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Abstract:This article builds on the ternary quantum-dot cell, which is an extension of the classic binary cell. These
cells are basic building blocks of quantum-dot cellular automata. They can be be used to construct structures
with input and output cells, so when using the ternary quantum-dot cells a structure is an implementation of
some ternary logic function. Furthermore the structures can be interconnected and act as building blocks of the
implementation of an arbitrary logic function. This paper presents a computer-aided design tool that finds an
optimal implementation of a circuit. The search is based on the concept of iterative deepening. Since searching
over all possible solutions would take too much time, heuristics are used to reduce the required computation time.

Key–Words:Quantum-dot cellular automata, Ternary quantum-dot cell, Computer-aided design, Ternary logic,
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1 Introduction

The quantum-dot cellular automaton (QCA) is a pos-
sible future nano-scale processing platform that could
perform useful computation based on a new comput-
ing paradigm [1]. QCA devices are smaller and faster
than present computers and dissipate much less en-
ergy. A binary QCA is composed of binary quantum-
dot (bQCA) cells, each of them having four quantum
dots distributed in a square like pattern over its sur-
face. An individual cell contains also two electrons,
which can tunnel among the quantum dots. Because
of the Coulomb interaction the electrons tunnel be-
tween adjacent dots. Their possible arrangements de-
termine different states of a cell.

The use of binary logic in computers was histor-
ically necessary only due to the limited technology
available at the time. This, however, does not apply
for QCA. Lebar Bajec et al. extended the bQCA cell
and introduced the ternary quantum-dot (tQCA) cell
capable of multi-valued processing [2, 3]. The tQCA
cell has eight quantum dots distributed on its surface
in a circular pattern and contains two electrons. The
positions of electrons determine four possible config-
urations, thus the cell can be in one of four different
states. The tQCA cell is shown on figure 1(a) and fig-
ure 1(b) presents its four states denoted A, B, C and D
respectively. The ternary representation of numbers is
proposed as the most efficient [4], therefore we based
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Figure 1: (a) The tQCA cell. (b) The four possible
cell states.

our logic analysis on Łukasiewicz’s ternary logic and
set the logic values of the states as{A, B, C, D} = {0,
1, 1

2
, 1

2
} [5].

The algorithms for an exact simulation of large
tQCA circuits are inefficient [6], therefore we propose
a novel methodology for the design of complex tQCA
circuits, based on building blocks with designated in-
puts and outputs. These are simple tQCA structures
constructed of a small number of cells grouped in
clocking zones. We developed a computer-aided de-
sign (CAD) tool that constructs a desired tQCA cir-
cuit with available blocks. The building blocks are
composed of only a few cells so their behavior can
be more accurately simulated fast. The implemented
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tool finds an optimal solution in terms of spatial re-
dundancy (the minimal number of tQCA cells used)
and maximal speed of processing (the minimal num-
ber of clocking zones in a circuit).

2 The tQCA structures

By placing tQCA cells adjacent to each other various
cellular automata with defined input and output cells
can be constructed. Cells are partitioned into clock-
ing zones to exploit the adiabatic pipelining [7, 8].
Each zone cycles through four clock phases, denoted
Switch, Hold, Release and the Relax phase. The
tQCA processing performed by the tunneling of elec-
trons takes place in the Switch phase, therefore the re-
sult may be available before the clock cycles through
all phases. The number of clock cycles needed for
computation is determined by the number of clock-
ing zones used in the tQCA circuit. After the setting
up of the input cells’ states and the relaxation of the
tQCA to its ground state the result of the computation
is read by determining the states of the output cells.
For each of the constructed structures we computed
the truth tables, i.e. for every input configuration the
corresponding output state was found. Calculations
were made using the tQCA simulation methods [8].

Figure 2 presents the simplest tQCA structures.
On figure 2 (a) are the tQCA ternary logic inverter and
its truth table. The cells of the tQCA inverter have to
be divided into two clocking zones for correct oper-
ation, thus the result of the computation is available
after the second clock phase. The truth table of the
tQCA inverter corresponds to the truth table of nega-
tion in ternary logic. Figure 2 (b) shows the behavior
of the tQCA wire at every possible input. The input
cell, internal cells and the output cell are assigned to
three different clocking zones, which determine the
direction of data flow. Upon closer inspection it is ev-
ident that the wire must have an odd number of cells
to perform correctly. A useful structure is the tQCA
majority gate that can be used to implement ternary
logic disjunction and conjunction, similar to the bi-
nary QCA majority gate [9, 10]. The tQCA majority
gate is presented on figure 3 together with correspond-
ing truth table.

