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Abstract: - Process analytical technology guidance by the US Food & Drug Administration lately became the major 
driver of pharmaceutical process optimization. The majority of these processes are complex and consequently 
multivariate. Although new insights have improved knowledge of the phenomena taking place, it is not usually possible 
to develop deterministic modeling. Processes involving powder handling, such as multi-component pharmaceutical 
formulation blending, are common and the real-time monitoring of their physico-chemical attributes is challenging. In 
this work, we propose multivariate analysis of a V-blender mixing unit operation with an in-line near-infra red (NIR) 
measurement technique. 
 
The NIR measurement system used in this study consists of a micro-electro-mechanical system (MEMS)-based 
spectrometer connected to an IP-65-encased optical measuring head (sampling probe) through a 1-meter length 
umbilical wire cord. It deploys diffuse reflectance sampling technology, providing 40-mm spot size with a spectral 
range of 1,350 to 1,800 nm. The methodology includes the following steps: (1) modification of a nominal 1-ft³ (30-L) 
V-blender unit to accommodate Axsun’s NIR spectroscopy system; (2) 3 experimental runs, each with a different 
mixing time, while monitoring powder homogeneity with NIR spectroscopy; (3) acquisition of 10 powder samples after 
each run from pre-determined locations in the V-blender, evaluated with current Quality Assurance (QA)/Quality 
Control (QC) lab methods, to determine reference mixing endpoints; and (4) NIR data analysis by SIMPA-P+ and 
GRAMS chemometrics software and comparison with reference mixing time. Two qualitative algorithms (analysis 
of spectral variance, distance analysis with Hotelling T²) for real-time homogeneity determination are 
developed, and their efficiency evaluated.   
 
The size of the acquired information is not comparable to classical “thief analysis”, and the result (prediction of the 
mixing endpoint) with the recommended methods proved to be equally or more efficient than with actually-employed 
quality control protocols. In addition, this information can be obtained in real-time using chemometric models. The time 
savings are important when compared to classical laboratory analysis (such as high pressure liquid chromatography 
analysis). It is expected that any one of the presented NIR analyses can be beneficial on many aspects of pharmaceutical 
blending, such as: (1) Real-time quality monitoring of current manufacturing batches; (b) Improved process efficiency 
and performance by selecting adequate process parameters and blending time; (3) Quality by design initiatives during 
the development of blending processes for new formulas. 
 
Key-Words: - Process analytical technology (PAT), Multivariate data analysis, Chemometrics, Pharmaceutical 
processes, Powders, Mixing, Blending, Quality by design, Real-time monitoring 
 

1  Introduction 
In a typical oral contraceptive pill, the active 
pharmaceutical ingredient (API) has a weight 
concentration between 0.01 and 0.05 wt%. For a batch 
from a typical 20-ft³ (about 0.5-m3) V-blender, this 
represents mixing only a few hundred g of APIs in over 
300 kg of excipients. In several vitamin formulations 
currently available on pharmacy counters, over 30 
ingredients are mixed together, each having a 
concentration ranging from 0.01 to 50 wt%. These 

formulas are often mixed in tumbling blenders, such as 
V-blenders, in batches of over 2,500 kg where, ideally, 
every ingredient must be present at the right 
concentration in a sample size of approximately 1.2 g.  
 
These 2 examples represent some challenges that the 
pharmaceutical manufacturing industry faces in the 
production of large-scale formulations for consumers.  
In each case, the consumer expects to have the exact 
claimed concentration in each tablet. With such 
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challenges in mixing unit operations, why does the 
pharmaceutical manufacturing industry remain one of 
the least efficient in in-line or on-line process control? 
Luckily, the quality of the pharmaceutical tablets or 
pills sold to the consumer is rarely deficient, thanks to 
very tight quality procedures and controls, but controls 
are mostly conducted on the finished product and not 
during manufacturing steps.  
 
The process analytical technology (PAT) initiative aims 
at solving this issue by promoting analytical tools 
located directly on the process to monitor quality 
attributes or critical product parameters. In the case of 
mixing unit processes, fundamental understanding of 
the mixing mechanisms can help in controlling the 
mixing endpoint, thus ensuring good mixture 
homogeneity.  
 
This fact has been outlined in the trial of the United 
States of America versus Barr Laboratories in 1992-93. 
In this case, Barr Laboratories was accused of 
adulteration of its product, validation failures and 
current good manufacturing practice (cGMP) 
irregularities, particularly for blend uniformity testing: 
see Muzzio and Robinson’s comprehensive review [1]. 
Since then, many initiatives have been taken to specify 
correct blend uniformity assessments and controls. One 
such initiative is the Blend Uniformity Working Group 
(BUWG) from the Product Quality Research Institute. 
By studying pharmaceutical blending processes and by 
conducting a discussion forum with the US Food & 
Drug Administration and different pharmaceutical 
manufacturers, the BUWG issued recommendations for 
blend uniformity testing in accordance with cGMP and 
United States Pharmacopeia guidelines. The following 
guidelines were identified for validation batches: at 
least 10 sampling locations identified in the blender 
representing potential areas of poor blending and 
collecting at least 3 replicate samples for each location. 
The acceptance criteria identified as relative standard 
deviation (RSD) of all API assays at most 5.0%, and 
that the RSD of all individual results must be within 
10.0% of the mean. Also, it was recommended to have 
in-process analysis for routine batches. 
 
