
Parallel External Sort of Floating-Point Data by Integer Conversion

CHANGSOO KIM, SUNGROH YOON, and DONGSEUNG KIM
Department of Electrical Engineering

Korea University
Anamdong 5Ga, Seoul

REP. OF KOREA

Abstract: - This paper introduces a fast external sorting algorithm of floating point numbers with integer operations only,
which shortens the computing time significantly. Conversion overhead to integer can be avoided if the floating point data
are stored in the disk since integer conversion is made while they are read from the data file. Experimentally large-scale
data stored in the disk are sorted in a cluster computer with various data distributions, where speedups over two fold or
more are observed.

Key-Words: sort, floating- point arithmetic, NOW- sort, cluster computer, load balancing

1 Introduction
Sorting is a fundamental computation widely used in
many applications such as data searching, job scheduling,
database management, etc [1]. There are lots of high
performance sorting algorithms in the literature [2-8].
Most sorting algorithms focus on integer data since the
processing is easy and flexible. If we think of comparison
based sorting algorithms, they can be equally applied to
real (floating-point) numbers as well. However, if
floating point data can be translated to integers and their
relative order is preserved, the running time could be
significantly reduced by those algorithms. To devise a
detailed way of avoiding floating-point arithmetic is the
subject of this research.

W
dat
lar
ext
fro
and
tim
NO
alg
wo
ph
and
Th
com
sor
the
dis
len

e the idea on sorting
by in

NO
dis

hile internal sort refers to ordering of as many
a as fit in main memory, external sort orders
ge-scale data often stored in the disk [1]. Hence,
ernal sort demands multiple iterations of data retrieval
m the disk, ordering computation in main memory,
 write back to the disk. Thus, it usually takes longer
e due to slow performance of disk memory [9].
W-sort [10,11] is a well known external sorting
orithm on parallel computers like networked
rkstations. The algorithm runs in two steps; the first
ase roughly sets boundary values (i.e. splitters/ pivots)
 relocates all data to processors based on the pivots.

en, the second phase performs local sorting
putation without interprocessor communication. The

t is fast since data exchange is no longer needed after
 first phase. However, if there is unbalance in the data
tribution among processors, the execution time is
gthened by the most heavily loaded processor.
The following sections introduc

teger translation, explain parallel external sorting by

W-sort, and report experimental results with
cussion.

2 Integer Translation
Many sorting algorithms use comparison to order values.
If two real numbers A and B are compared, A-B is
computed by floating point arithmetic, thus, if the
subtraction results in a positive value, for example, we
decide that A is greater than B. Low level format of a
floating point number consists of different fields such as
exponent and mantissa as shown in Fig.1. However, we
may attempt to interpret the whole word of a floating
point number (we assume it uses IEEE-754 standard [12])
as an integer, which means we ignore the meaning of
different fields and regard them in one homogeneous
word. Then, the comparison (subtraction) can be done
using integer arithmetic, since the interpretation
maintains the same relative order of the two floating point
numbers because the upper part of the floating point
format consists of exponent, and the lower part mantissa.
Using this property, sorting can be done without the
floating point arithmetic. This integer translation sort
introduces savings of computing time and flexibility of
computation, thus, fast sorting can be achieved.

As an illustration, consider two real values A=3.0 =
125.1 × and B=5.0 = written in decimal

notation for simplicity. Their 32 bit representation
follows a floating point number format such as
IEEE-754 standard format. In case of A, the sign bit is
zero, exponent should be 127+1= 128 with bias 127,
and mantissa will be 1000…00

,
2225.1 ×

B (in 23 bits) since the
decimal value of 0.5 is 0.1 in binary representation.
(We refer the subscripts of B and H to binary and
hexadecimal representation, respectively.) Similarly,

B

APPLIED COMPUTING CONFERENCE (ACC '08), Istanbul, Turkey, May 27-30, 2008.

ISBN: 978-960-6766-67-1 120 ISSN: 1790-2769

0, 129, and 0100…0BB are the sign bit, exponent, and
the mantissa of B, respectively. Their integer
translation gives 40400000H and 40A00000H, and the
subtraction of A-B with integer arithmetic produces a
negative value, thus, we can tell that A is smaller than
B.

 Word size

Float 0 10110
11

01000...000
11

 S Expon
ent

Mantissa

 Word size
Int 0 10

11
0110 ...

.
0011

 S

Fig.1. Floating-point and integer formats

B
can
per
com

 External Sort by Integer Translation
r

 for our experiments. We
ad

eads and sends to the root

(S2) E disk, partitions them

keys.

(S3)
orts its keys in the disk, and writes back to disk.

It
+

t,

esides the speedup of integer arithmetic, an integer
 utilize radix sorting method that delivers O(N)-time
formance[1], which outperforms the general
parison based sorting demanding O(N log N) time.