Each tQCA structure implements some ternary
logic function. Input variables are entered into the
structure by setting appropriate states of input cells.
After the processing, the output is obtained by read-
ing the state of the output cell. The equations of func-
tions, which are implemented by tQCA structures, are
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Figure 2: (a) The tQCA ternary logic inverter. The
input cell is labeledIn and the output cell is labeled
In. Different background shades of the cells denote
different clocking zones. (b) Behavior of the tQCA
wire at different inputs. In each case the input cell is
on the left side of a wire and it is outlined with thick
lines. The internal cells are to the right of the input
cell and outlined with thin lines. The output cell is on
the right end of a wire.

written in the form

Output = Si(Input1, Input2, ..., Inputm),

i = 1, 2, ..., n (1)

Si denotes the function that is computed byi–th out of
then constructed tQCA structures which hasm input
cells. The number of input cellsm varies between
structures, e.g. the tQCA inverter has one and the
tQCA majority gate has three input cells.Output is
a vector of outputs of the logic function withk input
variablesV ariable1, V ariable2, ..., V ariablek and
contains4k values. These are the tQCA cell states
corresponding to the ternary logic values in the out-
put column in the truth table of the function.Inputj ,
j = 1, 2, ..., m, can be either a constant state, a vector
of V ariable or a vector of function outputs computed
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Figure 3: The tQCA majority gate and its truth table.
Input cells are labeledIn1, In2, In3 and the output
cell is labeledOut.

by some tQCA structure. In case of the tQCA logic
inverter with one input variable, vectors are described
by the relations (2), (3) and (4):

V ariable = [A, B, C, D] (2)

Output = [B, A, C, D] (3)

and
Output = Inverter(V ariable) (4)

The equation of ternary logic conjunction is written as

Output = M(V1, V2, A) (5)

In equation (5) input variables are labeledV1 andV2,
whereasM denotes the tQCA majority gate. The third
input cell is set to constant state A.

Each input can be an output of another tQCA
structure. The tQCA logic circuits are constructed by
connecting the output cell of the tQCA structure to
the input cell of another structure with the tQCA wire.
Thus the state of the output cell is transfered to the
input of the next tQCA structure.

3 Design of minimal tQCA logic cir-
cuits

Although any ternary function can be written in the
normal form as the composition of functions in a func-
tionally complete set, the realization of this form may
be constituted of many tQCA structures. Our goal was
to find the smallest and the fastest tQCA circuit that
implements the desired ternary logic function. The
optimal logic circuit consists of the minimal number
of tQCA structures and has the minimal total number
of clocking zones. It is preferred that structures pro-
cess in parallel, so that outputs of the earlier stage of
processing are available to the next stage at the same
time.

We designed the CAD tool that finds the tQCA
logic circuit composed of predefined tQCA structures
for an arbitrary ternary logic function with an arbi-
trary number of variables. The input data are vec-
tor Output and the truth tables of tQCA structures
that will be used to construct the circuit. The num-
ber of variables is computed from the length of vector
Output. The result is constructed tQCA logic circuit,
written in the form of a relation (1). The basic idea of
the developed tool is searching the space of solutions
by iterative deepening. The exhaustive search is inef-
ficient because the complete space of solutions is very
large, therefore we used heuristic methods to reduce
it. The tool is implemented in the Prolog program-
ming language because of its mechanisms for pattern
matching, automatic backtracking and others that we
found appropriate for the task [11, 12, 13].

The truth tables of the basic structures are given
to Prolog as facts. This is very useful as additional
structures can be added by simply designing a new
structure, computing its truth table by simulation and
adding it to the existing facts. The input data is the
truth table of the logic function to be realized. Further-
more the input can be incompletely specified. Using
the tool it is easy to handle the do not cares, as these
are represented as anonymous variables in Prolog.

The search space is reduced by not consider-
ing configurations that always output a constant, e.g.
M (A, A, V ariable) that always outputs the vector
consisting of states A, independent of the value of
vector V ariable. It is evidently more efficient to
assign the constant state to the input cell instead of
computing it by such function. Furthermore only
one of the configurations that have identical truth ta-
bles is used, e.g.M (A, V ariable1, V ariable2) and
M (V ariable1, V ariable2, A) both compute the same
output. The number of all possible configurations of
the tQCA majority gate with three inputs, consider-
ing four constant states and three different variable
vectors, is73=343. Using the described technique,
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Figure 4: Mapping the output states into corre-
sponding states, represented as anonymous variables
in Prolog. Figure shows the mapping in case of
Łukasiewicz’s equivalence function.

the number of appropriate configurations is reduced
to merely 25.

The number of levels of the tQCA logic circuits is
the maximal number of sequentially connected struc-
tures, e.g. the circuit described by the form (6) has
two levels:

M(M(V1, V2, A), M(V1, V2, B), C) (6)

V1 andV2 indicate variable vectors, whereas A, B and
C are constant states. By iterative deepening the tool
first finds circuits with the minimal number of levels.
From obtained solutions only the circuits with mini-
mal number of used structures and clocking zones are
chosen. More than one different optimal circuits that
compute the desired ternary function can be found.

