in this 
work and finally section 4 depicts the pertinent 
conclusions. 
 
2. Missing Values Estimation Using 
Multiple Imputation  
 
The Multiple Imputation is a technique that replaces 
each missing or deficient value by two or more 
acceptable values, representing a distribution of 
possibilities. This idea was originally propose by 
Rubin [23, 24]. Different investigations on missing 
data estimation can be found in Madow and Olkin 
[16], Madow, Nisselson and  Olkin [17], Madow, 
Olkin and Rubin [18], Sande [26], Schafer [27] and 
Schafer and Olsen [28]. Figure 1 represents a nxp 
matrix which has some missing data. The Multiple 
Imputation replaces these missing values by a 
pointer to a row (record) of an auxiliary matrix that 
will have m>2 values or imputations. 
 

 
Fig 1. Data with m imputed values for each missing value. 

The m values are ordered such that the missing 
values replaced by the first components of the 
records form a data set, replaced by the second 
components of the records form a second data set 
and so on. The imputed values are kept in an 
auxiliary matrix with a row for each missing value 
and m columns. Rubin [24] indicates that the data 
sets obtained by means of Multiple Imputation are 
more useful when the ratio of missing values is not 
excessive and m is between 2 and 10.  
Multiple Imputation is attractive by a great amount 
of reasons: I. It is compatible with the methods and 
software for complete data. II. A set of m 
imputations can be used for a great variety of 
analysis and there is no necessity to impute again 
when a new analysis is going to be made. III. 
Inferences, standard errors and correlations obtained 
from Multiple Imputation are generally valid 
because they incorporate the uncertainty due to the 
missing values. Additionally it is highly efficient 
even when m is low. In most applications, only 3 to 
5 imputations are necessary for obtaining excellent 
results. 
 
The Multiple Imputation was proposed more than 20 
years ago [46, 48] but the method has remained 
unused. The main reason of it has been the absence 
of computational tools for generating imputations. 
Recently it has appeared software for multivariate 
incomplete data. These programs are easy to 
understand and for using, in addition they are 
implemented in graphical environment for Windows 
(95/NT). They can be obtained freely from the Web 
site: http://stat.psu.edu/~jls/misoftwa.html. 
Additionally, there exists software for sale that uses 
the Multiple Imputation techniques propose by 
Rubin [47]. It can be obtained from Statistical 
Solutions through his Web site: 
http://www.statsolusa.com. 
 
 
2.1 Multiple Imputation Techniques  
 
• Metric Matching  
This method defines a distance measurement (d) 
between the patterns with missing values and the 

complete ones, this is ),( ||| xxd , where 

obsXx ∈| and misXx ∈|| and it will select as donors 

for the pattern with the missing value those 
complete patterns that are nearer according to the 
selected distance. One of the most popular distances 
measures are: 
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(Euclidean Distance) 
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(Statistical Distance) 

 
The defined distances are well known and the last 
one appears frequently in statistical Literature; in it 
“S” is the calculated variance and covariance matrix 
for the p variables of obsX .  

• Bayesian Bootstrap  

Let’s consider the vector ),...,( 1 kddd = of all the 

possible values of YYi ∈ and ),...,( 1 kθθθ = a 

vector of associated probabilities, let’s suppose that 

iY  ( ni ,...,1= ) given  θ  are independent 

identically distributed. The data probability 
distribution is given by:  
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distribution ofθ :  
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Ericson and Rubin [6] have called to this 
distributions specification the Bayesian Bootstrap. 
Under these assumptions it is possible to develop an 
easy Multiple Imputation method that provides 
valid inferences for great values of “n”: From the 
observed patterns set, there are found randomly the 
donors for the pattern with missing observations.  

• Regression-based Minimal Square  
Imputation 

An intuitive method for generating imputations is 
using Minimal Square Regression [1]. It is found Y 
with X using the complete patterns for obtaining the 
parameters of the model, and this model is used for 
obtaining the missing values. The assumptions on 
which the technique rests are the following ones: 

),(~ 2σβii XNY  (i=1,2,...,n)  

  

constP ∝),( 2σβ   

With the data distribution and the assumption of 
“noninformative” distribution for the model 
parameters, Rubin [24] presents the theoretical bases 
for a method that assures valid inferences for the 
variable Y. 
 

