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Abstract: We analyze the unsteady flow of an incompressible generalized second-order fluid in a straight rigid
tube, with circular cross-section of constant radius, where the normal stress coefficients depend on the shear
rate by using a power law model. The full 3D unsteady model is simplified using a one-dimensional hierarchical
approach based on the Cosserat theory related to fluid dynamics, which reduces the exact three-dimensional
equations to a system depending only on time and on a single spatial variable. From this new system we obtain
the relationship between mean pressure gradient and volume flow rate over a finite section of the tube. Attention
is focused on some numerical simulation under constant mean pressure gradient and on the analysis of perturbed
flows.

Key-Words: Cosserat theory, axisymmetric motion, mean pressure gradient, volume flow rate, perturbed flows,
power law viscoelastic function.

1 Introduction

Let us consider the Cauchy stress tensor for vis-
coelastic fluids of differential type (also called
Rivlin-Ericksen fluids) with complexity n = 2,
given by (see Colemann and Noll [10])

T = −pI + µA1 + α1A2 + α2A
2
1 (1)

where p is the pressure, −pI is the spherical part
of the stress due to the constraint of incompress-
ibility, µ is the coefficient of viscosity, and α1, α2

are the normal stress coefficients usually called
normal stress moduli. The kinematical first two
Rivlin-Ericksen tensors A1 and A2 are defined
through (see Rivlin and Ericksen [11])

A1 = ∇ϑ +
(
∇ϑ

)T (2)

and
A2 =

d

dt
A1 + A1∇ϑ

(
∇ϑ

)T
A1 (3)

where ϑ is the velocity of the fluid and d
dt(·) de-

notes the material time derivative. In equation

(3) the material time derivative of the tensor A1

is given by

d

dt
A1 =

∂

∂t
A1 + ϑ · ∇A1.

If α1 = α2 = 0 in equation (1), the classical
Navier-Stokes system are recovered. The thermo-
dynamics and stability of the fluids related with
the Cauchy stress tensor (1) have been studied in
detail by Dunn and Fosdick (see [12]) who showed
that if the fluid is to be compatible with thermo-
dynamics in the sense that all motions of the fluid
meet the Clausius-Duhem inequality and the as-
sumption that the specific Helmholtz free energy
of the fluid is a minimum in equilibrium, then

µ > 0, α1 > 0, α1 + α2 = 0. (4)

Fosdick and Rajagopal (see [13]), based on the
experimental observation, showed that for many
non-Newtonian fluids of current rheological inter-
est the reported values for α1 and α2 do not sat-
isfy the restriction (4)2,3, relaxed that assump-
tion. Also, they showed that for arbitrary values
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of α1 + α2, with α1 < 0, a fluid filling a com-
pact domain and adhering to the boundary of
the domain exhibits an anomalous behavior not
expected on real fluids. The condition (4)3 sim-
plifies substantially the mathematical model and
the corresponding analysis. The fluids character-
ized by (4) are known as second-grade fluids as
opposed to the general second-order fluids. The
terminology ”grade” is used in the place of ”or-
der” to convey the notion of ”exactness” rather
than the notion of ”approximation” wherein the
model is not required to be compatible with ther-
modynamics. It should also be added that the
use of Clausius-Duheim inequality is the subject
matter of much controversy (see e.g. Coscia and
Galdi [14]). Experimental studies with polymers
(see e.g. Beracea et al. [3]), suspensions (see e.g.
Mall-Gleissle et al. [2]) and liquid crytals (see e.g.
Tao et al. [15]) seem to indicate that for several
fluids, one does observe a substancial variation in
normal stress effects with the shear rate. In fact,
Harris (see [1]) even argues that this dependence
is of a power law nature. Therefore, we consider
an extension of the Rivlin-Ericksen fluid model
of second-order by introducing a shear-dependent
function of power law related with the normal
stress coefficients. With this in mind, the consti-
tutive equation (1), becomes

T = −pI + µA1 + α
(
|γ̇|

)(
α1A2 + α2A

2
1

)
(5)

where
α
(
|γ̇|

)
: R+ → R+

is the shear-dependent normal stress coefficients
function and γ̇ is a scalar measure of the rate of
shear defined by |γ̇| =

√
2D : D with

D :=
1
2
(
∇ϑ +

(
∇ϑ

)T)

being the rate of deformation tensor. The partic-
ular functional dependence of the normal stress
coefficients on shear rate is generally chosen in
order to fit experimental data and, in the case of
a power law fluid model, is given by

