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Abstract: - This paper introduces a fast external sorting algorithm of floating point numbers with integer operations only, 
which shortens the computing time significantly. Conversion overhead to integer can be avoided if the floating point data 
are stored in the disk since integer conversion is made while they are read from the data file. Experimentally large-scale 
data stored in the disk are sorted in a cluster computer with various data distributions, where speedups over two fold or 
more are observed. 
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1   Introduction 
Sorting is a fundamental computation widely used in 
many applications such as data searching, job scheduling, 
database management, etc [1]. There are lots of high 
performance sorting algorithms in the literature [2-8]. 
Most sorting algorithms focus on integer data since the 
processing is easy and flexible. If we think of comparison 
based sorting algorithms, they can be equally applied to 
real (floating-point) numbers as well. However, if 
floating point data can be translated to integers and their 
relative order is preserved, the running time could be 
significantly reduced by those algorithms. To devise a 
detailed way of avoiding floating-point arithmetic is the 
subject of this research. 
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hile internal sort refers to ordering of as many 
a as fit in main memory, external sort orders 
ge-scale data often stored in the disk [1]. Hence, 
ernal sort demands multiple iterations of data retrieval 
m the disk, ordering computation in main memory, 
 write back to the disk. Thus, it usually takes longer 
e due to slow performance of disk memory [9]. 
W-sort [10,11] is  a well known external sorting 
orithm on parallel computers like networked 
rkstations. The algorithm runs in two steps; the first 
ase roughly sets boundary values (i.e. splitters/ pivots) 
 relocates all data to processors based on the pivots. 

en, the second phase performs local sorting 
putation without interprocessor communication. The 

t is fast since data exchange is no longer needed after 
 first phase. However, if there is unbalance in the data 
tribution among processors, the execution time is 
gthened by the most heavily loaded processor.  
The following sections introduc

teger translation, explain parallel external sorting by 

W-sort, and report experimental results with 
cussion.  

 
2   Integer Translation  
Many sorting algorithms use comparison to order values.  
If two real numbers A and B are compared, A-B is 
computed by floating point arithmetic, thus, if the 
subtraction results in a positive value, for example, we 
decide that A is greater than B. Low level format of a 
floating point number consists of different fields such as 
exponent and mantissa as shown in Fig.1.  However, we 
may attempt to interpret the whole word of a floating 
point number (we assume it uses IEEE-754 standard [12]) 
as an integer, which means we ignore the meaning of 
different fields and regard them in one homogeneous 
word. Then, the comparison (subtraction) can be done 
using integer arithmetic, since the interpretation 
maintains the same relative order of the two floating point 
numbers because the upper part of the floating point 
format consists of exponent, and the lower part mantissa. 
Using this property, sorting can be done without the 
floating point arithmetic. This integer translation sort 
introduces savings of computing time and flexibility of 
computation, thus, fast sorting can be achieved. 

As an illustration, consider two real values A=3.0 =  
125.1 ×  and B=5.0 = written in decimal 

notation for simplicity. Their 32 bit representation 
follows a floating point number format such as 
IEEE-754 standard format. In case of A, the sign bit is 
zero, exponent should be 127+1= 128 with bias 127, 
and mantissa will be 1000…00

,
2225.1 ×

B (in 23 bits) since the 
decimal value of 0.5 is 0.1 in binary representation. 
(We refer the subscripts of B and H to binary and 
hexadecimal representation, respectively.) Similarly, 
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0, 129, and 0100…0BB are the sign bit, exponent, and 
the mantissa of B, respectively. Their integer 
translation gives 40400000H and 40A00000H, and the 
subtraction of A-B with integer arithmetic produces a 
negative value, thus, we can tell that A is smaller than 
B. 

 
 Word size 
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Fig.1. Floating-point and integer formats 
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 for our experiments. We  
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eads and sends to the root 

(S2) E  disk, partitions them 

keys.  

(S3) 
orts its keys in the disk, and writes back to disk.  

 

It 
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t, 

esides the speedup of integer arithmetic, an integer 
 utilize radix sorting method that delivers  O(N)-time 
formance[1], which outperforms the general 
parison based sorting demanding O(N log N) time.  

3
External sorting is quite suitable for the intege
translation sort since there will be no extra cost of 
conversion from floating point to integer. In external sort, 
every data in the disk should be loaded in the main 
memory for processing. When the data are loaded in the 
main memory, floating-point binary data are converted to 
integers with the same word size. From the point on, the 
integers represent the corresponding floating point 
numbers. All processing after the load use the integer data, 
and when the data are written to disk, the original floating 
point numbers are recorded. 

