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Abstract: - The efficient simulation of large–scale dynamic systems needs a systematic procedure for order 
reduction of the original circuit. The paper combines the projection method with Krylov subspaces to obtain 
robust and accurate order reduction techniques. First of all, the algorithm finds a basis matrix onto Krylov 
subspaces, using a block Arnoldi process, and then constructs a reduced-order model via projection technique. It 
is shown that we can handle the MIMO systems using the semi-state method and Krylov projection method. An 
illustrative example is given and some conclusions are pointed out.  
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1   Introduction 
Behavioral models capture certain functional 
properties without relying on specific structural 
representations. Using behavioral models a 
significant speedup of higher level simulation is 
achived. Also, they allow early design verification 
during top-down circuit design improving design 
efficiency [1-3, 10]. The most important objective in 
analog circuit design is establishing the relationship 
between the input-output variables. This relationship 
depends on the device type and geometry, 
phenomenon and behavior, and on the circuit 
configuration, so that, especially in the large-scale 
system case, for an efficient simulation, an equivalent 
reduced size model of the original circuit is needed. 
There are different approaches of this problem: some 
of them are based on the sensitivity computation in 
order to simplify the circuit structure by noncritical 
element elimination, others reduce the insignificant 
terms in the circuit function expression, or the 
internal nodes of the circuit by equivalent electrical 
transforms; there are approximation methods based 
on Taylor series, on Padé Approximations, on 
Lagrange Polynomials, on Spline functions etc. No 
matter what is the principle they are build on, the aim 
of all these methods is getting an approximated 
transfer function, with a reduced number of poles. 
The reduced model can be then used for circuit 
response prediction in time or frequency domain, in a 
predicted range of the signal frequencies. The choice 
of one order reducing method or other one depends 
on the specific problem we have to solve it. 

The major problems involved in obtaining reliable 
reduced-order models are [1-3]: a good accuracy with 
enough small size, numerical stability and the 

necessity to keep the original system passivity. The 
most recently algorithms used for the order reduction 
of the large-scale analog circuits could be classified 
in two categories [10 - 12]: 
- Methods based on the explicit (direct) matching of 
the moments to a reduced model – like Asymptotic 
Waveform Evaluation – AWE [10]; 
- Methods based on implicit (indirect) moment 
matching – developed in Krylov space – like Padé 
via Lanczos (PVL) and Arnoldi algorithm; 
- projection method with Krylov subspaces.  

Developed by Pillage and Rohrer in 1990, AWE is 
the standard method for the analysis of large scale 
analog circuits. This technique uses the Padé 
approximation based on explicit moment matching to 
extract the dominant poles and the residues of the 
circuit. It consists in two steps: 
 - Moment computation – meaning computation of 
the coefficients of MacLaurin series of the transfer 
function H(s); 
 - Moment matching – matching these moments 
with those of a reduced model using the Padé 
approximation.  

The reduced-order model is characterized by an 
approximate transfer function  expressed by a 
number of rational terms equal with the number of 
the approximated poles.  

)(ˆ sH

 In this paper we present the basic concepts to 
establish the background of the projection method, 
where we combine projection methods with Krylov 
subspaces to obtain robust and accurate order 
reduction techniques. An example is used to illustrate 
the procedure. 
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2   Projection Method for Order 
Reduction 
Iterative projection methods have long been used in 
linear system solutions and have recently become 
very usefull for model order reduction [11,12]. We 
shall introduce the basic concepts to establish the 
background of this method.  
 