α(|γ̇|) = k|γ̇|n−1 (6)

where the parameters k and n are called the
consistency and the flow index related with the

normal stress coefficients (positive constants), re-
spectively. If n = 1 in (6), the Cauchy stress ten-
sor (5) corresponds to the constitutive equation
(1) with k = 1. If n < 1 at (6) then

lim
|γ̇|→+∞

µ(|γ̇|) = 0, lim
|γ̇|→0

µ(|γ̇|) = +∞,

and we have a shear-thinning fluid behaviour
(viscoelastic decreases monotonically with shear
rate). For n > 1 at (6), we get

lim
|γ̇|→+∞

µ(|γ̇|) = +∞, lim
|γ̇|→0

µ(|γ̇|) = 0,

and the fluid shows a shear-thickening behaviour
(viscoelastic increases with shear rate). This the-
oretical model has limited applications to real flu-
ids due to the unboundedness of the viscoelastic
function, but is widely used and can be accurate
for specific flow regimes. The theoretical study
of the model associated to the constitutive equa-
tion (5), namely existence, uniqueness and reg-
ularity of classical and weak solutions with any
α1, α2 ∈ R still poses some difficulties. In this
paper we are interested in the numerical study of
the model associated to equation (5), using the
director approach (also called Cosserat Theory)
related to fluid dynamics, developed by Caulk
and Naghdi [4]. Recently, this theory approach
has been applied to blood flow in the arterial sys-
tem by Robertson and Sequeira [5] and also by
Carapau and Sequeira [6], [7], [8], [9] considering
Newtonian and non-Newtonian flows. This the-
ory was valided on the special case of a uniform
tube of constant radius for Newtonian fluid (see
[4]), and also for non-Newtonian fluids (see [6],
[7]). Using the director theory (see [4]) the veloc-
ity field1 ϑ = ϑ(x1, x2, z, t), can be approximated
by the following finite series2:

ϑ = v +
k∑

N=1

xα1 . . . xαN
W α1...αN

, (7)

with

v = vi(z, t)ei, W α1...αN
= W i

α1...αN
(z, t)ei. (8)

1Here, we consider xi(i = 1, 2, 3) the rectangular carte-
sian coordenates and for convenience set x3 = z.

2Latin indices subscript take the values 1, 2, 3, Greek
indices subscript 1, 2. Summation convention is employed
over a repeated index.
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Here, v represents the velocity along the axis of
symmetry z at time t, xα1 . . . xαN

are polynomial
weighting functions with order k (the number k

identifies the order of the hierarchical theory and
is related to the number of directors), the vec-
tors W α1...αN

are the director velocities which are
completely symmetric with respect to their in-
dices and ei are the associated unit basis vectors.
From this velocity field approach that we use to
predict some of the main properties of the three-
dimensional problem, we obtain the axisymmet-
ric unsteady relationship between mean pressure
gradient and volume flow rate over a finite section
of a straight tube with circular cross-section and
constant radius.

2 Governing Equations

Let us consider the axisymmetric motion, about
the z axis, of an incompressible fluid, without
body forces, inside a straight and impermeable
tube Ω with circular cross-section contained in
R3 (see Figure 1). Also, let us consider the sur-
face scalar function φ(z, t), that is related with
the cross-section of the tube by the following re-
lationship

φ2(z, t) = x2
1 + x2

2. (9)

The boundary ∂Ω is composed by Γ1 (proximal
cross-section), Γ2 (distal cross-section) and by Γw

the lateral wall of the tube. The equations of mo-

Pe

τ2

τ1

Z

Γ2

Γ1

X1

X2

Γw

φ(z,t)

Figure 1: Fluid domain Ω with the components of the
surface traction vector τ1, τ2 and pe, where φ(z, t) denote
the radius of the domain surface along the axis of symme-
try z at time t.

tion, stating the conservation of linear momen-

tum and mass are given by





ρ
(∂ϑ

∂t
+ ϑ · ∇ϑ

)
= ∇ · T ,

∇ ·ϑ = 0, in Ω × (0, T ),

T = −pI + σ, t = T · η,
(10)

with the initial condition

ϑ(x, 0) = ϑ0(x) in Ω, (11)

and the homogeneous Dirichlet boundary condi-
tion

ϑ(x, t) = 0 on Γw × (0, T ), (12)

where ϑ = ϑiei is the velocity field and ρ is the
constant fluid density. Equation (10)1 represents
the balance of linear momentum and (10)2 is the
incompressibility condition. In equation (10)3, t

denotes the stress tensor on a surface whose out-
ward unit normal is η = ηiei, and σ is the extra
stress tensor given by