3
External sorting is quite suitable for the intege
translation sort since there will be no extra cost of
conversion from floating point to integer. In external sort,
every data in the disk should be loaded in the main
memory for processing. When the data are loaded in the
main memory, floating-point binary data are converted to
integers with the same word size. From the point on, the
integers represent the corresponding floating point
numbers. All processing after the load use the integer data,
and when the data are written to disk, the original floating
point numbers are recorded.

NOW-sort is modified
d sampling for determining the pivots, and develop

the code to have minimal disk I/O. It produces sorted
result with data redistribution such that all keys in a
processor Pi is less than or equal to any key stored in
Pj if i<j (i, j =0,1, , P-1). The sorting algorithm first
performs splitter selection by sampling, then, loads
and distributes keys, and finally does local sort and
output, as described below:

(S1) Each node simultaneously r
node a fixed number of keys (for example, Q keys). Then,
root node sorts the PQ keys, and chooses P-1
pivots/splitters by selecting every Qth keys. The pivots are
broadcast to all other processors.
ach node in parallel reads keys from

into P-1 bins by the splitters, and sends them to the
corresponding nodes. At the same time it accepts from
others, moves to buffers, and stores into disk the arriving

Once the distribution is complete, each node reloads and
locally s

4 Experimental Results and Discussion
The algorithms have been implemented on a PC cluster.
consists of 8 PCs with 1.83 GHz AMD Athlon XP 2500
CPUs interconnected by a Myrinet switch. Each PC runs
under Linux with 1GB RAM and 80GB hard disk. Code
is written in C language with the MPI communication
library. Input keys are 32-bit single-precision floating
point numbers synthetically generated with two
distribution functions (uniform and gauss). NOW-sort is
applied as a framework of the external sorting, where the
integer conversion is performed in the early phase, then
the remaining part of the computing uses the integers.
 Figs. 2 and 3 show the comparison of our sorting to the
generic method, marked integer and floating poin
respectively. Execution times with various input sizes
and processor counts are shown simultaneously, where
left bars correspond to the integer translation, and right
generic. The overall speed of integer translation external
sort is at least two times faster than the generic method. If
only the internal sorting computation time is focused, the
integer translation sort is about four times faster than that
of floating point, as listed in Table 1. It occupies a
dominant portion of the overall time as found in Fig.4,
where the times spent by individual functions such as
internal sorting computation, data communication, disk
read/write are shown. Load imbalance due to uneven data
distribution among processors is very small (below 1%
deviated from perfect balance), as observed in Fig.5. We
have extracted as many as N samples for selecting
pivots for partitioning as in [13]. The overhead of the
sampling turns out to be negligible, thus it does not hurt
the performance.

Figs.6 and 7 plot the speedup and corresponding
efficiency measure. They show that as more data are
given
ov

nternal sort only with P=8
(U=Uniform, G=Gaussian)

GB

, the efficiency drops since the communication
erhead grows due to the limited bandwidth of Myrinet.

Table 1. Comparison of computing time
of i

1GB 2GB 4Data size

Algorithms
U G U G U G

Integer
translated
(a)

5.5 7 11.3 11.3 22.4 22.1 5.

Floating
point (b)

 24.4 25.5 45.8 48.9 99.9 98.6

 4.4 4.5 4.1 4.3 4.5 4.5

APPLIED COMPUTING CONFERENCE (ACC '08), Istanbul, Turkey, May 27-30, 2008.

ISBN: 978-960-6766-67-1 121 ISSN: 1790-2769

Execution Tim e(Uniform)

0

200

400

600

800

1000

1200
1G

B

In
te
ge
r

1G
B

 F
lo
at
in
g

P
oi
nt

2G
B

In
te
ge
r

2G
B

Fl
oa
tin
g
P
oi
nt

4G
B

In
te
ge
r

4G
B

Fl
oa
tin
g
P
oi
nt

Ti
m
e(
se
c)

P=1
P=2
P=4
P=8

Fig. 2 Execution time of sorts with and

without integer translation (uniform distr.)

Execution Time(Gaussian)

0

200

400

600

800

1000

1200

1
G
B

In
te
g
er

1
G
B

 F
lo
a
tin
g
 P
o
in
t

2
G
B

In
te
g
er

2
G
B

F
lo
a
tin
g
 P
o
in
t

4
G
B

In
te
g
er

4
G
B

F
lo
a
tin
g
 P
o
in
t

T
im
e(
se
c)

P=1
P=2
P=4
P=8

Fig. 3. Execution time of sorts with and

without integer translation (gaussian distr.)