 
2.1 Krylov subspace definition 
A subset of a vector space  is called a subspace. Let 
be given a vector set { }nn vvvV ,..,, 21= ; the set of 
all linear combinations of these vectors is a subspace 
referred to as the span of Vn: 
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where n,k,k 1=β , are real numbers. If the 

n,k,k 1=v  are linearly independent, then each 
vector of span{  admits a unique expression as a 
linear combination of the v

}nV
k’s. The set  is called a 

basis of the span .  
nV

{ }nV
Given an nxn matrix A and a vector r, the Krylov 

subspace Kr(A ,r, q) is defined as 

( ) { }12spanKr −= q,...,,,q,, ArAArrrA . (2)

 Consider an nxq rectangle matrix Vq whose 
columns form bases for the subspace spanned by the 
Krylov sequence { }12 −q,...,,, ArAArr , that is 

( )q,,q rAV Krcolsp = , (3)

where colspVq denotes the column space of Vq. 
Equation (3) is equivalent to saying that for each k = 
0, 1, ..., q – 1 a q-dimensional column vector kβ  
exists such that 

kq
k β=VrA . (4)

 We consider a linear circuit with a single input 
(excitation) and semi-state (MNA) description of {G, 
W, b}. If we define  and , it 
is straightforward to show that the moment vectors of 
this circuit are given by 

WGA 1−−= bGr 1−=

rAk , k = 0, 1, .... . Assume 
that a basis matrix Vq is generated for the Krylov 
subspace Kr(A, r, q). Equation (4) clearly shows how 
the columns of Vq are related to the circuit moments. 
Any moment vector can be expressed as a linear 

combination of the Krylov vectors. These vectors 
contain some information. However, the Krylov 
vectors contain much less numerical noise compared 
to the circuit moments because during the generation 
of a Krylov vector the effects of lower-order moment 
vectors are implicitly substracted. 
 The Krylov subspace in (2) is defined for a single 
starting vector. Similarly, given an nxn matrix A and 
an nxm matrix R, the block Krylov subspace is 
defined as 

( ) { }RAARRRA 1spanKr −= j,...,,q,,  (5)

where j = q/m. If q/m does not result as an integer, we 
set  (The ⎣ mqj /= ⎦ ⎣ ⎦.  operator is the truncation to 
the nearest integer towards zero) and define the 
Krylov subspace as 

( ) {
}ljjj

jq

rArArA

RAARRRA

,...,,

,,...,,span,,Kr

21

1−=
, 

 
(6)

where ri is the ith column vector of R, and l = q – jm. 
For the sake of simplicity, however, we will always 
assume that q/m is an integer. 
  Consider an nxq rectangular matrix Vq, whose 
columns form bases for the subspace spanned by 
Krylov sequence {R, AR, ..., Aj−1R}, that is,  

( )q,,q RAV Krcolsp = . (7)

 Thus, qxm matrices  exist such that: iβ

.j,...,,i,iq
i 110  −== βVRA  (8)

 Analogous to the single input case, equation (8) 
shows the relation between the Krylov matrix and the 
block moments of a linear circuit with multiple 
excitations, described by the equations [1 - 9]: 

( ) ( ) xLuByGxxW t  ;
d
d

==+ tt
t outin , 

(9)

where: G and W are the nxn MNA circuit matrices, 
representing the conductance and dinamic elements, 
respectively; x – is the vector of MNA variables of 
size n; yin(t) – represents the vector of input 
excitations of size ni; B is the nxni matrix 
corresponding to the coefficients of the input vector 
yin(t) to the MNA vector x; uout(t) – represents the 
output vector of size no, and L is the nxno selection 
matrix, mapping uout(t) to the MNA vector x. 
 If we define the nixno transfer function matrix 
H(s) as  

( ) ( )
( )s

ss
in

out

Y
UH

d
= , 

(10)
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where and  are the Laplace transforms 
of y

( )sinY ( )soutU
in(t) and uout(t), respectively, from (9) and (10) it 

follows that  

( ) ( ) BGWLH 1t −+= ss . (11)

 If we asume that G is invertible, defining  

BGRWGA 11   and −− =−= , (12)

we can rewrite the double matrix MNA description in 
(9) in the form of a single matrix reprezentation as it 
follows: 

( ) ( ) xLuRyxAx t  ;
d
d

=+= tt
t outin . 