While many pharmaceutical manufacturers are in 
compliance with the acceptance criteria recommended 
by the BUWG when performing validation batches, 
very few respect routine in-process control since most 
of them still use the typical sample thief. These tools 
are time-consuming, require expensive laboratory 
analyses and increase pharmaceutical exposure of the 
operators. Moreover, it is widely recognized that the 
sample thief can bias the results by introducing a 
perturbation in the powder bed and by suffering from 
segregation mainly due to particle size when flowing 

into the sampling aperture. Many studies were 
conducted to try to alleviate the problems associated 
with thief sampling techniques [2,3]. However, none 
has truly solved the issue for routine batch process 
control.  
 
That is why many pharmaceutical manufacturers are 
looking for other tools to assess blend homogeneity for 
production batches. They are now opting for near-infra 
red (NIR) spectroscopy. This interest is mainly justified 
by the fact that NIR can provide fast, non-invasive and 
non-destructive measurements of powder samples. 
Samples can thus be analyzed in-line without the need 
for sample preparations. Scans can typically be 
performed in less than 100 ms, and the instrument itself 
can be fairly compact and robust. New micro-electro-
mechanical systems (MEMS)-based spectrometers are 
small and require no moving parts. The instrument can 
thus be fitted directly on the shell of typical tumbling 
blenders. Therefore, the instrument can perform in-line 
spectral analysis and assess mix quality during mixing.  
 
But why are the pharmaceutical manufacturers only 
now developing PAT with NIR technology? This is 
mainly due to the development of computerized 
mathematical tools called chemometrics. Chemometrics 
can be defined as: “… the chemical discipline that uses 
mathematical, statistical and other methods employing 
formal logic to design or select optimal measurement 
procedures and experiments and to provide maximum 
relevant chemical information by analyzing chemical 
data” [4].  
 
When NIR spectroscopy was compared with typical 
infra red (IR) or even Raman spectroscopy prior to the 
advent of chemometrics, NIR was a far less efficient 
instrument to quantify or even qualify any component 
in a solid state. This fact can be explained by the wide 
and broad band peaks that reside in NIR regions. NIR 
has less specificity than many other types of 
spectroscopy available in a laboratory environment. It is 
why very few banks of information exist that would 
identify the absorption regions of NIR molecular 
vibrations compared to IR spectroscopy.  However, 
with chemometrics, precise and quality data can be 
obtained by correlating multiple values of absorbance to 
identify and quantify a component. Instead of 
employing 1 peak to quantify a component, the 
variation of many peaks is what correlates the 
information [5].  NIR standards and references are 
required to help multivariate analyses link spectral 
variations with the sought information (i.e. component 
type and concentration in a complex mixture). 
 
Many types of chemometrics can be developed, and 
each will yield its own type of information. The key is 
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to select one that gives the best and most robust 
prediction model. These chemometric models can be 
divided into 2 main classes: qualitative and quantitative.  
 
No direct quantities are measured with qualitative 
chemometrics. Qualitative analysis provides mainly 
categorical information; this means that it assesses 
whether the analyzed process passes or fails quality 
control norms. For example, in a pharmaceutical mixing 
unit operation, it can determine if the quality of the 
blend is acceptable before releasing the latter to the next 
production step. Many of these qualitative analyses rely 
on the comparison of each spectrum acquired during in-
line monitoring to a set of reference samples known to 
be homogeneous and that have the same formulation. 
SIMCA or PC-MBEST methods are such types of 
analysis and have been investigated by El-Hagrasy et al. 
[6]. Many other kinds of comparison computations have 
also been developed for certain applications [7,8]. 
 
Blanco et al.  [9] compared different types of qualitative 
NIR spectroscopy analyses for pharmaceutical blend 
monitoring. In their study, 3 types of blend 
homogeneity indicators were investigated: (a) spectral 
dissimilarity through the computation of vectorial 
distances; (b) mean standard deviations of 3 or 6 
consecutive spectra; and (c) the mean square of 
differences. The added advantage of the latter 2 
methods resides in the fact that they are independent of 
the formulation. Indeed, Equations (b) and (c) only 
calculate consecutive variance of the spectra acquired 
in-line and do not require a reference set. The downside 
is that there is no information about the identity or 
quantity of the product being mixed that a qualitative 
dissimilarity method would provide. 
 
In each type of analysis, one fact remains constant: the 
need for pre-process data prior to any analysis. This fact 
was highlighted by El-Hagrasy et al. [10] in Part 1 of 
their study. The need comes from phenomena typically 
occurring with reflectance spectroscopy in PAT NIR 
applications. Reflectance spectroscopy uses wavelength 
intensity reflected by the sample to provide an 
absorbance spectrum. The intensity reflected depends 
on the intensity emitted, the absorbance of the sample 
and the light-scattering effect of the sample, which is 
mostly due to particle size and could be the subject of a 
modeling study [11]. However, in most NIR analyses, it 
is an unwanted effect and must be removed to highlight 
chemical information for subsequent analysis. It 
requires a baseline correction pre-process, and many 
algorithms can be tried to perform it: first and second 

derivative (Savitzky-Golay (SG) [12] or GAP [13]), 
multivariate scatter correction, standard normal variate 
or orthogonal signal correction.  
 