NOW-sort is modified
d sampling for determining the pivots, and develop 

the code to have minimal disk I/O. It produces sorted 
result with data redistribution such that all keys in a 
processor Pi is less than or equal to any key stored in 
Pj if i<j (i, j =0,1, , P-1). The sorting algorithm first 
performs   splitter selection by sampling, then, loads 
and distributes keys, and finally does local sort and 
output, as described below: 

(S1) Each node simultaneously r
node a fixed number of keys (for example, Q keys). Then, 
root node sorts the PQ keys, and chooses P-1 
pivots/splitters by selecting every Qth keys. The pivots are 
broadcast to all other processors.  
ach node in parallel reads keys from

into P-1 bins by the splitters, and sends them to the 
corresponding nodes. At the same time it accepts from 
others, moves to buffers, and stores into disk the arriving 

Once the distribution is complete, each node reloads and 
locally s

4   Experimental Results and Discussion 
The algorithms have been implemented on a PC cluster. 
consists of 8 PCs with 1.83 GHz AMD Athlon XP 2500
CPUs interconnected by a Myrinet switch. Each PC runs 
under Linux with 1GB RAM and 80GB hard disk. Code 
is written in C language with the MPI communication 
library. Input keys are 32-bit single-precision floating 
point numbers synthetically generated with two 
distribution functions (uniform and gauss). NOW-sort is 
applied as a framework of the external sorting, where the 
integer conversion is performed in the early phase, then 
the remaining part of the computing uses the integers.  
     Figs. 2 and 3 show the comparison of our sorting to the 
generic method, marked integer and floating poin
respectively. Execution times with various input sizes 
and processor counts are shown simultaneously, where 
left bars correspond to the integer translation, and right 
generic. The overall speed of integer translation external  
sort is at least two times faster than the generic method. If 
only the internal sorting computation time is focused, the 
integer translation sort is about four times faster than that 
of floating point, as listed in Table 1. It occupies a 
dominant portion of the overall time as found in Fig.4, 
where the times spent by individual functions such as  
internal sorting computation, data communication, disk 
read/write are shown. Load imbalance due to uneven data 
distribution among processors is very small (below 1% 
deviated from perfect balance), as observed in Fig.5. We 
have extracted as many as N  samples for selecting 
pivots for partitioning as in [13]. The overhead of the 
sampling turns out to be negligible, thus it does not hurt 
the performance.  

Figs.6 and 7 plot the speedup and corresponding 
efficiency measure. They show that as more data are 
given
ov
 

nternal sort only with P=8 
(U=Uniform, G=Gaussian) 

GB 

, the efficiency drops since the communication 
erhead grows due to the limited bandwidth of Myrinet. 

Table 1. Comparison of computing time 
of i

1GB 2GB 4Data size
 

Algorithms 
U G U G U G 

Integer 
translated 
(a) 

5.5 7 11.3 11.3 22.4 22.1  5.

Floating
point (b) 

 24.4 25.5 45.8 48.9 99.9 98.6 

 4.4 4.5 4.1 4.3 4.5 4.5 
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Fig. 2 Execution time of sorts with and 

without integer translation (uniform distr.) 
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Fig. 3. Execution time of sorts with and 

without integer translation (gaussian distr.) 
 

Execution Time(P=8, Data size=4GB)

0

10

20

30

40

50

60

70

80

Floating Point
(Unifrom)

Integer
Conversion
(Unifrom)

Floating Point
(Gaussian)

Integer
Conversion
(Gaussian)

Ti
m
e(
se
c)

Partition & Disk I/O
Internal sort
data comm

 
Fig. 4. Components of execution time in the 

parallel sort 
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Fig. 5. Degree of load imbalance among 

processors shown in percentage. 
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Fig. 6. Speedup of integer translation sort 
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Fig. 7. Efficiency of integer translation sort 
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5   Summary 
In this research we devise an enhanced sorting algorithm 
of real numbers that uses integer format instead of the 
original floating-point one. To verify the enhancement 
the new method is applied to an external sorting 
application where the data conversion does not require 
additional cost. Experimental results on an 8-node cluster 
show over two-fold speedup. Besides the computing 
speedup, we are studying the integer translation for fast 
data partitioning as often used in radix sort.  
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