(13)

In this case, the transfer function matrix becomes 

( ) ( ) RAILH 1t −−= ss . (14)

Equation (14) can also be written as 

( ) ( )
( )( )AI

RAILH
s
ss

−
−

=
det
adjt

. 
(15)

 
 
2.2 Krylov Vector Computation 
The Krylov vector generation in linear circuits is 
similar to moment generation, therefore, all of the 
techniques for moment generation can also be used 
for efficient Krylov sequence computation. 
 The block moments of a linear circuit are 
generated recursively using the following algorithm: 

*Recursive scheme for the  block moment 
*calculation:          
       BGM =0

       for j = 1, 2, ..., q − 1 
             1−= jj WMGM

         end 

 
 
 
(16)

Thus, for a linear circuit with np ports, in order to 
generate q block moments, we need to carry out qnp 
forward and back substitutions in addition to a single 
LU factorization of the usually sparse matrix G.  
 Analog, the Krylov vector blocks are obtained 
from a similar recursive procedure: 

*Recursive procedure for Krylov vector 
*generation:    

BGM =0  
( )00 MV orth=  

for i = 1, 2, ..., q − 1 
          

  

1−= ii WMGM

( )∑
=

−−−=
i

k
ikikii

temp
i

1

t MVVMV

 
 
 
 
 
(17)

       ( )temp
ii orth VV =  

 end      

 Procedure (17) is a condensed and mathematically 
equivalent version of the PRIMA algorithm [12]. In 
terms of the circuit matrix operations the 
computational cost of the recursive procedure given 
in (17) is equivalent to that of (16). 
 
 
2.3  Projection method description 
Consider a  linear system 

Ax = b (18)

where A is nxn real matrix. Projection techniques 
extract an approximative solution of the above system 
from a search subspace K of dimension q so that q 
constraints are satisfied. Generally, these constraints 
involve q independent orthogonality conditions. For 
example, the rezidual vector Ax – b is constrained to 
be orthogonal to q linearly independent vectors. In 
this way another subspace L of dimension q is 
defined. Such constraints are known as Petrov-
Galerkin conditions. 

There are two classes of projection methods: if the 
subspace K is the same as L, the projection is said to 
be orthogonal; otherwise, it is an oblique projection. 
For the linear dynamic systems, the projection is 
associated with matrix transformations. For example, 
we consider multi-input, multi-output linear dynamic 
systems that can be used for multiport interconnect 
macromodeling, and are discribed by the equations 
(13). Consider two q-dimensional subspace K and let 
L be an nxq matrix whose column vector form a basis 
of K. Similarly let Mq be an nxq matrix whose column 
vector form a basis of L, i.e. 

KcolspVq = ;    LcolspM q =
(19)

A reduced order model for the system (13) via 
projection has the following form: 

( )

( ) .
d

d

t

ttt

qqout

inq
q

qqqqq

t

t
t

xVLu

RyM
x

AVMxVM

=

+=
   

 
 

(20)

 Since the approximation order q is smaller than 
the number of original variables, n, the system (20) is 
a reduced-order approximation of the original in (13), 
and the output response uout(t) is an approximation of 
the actual output response uout(t) in (13). In projection 
terms, the qxq matrix  is the projection of A 
onto the subspace spanned by V

qAVMq
t

q, and orthogonal to 
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the subspace spanned by Mq. In the same way, one 
can think that the solution vector is approximated by 
another solution vector, but in the subspace K, 

qq xVx = . 
(21)

Similarly, the original system in (9) can be reduced 
with the double matrix projection (reducing G and W 
separately): 

( )

( ) .
d

d

t

tt

qqout

inq
q

qqqq

t

t
t

xVLu

ByM
x

WVMxGVM t
q

=

=+
   

 
 

(22)