σ = µA1 + α
(
|γ̇|

)(
α1A2 + α2A

2
1

)
(13)

where the normal stress coefficients depend on the
shear rate by using (6). The kinematical first two
Rivlin-Ericksen tensors A1 and A2 are given by
(2) and (3), respectively. The components of the
outward unit normal to the surface φ(z, t) are

η1 =
x1

φ
√

1 + φ2
z

, η2 =
x2

φ
√

1 + φ2
z

, η3 = − φz√
1 + φ2

z

,

(14)

where the subscript variable denotes partial dif-
ferentiation. Since equation (9) defines a material
surface, the velocity field ϑ must satisfy the kine-
matic condition

d

dt

(
φ2(z, t)− x2

1 − x2
2

)
= 0,

i.e.
φφt + φφzϑ3 − x1ϑ1 − x2ϑ2 = 0 (15)

on the boundary (9). Averaged quantities such
as flow rate and average pressure are needed to
study 1D models. Consider S(z, t) as a generic
axial section of the tube at time t defined by the
spatial variable z and bounded by the circle de-
fined in (9) and let A(z, t) be the area of this
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section S(z, t). Then, the volume flow rate Q is
defined by

Q(z, t) =
∫

S(z,t)

ϑ3(x1, x2, z, t)dx, (16)

and the average pressure p̄, by

p̄(z, t) =
1

A(z, t)

∫

S(z,t)
p(x1, x2, z, t)dx. (17)

Now, starting with representation (7), with k =
3, it follows (see [4]) that the approximation of
the velocity field ϑ = ϑi(x1, x2, z, t)ei using nine
directors, is given by

ϑ =
[
x1(ξ + σ(x2

1 + x2
2))

]
e1 +

[
x2(ξ + σ(x2

1 + x2
2))

]
e2

+
[
v3 + γ(x2

1 + x2
2)

]
e3 (18)

where ξ, γ, σ are scalar functions of the spatial
variable z and time t. The physical significance
of these scalar functions in (18) is the following:
γ is related to transverse shearing motion, while
ξ and σ are related to transverse elongation.

Let us consider a flow in a rigid tube, i.e.

φ = φ(z), (19)

From (19), (16), (18), (10)2 and (12) the volume
flow rate Q is just a function of time t, given by

Q(t) =
π

2
φ2(z)v3(z, t). (20)

Then, for a flow in a rigid tube, with volume flow
rate (20) and conditions (12) and (10)2, the ve-
locity field (18) becomes

ϑ =
[
x1

(
1 − x2

1 + x2
2

φ2

)2φzQ(t)
πφ3

]
e1

+
[
x2

(
1 − x2

1 + x2
2

φ2

)2φzQ(t)
πφ3

]
e2

+
[2Q(t)

πφ2

(
1 − x2

1 + x2
2

φ2

)]
e3. (21)

The stress vector on the lateral surface Γw (see
[4]) in terms of the outward unit normal and tan-
gential components (see Figure 1) is given by

t =
[ 1

φ
√

1 + φ2
z

(
τ1x1φz − pex1 − τ2x2(1 + φ2

z)
1/2

)]
e1

+
[ 1

φ
√

1 + φ2
z

(
τ1x2φz − pex2 + τ2x1(1 + φ2

z)
1/2

)]
e2

+
[ 1√

1 + φ2
z

(
τ1 + peφz

)]
e3, (22)

where τ1, τ2 and pe are the tangential compo-
nents of the surface traction vector. Instead of
satisfying the momentum equation (10)1 point-
wise in the fluid, we impose the following integral
conditions:

∫

S(z,t)

[
∇ · T − ρ

(∂ϑ

∂t
+ ϑ · ∇ϑ

)]
dx = 0, (23)

∫

S(z,t)

[
∇ · T − ρ

(∂ϑ

∂t
+ ϑ · ∇ϑ

)]
xα1 . . . xαN dx = 0,

(24)

where N = 1, 2, 3.

Using the divergence theorem and integration
by parts, equations (23)− (24) can be reduced to
the four vector equations:

∂n

∂z
+ f = a, (25)

∂mα1...αN

∂z
+ lα1...αN = kα1...αN + bα1...αN , (26)

where n, kα1...αN , mα1...αN are resultant forces
defined by

n =
∫

S
T 3dx, kα =

∫

S
T αdx, (27)

kαβ =
∫

S

(
T αxβ + T βxα

)
dx, (28)

kαβγ =
∫

S

(
T αxβxγ + T βxαxγ + T γxαxβ

)
dx,

(29)

mα1...αN =
∫

S
T 3xα1 . . . xαN

dx. (30)