Execution Time(P=8, Data size=4GB)

0

10

20

30

40

50

60

70

80

Floating Point
(Unifrom)

Integer
Conversion
(Unifrom)

Floating Point
(Gaussian)

Integer
Conversion
(Gaussian)

Ti
m
e(
se
c)

Partition & Disk I/O
Internal sort
data comm

Fig. 4. Components of execution time in the

parallel sort

Load distribution (Data size=4GB, Gaussian)

-5

-4

-3

-2

-1

0

1

2

3

4

5

1 2 3 4 5 6 7 8

Processor number

V
a
ria
tio
n[
%
]

P=8
P=4
P=2

Fig. 5. Degree of load imbalance among

processors shown in percentage.

Speedup (Gaussian)

0

1

2

3

4

5

6

1 2 4 8

Processors (P)

T
im
e
(s
e
c)

1GB
2GB
4GB

Fig. 6. Speedup of integer translation sort

Efficiency (Gaussian)

0

0.2

0.4

0.6

0.8

1

1.2

1 2 3 4

Processors (P)

Ti
m
e
(s
ec
)

1GB
2GB
4GB

Fig. 7. Efficiency of integer translation sort

APPLIED COMPUTING CONFERENCE (ACC '08), Istanbul, Turkey, May 27-30, 2008.

ISBN: 978-960-6766-67-1 122 ISSN: 1790-2769

5 Summary
In this research we devise an enhanced sorting algorithm
of real numbers that uses integer format instead of the
original floating-point one. To verify the enhancement
the new method is applied to an external sorting
application where the data conversion does not require
additional cost. Experimental results on an 8-node cluster
show over two-fold speedup. Besides the computing
speedup, we are studying the integer translation for fast
data partitioning as often used in radix sort.

Acknowledgement: This paper was supported in by
KOSEF Grant (R01-2006-000-11167-0), and in part by
Korean Government (MOEHRD)
(KRF-2005-041-D00670).

References:
 [1] D.E. Knuth, The art of computer programming,

volume 3: (2nd ed.) sorting and searching, Addison
Wesley Longman Publishing Co., Inc., 1998.

 [2] K. Batcher, Sorting networks and their applications,
Proc. AFIPS Spring Joint Computer Conference 32,
Reston, VA, 1968, pp. 307-314.

[3
b
K
2

[4
p
D
A

[5
D
S

[6
S

] M. Jeon and D. Kim, Parallel merge sort with load
alancing, Int’l Journal of Parallel Programming,
luwer Academic Publishers, Vol. 31, No.1, Feb.
003, pp. 21-33.

] S-J Lee, M. Jeon, D. Kim, and A. Sohn, Partitioned
arallel radix sort, Journal of Parallel and
istributed Computing, Academic Press, Vol. 62,
pril 2002, pp. 656-668.

] F. Popovici, J. Bent, B. Forney, A. A. Dusseau, R. A.
usseau, Datamation 2001: A Sorting Odyssey, In
ort Benchmark Home Page.

] L. Rivera, X. Zhang, A. Chien, HPVM Minutesort,
ort Benchmark Home Page.
[7] J. Wyllie, SPsort: How to sort a terabyte quickly,
Technical Report, IBM Almaden Lab., Feb. 1999,
http://www.almaden.ibm.com/cs/gpfs-spsort.html.

[8
cl
P
1

] C. Cerin, An out-of-core sorting algorithm for
usters with processors at different speed, Proc. 2002
arallel and Distributed Processing Symp., April
5-18, Fort Lauderdale, FL, USA, 2002.
[9] J. Porter, Disk trend 1998 report,
http://www.disktrend.com/pdf/portrpkg.pdf

 [10] A.C. Arpaci-Desseau, R.H. Arpaci-Desseau, D.E.
Culler, J.M. Hellerstein, and D.A. Patterson,
High-performance sorting on networks of
workstations, ACM SIGMOD '97, Tucson, Arizona,
May 1997.

 [11] A. A. Dusseau, R. A. Dusseau, D. E. Culler, J. M.
Hellerstein and D. A. Patterson, Searching for the
sorting record: experiences in tuning NOW-Sort,
Proc. SIGMETRICS Symp. Parallel and Distributed
Tools, 1998, pp. 124-133.

 [12] American National Standard Institute, An
American National Standard: IEEE Standard for
Binary Floating-Point Arithmetic, 1988. ANSI/IEEE
Standard No. 754.

 [13] R. Raman, Random sampling techniques in parallel
computation, Proc. IPPS/SPDP Workshops, 1998, pp.
351-360.
[14] JS Vitter, External memory algorithms and data
structures: Dealing with massive data. ACM
Computing Surveys, 33(2):209-271, June 2001

APPLIED COMPUTING CONFERENCE (ACC '08), Istanbul, Turkey, May 27-30, 2008.

ISBN: 978-960-6766-67-1 123 ISSN: 1790-2769

http://www.disktrend.com/pdf/portrpkg.pdf