The approximate solution is sought in the subspace K 
= span(Vq) and the residual is orthogonal to the 
subspace L = span(Mq), so that, it satisfies the Petrov-
Galerkin conditions. 
There are two projection mehods onto Krylov 
subspace: bock Lanczos and block Arnoldi. We shall 
develope a projection method onto Krylov subspace 
similarly to the Arnoldi procedure. We introduce 
projections onto Krylov subspaces. In this case, the 
subspace Krylov K = span(Vq) is identical to the 
Krylov subspace L = span(Mq) ( KL ≡ ). For this 
reason the equations (20) and (22) become 
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(23)

where  ;,, qqqqqqq VLLRVRAVVA tttt  ===
and 
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(24)

where:  ,,, qqqqqqqq BVBWVVWGVVG ttt  ===

qq VLL tt and = , respectively. 
 Therefore, the transfer function matrix in the 
reduced form has the following expression: 

( ) ( ) qqq
t
qq ss RAILH 1−−=  ,  (25)

when we use the MNA description in the form of a 
single matrix representatin (23), and 

( ) ( ) qqqqq ss BGWLH 1t −+=    
(26)

when we use the double matrix MNA description in 
(24). 
 Given an RLC circuit with the MNA (semi-state) 
formulation (9), the following algorithm finds for rthe 
begining a basis matrix Vq onto Krylov subspaces 
using a block Arnoldi process and then constructs a 
reduced-order model via projection in the form of 
(24). The basic algorithm is as follows: 
1. Generate, using the program SEMAG – Semi-state 
Matrix Generation [6], the matrices W, G, B, and Lt. 
These matrices are generated in symbolic or numeric 
form. 
2. Compute the bock moments M0, M1, ..., Mq-1, using 
the recursive procedure (16). 
3. Using the recursive procedure (17) compute the 
Krylov vector blocks, an nxq matrix  

[ ]110 −= qq ,...,, VVVV   . (27)

4. Compute, using the relation (26), the transfer 
function matrix in reduced form. 
 
 
3   Example 
Consider the neural network shown in Fig. 1.  

 

 Fig. 1. Neural network 

We want to find the transfer function matrix in the 
reduced form, using the projection method presented 
in Section 2, 
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(28)

Bode characteristics (magnitude-frequency and 
argument-frequency) of the transfer functions of the 
original circuit, Aoi_vs, together with the 
approximated ones: Aoi5_sem, Aoi7_sem, and 
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Aoi9_sem (Zoi_vs, together with the approximated 
ones: Zoi5_sem, Zoi7_sem, and Zoi9_sem) are 
represented in Figures 2, 3 and 3 (Figures 3 and 4). 

The subscripts have the following meanings: vs – 
state equations are used, sem – semi-state equations 
(MNE) are used,  and the number is the order of the 
denominator.  

 

 
Fig. 2. Magnitude-frequency characteristics for A. 

 

 
Fig. 3. Argument – frequency characteristics for A. 

The complexity order of the circuit in Figure 1 is 
43. The macromodels of 5, 7 and 9 order have been 
computed by the projection technique based on the 
semi-state equations presented above. The Bode 
characteristics of the voltage gain and of the transfer 
impedance show that the ones correponding to the 7 
order model are the closest to the the exact 
characteristics (obtained by the state equation 
method). In the frequency range of interest all Bode 
characteristics overlay. 

 
Fig. 4. Magnitude – frequensy characteristics for Z. 

 

 
Fig. 5. Argument - frequency characteristics for Z. 

 

4   Conclusion 
Based on the semi-state equation formulation a 

technique for behavioral model generation by the 
projection method with Krylov subspaces is 
developed in order to obtain an accurate 
approximation of the original transfer function. 
Performing this procedure a set of reduced models 
were generated. Krylov vectors, bases for Krylov 
subspaces, contain the same information as the 
moments, but numerically they are better 
conditioned. Thus, their use allows us to obtain very a 
high accuracy of the reduced-order models. 
Comparing the characteristics of the different 
approximations of the transfer functions, the best 
approximation in the frequency range of interest can 
be selected. Moreover, after applying a synthesis 
procedure, a symbolic transfer function in reduced 
form is available for the equivalent reduced-size 
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circuit. For a network function there is an optimum 
order of the behavioral macromodel. Over this order 
the Krylov vector can lose the orthogonality so that 
the macromodel becomes instable and loses the 
passivity.  
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