3 Multiple imputation techniques 
application example for missing values 
estimation in neural networks training 
 
The data used for this example is well known in 
Multivariate Analysis Literature, presented by 
Johnson and Wichern [11] of a study made by 
Gerrild and Lantz [8], concerning 56 analyzed 
crude samples originated on the Elk Hills Oil Field 
in California (USA). For each sample, five 
variables were measured:  

X1: Vanadium (%)  
X2: Iron (%)  
X3: Beryllium (%)  
X4: Saturated Hydrocarbons (%)  
X5: Aromatic Hydrocarbons (%) 

 
Each one of the samples could belong to one of the 
three following zones:  

C1:  Whilhelm 
C2: Sub-Mulinia 
C3: Upper (Mulinia, second sub-scales, first sub-
scales) 
 
Once the data is standardized with general mean 
and variance (r = 15%;  α= 10%), it was obtained 
the results displayed in table 1.  

N 56 
N1 6 
N2 12 
N3 38 
ne 32 
n1 3 
n2 7 
n3 22 

Table 1. Partition Results. 
 
From the 56 (N) data set, classified in the three 
groups of size 6 (N1), 12 (N2) and 38 (N3), the 
technique suggests to use 32 (ne) data for training 
(and therefore 24 for validation), selecting 3(n1) of 
the first group, 7(n2) of the second and 22 (n3) of 
third.  
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Once the data is standardized, 15% of the matrix 
cells were randomly selected and they were 
replaced by missing values. The Multiple 
Imputation techniques of Metric Matching and 
Bayesian Bootstrap were applied. The general 
characteristics of the matrix with missing data 
appear in Table 2. 

 
Number of Patterns (n) 56 
Number of Variables (p) 5 
Number of Patterns with Missing Values (n0) 31 
Number of cells in the matrix (nxp) 280 
Number of cells with Missing Values 41 
Percentage of cells with Missing Values 15% 
Number of Imputations Made (m) 3 

Table 2. Data Matrix General Characteristics  

An intuitive form for evaluating the quality of the 
procedures is through the Imputation Errors 
analysis. For each missing value two error measures 
are defined:  

( )
m

YY
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m

j
j∑

=

−
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m

YY
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j
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=

−
= 1

*

 

Where *
jY  are the obtained values by imputation 

and Y  is the real value of the cell that artificially 
became missing value. The calculated errors for 
each of the variables were averaged and they appear 
in table 3. It can be observed that the Metric 
Matching have presented smaller error values than 
the Bayesian Bootstrap in almost all the variables, 
being significantly smaller in that with smaller 
number of missing values. 

 
Missing  

Metric 
Matching 

Bayesian 
Bootstrap  

RECM 0.7189 1.4027 
Variable 1       3 

EAM 0.5362 1.0908 
RECM 1.0299 1.4563 

Variable 2 
    15 
 EAM 0.9869 1.2243 

RECM 1.0376 1.0783 
Variable 3     10 

EAM 1.0066 0.9503 
RECM 0.4578 2.3063 

Variable 4       2 
EAM 0.4578 2.2287 
RECM 1.3968 1.0839 

Variable 5     11 
EAM 1.3854 0.9333 

Table 3. Obtained errors using diverse methods of 
Multiple Imputation 
 

Next, an artificial data set with missing values was 
obtained, for comparing the performance of the 
Bayesian Bootstrap technique with the Case 
Deletion, Imputation with Averages and original 
data. These data will be use for training an 
Artificial Neural Networks for classification, 
therefore a form to compare different networks is 
from the Percentage of correct classification (PCC) 
and Percentage of Incorrect classification (PIC). It 
is obtained using the previously trained network 
with a testing data set and counting the number of 
mistaken classification. When the testing data set is 
independent to the training data set the estimation is 
unbiased, but its variance could be elevated if there 
is not many data available. When there is not 
testing data set available, a partition is made as it 
was previously suggested and there are considered 
PIC values for training and validation. 

 
Once it is generated 10% of artificial missing 
values in the original matrix, it was separately 
applied the Multiple Imputation Bayesian Bootstrap 
technique for each of the three data categories, as 
well as the Case Deletion and the Imputation by 
Average. Later it was selected the different matrices 
partitions by means of Stratified Random Sampling 
(r=0.15; α=10%). This way it was found the data 
sets shown in table 4 and the sizes of partition of 
table 5. 
 