The quantities a and bα1...αN are inertia terms
defined by

a =
∫

S
ρ
(∂ϑ

∂t
+ ϑ · ∇ϑ

)
dx, (31)

bα1...αN =
∫

S
ρ
(∂ϑ

∂t
+ϑ·∇ϑ

)
xα1 . . .xαN

dx, (32)

and f , lα1...αN , which arise due to surface traction
on the lateral boundary, are defined by

f =
∫

∂S

√
1 + φ2

z tdx, (33)

lα1...αN =
∫

∂S

√
1 + φ2

z t xα1 . . . xαN
dx. (34)

The equation for the mean pressure gradient as a
function of the volume flow rate will be obtained
using the results quantities (27) − (34) on equa-
tions (25)− (26).
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3 Some numerical results

Let us consider the system (10) without restric-
tions on the normal stress coefficients α1 and α2.
We consider the case of a straight circular rigid
with constant radius, i.e. φ = cts. Now, taking
into account the velocity approach (21), we ob-
tain the quantities (27)−(34). Using that quanti-
ties on equations (25)− (26), we get the following
unsteady relationship

p̄z(z, t) = −
8µ

πφ4
Q(t) (35)

−
4ρ

3πφ2

[
1 +

3kα1

4ρ

2
5n+5

2

(n + 3)πn−1φ3n−1
Qn−1(t)

]
Q̇(t),

where the notation Q̇(t) is used for time differ-
entiation. Integrating equation (35), over a finite
section of the tube (with z1 < z2), we obtain the
mean pressure gradient G(t) as a function of the
volume flow rate:

G(t) =
8µ

πφ4
Q(t) (36)

+
4ρ

3πφ2

[
1 +

3kα1

4ρ

2
5n+5

2

(n + 3)πn−1φ3n−1
Qn−1(t)

]
Q̇(t),

where
G(t) =

p̄(z1, t)− p̄(z2, t)
z2 − z1

.

Setting α1 = 0 in (36), we recover the solution for
a Newtonian viscous fluid obtain by Caulk and
Naghdi (see [4]). Also, considering n = k = 1 in
(36), we recover the solution for a second-order
viscoelastic fluid obtain by Carapau and Sequeira
(see [7]). Now, let us consider the following di-
mensionless variables

t̂ = ω0t, Q̂ =
2ρ

πφµ
Q, Ĝ =

ρφ3

µ2
G (37)

where φ is the characteristic radius of the tube
and ω0 is the characteristic frequency for un-
steady flows. In the case where a steady flow
rate is specified, the nondimensional flow rate Q̂

is identical to the classical Reynolds number (see
e.g. [5]). Now, substituting the dimensionless
variables (37) into equation (36), we obtain

Ĝ(t̂) = 4Q̂(t̂)+
2
3

[
1+3We

2
3n+3

2

n + 3
Q̂n−1(t̂)

]
W2

0
˙̂

Q(t̂)

(38)
where W0 = φ

√
ρω0/µ is the Womersley number

and

We =
α1k

n−1

φ2nρn

is a viscoelastic parameter, also called the Weis-
senberg number (see e.g. Galdi et al. [16]). The
dimensionless number W0 is the most commonly
used parameter to reflect the pulsatility of the
flow, which is an unsteady phenomenon. Solving
equation (38), we can compute the volume flow
rate Q̂(t̂) in terms of the mean pressure gradient
Ĝ(t̂) for different values of the Womersley num-
ber, Weissenberg number and flow index n. Also,
we can give some considerations about perturbed
flows.

3.1 Flow under constant mean pres-
sure gradient

Considering a constant mean pressure gradient
Ĝ(t̂) = Ĝ0 the system converges toward a steady
state solution. In Figure 2 this steady state vol-

Figure 2: Time evolution of the volume flow rate (38),
with fixed Weissenberg number (We = 0.25), for different
values of the Womersley number (W0 = (0.25, 0.75)) and
different values of the flow index (n = (0.25, 1, 3)).

ume flow rate is obtained solving the time de-
pendent problem but, if we are not interested in
the behavior during the initial transient phase,
the steady (asymptotic) value of the volume flow
rate can be obtained directly from (38) setting
˙̂

Q(t̂) = 0, since at constant pressure gradient,
˙̂

Q(t) converges to zero as t̂ goes to infinity, i.e.

lim
t̂→+∞

˙̂
Q(t̂) = 0.

Therefore the nondimensional steady solution is
characterized by

Q̂ = Ĝ0/4, (39)

which is in excellent agreement with the numer-
ical results illustrated in Figure 2. There is a
linear relation between quantities Q̂ and Ĝ0 in
(39). From Figure 2, we can realize that there
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is no qualitative difference between solutions for
different values of flow index. Considering other
values for Womersley number and Weissenberg
number we get the same solution behavior shown
in Figure 2.