Since it can be hard to find a complex circuit,
the CAD tool uses heuristic methods to speed up the
search. One of the heuristics used is to define as
many anonymous variables as there are different out-
put states and represent the truth table using them. In
other words all of the input combinations that result in
the same output state use the same anonymous vari-
able. State D is only allowed for internal cells and
does not appear in the input cells. Figure 4 shows the
procedure in case of Łukasiewicz’s equivalence func-
tion. State A is mapped to variableXA, state B to
XB and state C to variableXC. Through backtrack-
ing Prolog determines the values of variables that are
mutually exclusive. The states may be temporarily
mapped to different ternary logic values as initially,
thus the obtained solution is not the desired function.
In this case the tool maps the output states into the de-
sired states with the fast method that finds a function
of one variable, which correctly maps the intermedi-
ate output states to the final and correct output states.
With this procedure the tool may not find an optimal
solution, but it finds a good solution fast.

Table 1: Truth table of the ternary cyclic negation
function.
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Figure 5: The tQCA structureCf and its truth table.
All cells belong to the same clocking zone.

4 Results

The disjunctive normal form of the ternary cyclic
negation, defined in the table 1, is quite lengthy:

X = (fA(X) ∧ C) ∨

(fB(X) ∧ A) ∨

(fC(X) ∧ B) (7)

In equation (7) the symbol∧ denotes ternary logic
conjunction, defined as the minimum of the input
logic values. The symbol∨ denotes ternary disjunc-
tion, defined as the maximum of the input logic val-
ues. Input variable is labeledX and X is the no-
tation of the cyclic negation. The functionsfA(X),
fB(X) andfC(X) denote the characteristic functions
for states A (logic value 0), B (logic value 1) and C
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cyclic negation with tQCA structures. The outputX
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2
) respectively. They are defined by the

relation

fY (X) =

{

B if X=Y ,

A otherwise
Y = A, B, C (8)

Figure 5 presents the tQCA structure denotedCf

and corresponding truth table, determined by thor-
ough simulation of structure’s behavior. It enables
simple implementations of tQCA circuits which com-
pute characteristic functions for the states A and B.
Circuits forfA(X) andfB(X) are given by equations
(9) and (10) respectively.

fA(X) = Cf(B, B, X) (9)

fB(X) = Cf(B, B, Inverter(X)) (10)

The straightforward realization of the ternary
cyclic negation by equation (7) is composed of many
structures sequentially connected in numerous levels.
However our tool finds an optimal solution, composed
of only three structures connected in two levels as pre-
sented in figure 6. It can be written in equation form
as

X = Cf(B, M(B, D, X), M(A, D, X)) (11)

The ternary logic conjunction and disjunction on
the other hand can be realized using the majority gate
analogous to the realization of binary AND and OR
in the binary QCA [2, 3, 9, 10]. With implemented
heuristic methods the CAD tool is able to find even
complex tQCA circuits for implementation of ternary

logic functions that do not have a simple solution. One
of these is Łukasiewicz’s equivalence, implemented
by the tQCA circuit described by complex form:
X ↔ Y = M (B,M (B,M (A,X,Y ),
M (A,Inverter(X),Inverter(Y ))),
Cf (A,A,M (B,M (B,X,Y ),Cf (X,A,Y )))).

5 Conclusion
This article describes the methodology used to design
(sub)optimal tQCA logic circuit that computes an ar-
bitrary ternary logic function. The solution is com-
posed of predefined tQCA structures. One criterion
for optimality is the number of interconnected struc-
tures, so that an optimal realization of a function oc-
cupies the smallest possible area. The second crite-
rion is the number of levels in which the structures are
connected. Indeed every level in the implementation
increases the time needed to compute an output of a
function. The third criterion, connected to the previ-
ous two, is the number of clocking zones in the tQCA
circuit. Obviously the fastest and therefore optimal
circuit computes the result after the minimal number
of clock cycles. We present the CAD tool that is de-
signed to find the implementation of the ternary logic
function given as its input. The application, developed
in programming language Prolog, searches for a solu-
tion based on the concept of iterative deepening. Since
checking every possible configuration consumes too
much computation time, we improved search tech-
niques with heuristic methods. In this way the tool
may find a suboptimal solution but the computation
time is greatly reduced.

The work presented in this paper was performed at the
Computer Structures and Systems Laboratory, Faculty
of Computer and Information Science, University of
Ljubljana, Slovenia and is part of a PhD thesis being
prepared by Miha Janež.
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