 C D E F 

Training 
Original 
Data Set 
ne = 32 

Imputed data 
Set using  
Bayesian 
Bootstrap  
ne = 45  

Imputation 
with 

average 
Data 
Set 

ne = 32 

Case  
Deletion 
Data Set 

 
ne = 19 

 
Validation 

nv = 24 nv = 42 nv = 24 nv = 5 

Table 4. Data Partition for training and Validation  
 

 C D E F 

C1 3 6 3 1 
C2 7 10 7 3 

C3 22 29 22 15 

Table 5. Number of Training patterns (en ) using 

Stratified Random Sampling  
 
The training was given using two layers perceptron 
networks [15]: Hidden layer (10 neurons and 
logistic activation function) and three neurons 
output (logistic activation function). The initial 
results of the three training appear in table 6. 
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 Correct Classification 
Rate  

Training Error Validation 
Error 

C 0.833333 0.01153 0.3259853 

D 0.833333 0.278334 0.3074587 

E 0.913043 0.129556 0.2371633 

F 1.000000 0.05689 0.1518498 

Table 6. Correct Classification Rate. Training and 
Validation Error  

 
The Correct Classification rate is a performance 
measurement in the training of the network and its 
proximity to one (1) indicates a better performance. 
The networks trained with sets  E and F have 
presented the best performance, but the trained with 
the imputed data by means of Bayesian Bootstrap 
(D) have presented an exactly behaviour as the 
trained with the original data. 
Neural Networks trained with sets E and F have an 
appreciable difference in the Training and 
Validation errors, indicating the possibility of over 
training. In ideal situations more data would have to 
be acquired in order to improve the results and for 
generating more reliable networks. Table 7 displays 
Percentage of Correct Classification (PCC) and 
Percentage of Incorrect Classification (PIC) of the 
Training phase and table 8 presents the 
corresponding ones of validation for the different 
data sets.  

 C D E F 
Total Training Patterns  32 45 32 19 
PCC 100 91.11 100 100 
PIC 0.00 8.89 0.00 0.00 
Unknown classification 0.00 0.00 0.00 0.00 

Table 7. Neural Networks behaviour with diverse 
data groups. Training  

 
 C D E F 

Total Validation Patterns  24 42 24 5 
PCC 83.33 83.33 87.5 100 
PIC 16.67 16.67 12.5 0.00 
Unknown classification 0.00 0.00 0.00 0.00 

Table 8. Neural Networks behaviour with diverse 
data groups. Validation 

 
It can be appreciated that the network trained with 
the Multiple Imputation technique turned out to 
have a greater PIC of Training, nevertheless in the 
validation the PIC was equal to the value obtained 
with the real data, whereas the networks trained 
with sets E and F have satisfactory but far statistics 
of the values obtained with C, originating from the 
data without missing values.  

The Simple Imputation and the Case Deletion have 
favorable results, but far from the real values. They 
are the most popular techniques for handlings 
missing values in the Neural Networks training 
systems. They diminish the sample size and can 
produce over training as it was shown in the 
previous example. The Multiple Imputation, 
however, presented results that at first sight seem 
inferior but they are very similar the obtained with 
the original data, incorporating the originating 
uncertainty of the missing values.  

 

4 Conclusions 
 
The data analysis with missing values is a statistical 
area where have been found great advances. The 
modern technologies for their handling surpass the 
old ad hoc ones and finally they are available to the 
analysts. Between these techniques the Multiple 
Imputation is especially powerful by its generality 
characteristics. 
Multiple Imputation gives better results that Simple 
Imputation and Case Deletion procedures, because it 
does not diminish the sample size available and also 
it takes into account the uncertainty due to the 
presence of missing values, incorporating such 
variability in the estimations. In the presented 
example although the obtained imputations are not 
absolutely precise, they are statistically more 
reasonable than to impute with averages or to 
eliminate patterns (which would reduce its number 
in 55,4%). Training results with the estimations of 
missing values by Multiple Imputation are more 
realistic than those of the commonly used 
techniques, providing to the network greater 
generality characteristics. 
The Multiple Imputation is not the only modern 
technology for the handling of missing values 
available to the investigators. Some houses of 
software are beginning to incorporate characteristic 
related to missing values to certain routines of 
models adjustment. These procedures are similar to 
the Multiple Imputation because they are based on a 
predictive distribution, but the used methods are 
analytical or numerical.  
The Multiple Imputation can be applied to a variety 
of problems and will possibly be common to data 
analysts. For neural networks users, it can be seen as 
a coherent available procedure, supported by the 
Statistical Theory, which can be used for solving the 
problem of missing values presence in training 
patterns. 
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