3.2 Perturbed flows

It is important to determine the changes in flow
characteristics induced by perturbations in the
initial or boundary data, body forces or pressure
drop. In fact, since it is virtually impossible to
maintain an exactly constant pressure drop, one
should be able to predict how much a pertur-
bation of given magnitude in pressure drop will
affect the volume flow rate. We will consider a
uniform perturbation of magnitude ε. For each
ε > 0, defining the quantities,

Ĝ+
ε (t̂) = (1+ε)Ĝ(t̂), Ĝ−

ε (t̂) = (1−ε)Ĝ(t̂), (40)

we denote by Q̂+
ε and Q̂−

ε the perturbed vol-
ume flow rates corresponding to the perturba-
tion quantities Ĝ+

ε and G−
ε , respectively. Now,

considering the perburbation Ĝ±
ε = (1 ± ε)Ĝ0,

where Ĝ0 is a constant mean pressure gradient,
for sufficiently large t̂, after the transient period,
we can use the characterization of the steady so-
lution deduced in (39), and explicitly compute
the perturbed volume flow rates, using (40), as
follows:

Q̂±
ε =

1
4
Ĝ±

ε =
1
4
(1± ε)Ĝ0

= Q̂(1 ± ε). (41)

Normalizing the above perturbeded volume flow
rate Q̂±

ε by the unperturbed volume flow rate Q̂,
we get

Q̂±
ε

Q̂
= (1± ε), (42)

which means that in the steady case, this kind of
multiplicative perturbation acts linearly. Chang-
ing the mean pressure gradient by a factor of
(1±ε) changes the unperturbed volume flow rate
by a factor of (1±ε). In particular this shows that
the steady state solution is linearly stable. Per-
turbations will be negligible if (1± ε) ' 1, which
happens when ε → 0, i.e. for small changes in
the pressure gradient. In the case of time depen-
dent mean pressure gradient the same ideas hold,

apart from the fact that it is no longer possible to
deduce exact expressions for the perturbed vol-
ume flow rates. However, we can compute the
time evolution of the perburbation volume flow
rate Q̂+

ε and Q̂−
ε . In Figure 3 we represent the

Figure 3: Time evolution of the unperturbed volume
flow rate Q̂, and perturbeded volume flow rates Q̂±

ε , with
We = 0.5, W0 = 0.75 and flow index n = (0.25, 2.5).

Figure 4: Time evolution of perburbation (44) for dif-
ferent values of flow index n, with We = 0.5 and W0 =
(0.5, 0.75, 1.25, 1.75).

time evolution of the volume flow rate using

Ĝ(t̂) = 1 + | sin(t̂)|+ | cos(2t̂)| (43)

together with the perturbed flow rates of magni-
tude ε = 0.1, forming a strip around Q̂(t̂) contain-
ing all perturbations of magnitude less or equal to
ε. Figure 4 shows the amplitude of this strip for
several values of n, showing that increasing the
flow index and the Womersley number reduces
sensitivity to perturbations

|Q̂+
ε − Q̂−

ε | (44)

with fixed Weissenberg number. Considering
other values for Womersley and Weissenberg
numbers we get the same solution behavior shown
in Figure 4.
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4 Conclusions

A nine-director theory has been used to derive
a 1D generalized second-order fluid model in a
straight and rigid tube with circular cross-section
and constant radius, as an alternative approach
to predict some of the main properties of the asso-
ciated 3D model. Unsteady nondimensional rela-
tionship between mean pressure gradient and vol-
ume flow rate over a finite section of the tube has
been obtained by introducing a shear-dependent
function of power law related with the normal
stress coefficients. In the case of constant mean
pressure gradients we predicted some numeri-
cal results for different values of flow index n,
Weissenberg and Womersley numbers. Finally,
we conducted numerical simulations of perturbed
flows, obtaining an exact expression for the per-
turbed volume flow rates in the steady case, pro-
viding a first step towards stability analysis of the
model. One of the possible extensions of this work
is the study of equation (38) for specific unsteady
mean pressure gradient, and also the application
of this approach theory to the following constitu-
tive equation

T = −pI + µ
(
|γ̇|

)
A1 + α

(
|γ̇|

)(
α1A2 + α2A

2
1

)
,

where α(|γ̇|) = k1|γ̇|n1−1 is related with the vis-
cosity effects and α(|γ̇|) = k2|γ̇|n2−1 is related
with the viscoelastic effects.
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