This study, conducted by the Université de Sherbrooke 
within the framework of collaboration with the 
Technology Services of Wyeth Pharmaceuticals, was 
aimed at evaluating methods for efficient blend 
homogeneity determination by both qualitative and 
quantitative chemometrics. The methods were applied 
on a real pharmaceutical formulation made of 16 
ingredients. The pharmaceutical manufacturing industry 
produces such complex formulations and faces similar 
challenges. The methods developed need to be rugged 
for the production floor but flexible enough for the 
ever-moving state of formulations. The study presented 
here compares different kinds of qualitative blend 
homogeneity analyses in small-scale lab production 
with a nominal 1-ft3 (about 30-L) size V-blender.  
 
 

2  Experimental set-up 
We investigated a Wyeth proprietary vitamin formulation 
containing 16 different ingredients; the exact formulation is 
proprietary information, but a quick overview of the 
formulation investigated can be seen in Table 1. Notice that 
the first 8 ingredients comprise over 80 wt% of the total 
formulation. Consequently, several ingredients have 
considerably low concentrations (under 1 wt%) and may 
not be visible with the sensitivity provided by the NIR 
system. 
 
The NIR system, a MEMS-based spectrometer, gives 
spectral coverage of 1,350 to 1,800 nm and an acquisition 
time of less than 100 ms. The measuring probe provides 
40-mm spot size, and penetration of the sample is 
estimated at about 1 mm. The instrument is installed 
directly on the V-blender, and a sapphire window is 
mounted on the cover of the V-blender at the spot where 
the NIR probe makes the NIR reflectance measurement. 
The system communicates with a laptop computer through 
a Wi-Fi wireless connection and can be trigger-operated to 
automatically acquire a NIR spectrum at a specified point 
in the rotation time-space. The trigger activates NIR 
acquisition when the blender is upside down with powder 
fully covering the V-blender’s cover. The powder is 
considered to be in a static state when powder analysis is 
performed. Each rotation triggers an acquisition, and each 
acquisition generates 4 NIR spectra averaged in a single 
one for a total acquisition time of 400 ms, excluding 
software integration. This averaging helps in increasing the 
signal-to-noise ratio.  
 

3  Methodology 
 
To best model a typical production batch, the laboratory 1-
ft³ scale batches in this study underwent the same 
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manufacturing procedure as production batches except that 
no side-mixing was done. In other words, entire vitamin 
formula ingredients were added to the V-blender 
separately, creating a maximum state of segregation before 
any mixing.  
 
The experimental runs were performed according to the 
following methodology: A first batch with a mixing time 
of 15 min was produced and monitored with NIR 
technology. A preliminary blending curve was established 
with simple qualitative analysis. It served to set the 2 other 
blending times at 69 s and 23 s, respectively. The 
procedure was undertaken to ensure 3 batches with a 
different homogeneity state. Since the 1-ft³ V-blender 
rotates at a speed of ± 26 rpm, the number of rotations for 
each batch was 380, 30 and 10, respectively.  The same 
number of spectra can be expected for each run. In the 
following pages, the 3 batches are referred to and reported 
by their run number: 
 
Run #1 = 15-min blending time = 380 rotations; 

Run #2 = 69-s blending time = 30 rotations; 

Run #3 = 23-s blending time = 10 rotations. 

After the completion of each batch, a typical sample thief 
(see Figure 1) was disposed to acquire 10 samples at 
different locations of the V-blender’s volume. It is known 
that a thief sampling method can induce a bias in the 
results, but this set-up was selected as a reference because 
it is still generally accepted in production for blend 
homogeneity determination by most pharmaceutical 
manufacturers. The 10 sampling locations are shown in 
Figure 2. Each batch was discarded after sampling because 
it was assumed that the samples might remove 
considerable amounts of low-concentration APIs in non-
homogenized batches.  
 
The samples were then sent to the Quality Assurance 
Vitamin Laboratory of Wyeth Pharmaceuticals where the 8 
targeted ingredients were quantitated by standard lab 
methods such as high-performance liquid chromatography 
and titration.  
 

The thief sample locations can be seen in Figure 2. 
They are numbered from 1A to 5B. This figure 
illustrates the lab results for Vitamin C. The trend 
shown in Figure 2 is typical, and it was observed for 
each quantified component. For each batch and for each 
component, mass balance closure was 100±5%.  
Consequently, it can be concluded that the samples 
taken were representative of the whole batch. 

 

 
Figure 1: Sample thief deployed in this study 

 
Reference homogeneity analysis was undertaken with 
the RSDs of concentrations for each component 
quantified and for each batch. The RSDs were then 
plotted versus the number of rotations to draw the 
blending curve: see Figure 2. Regression can be used to 
approximate the actual time required to achieve a 
homogeneous state where every component is below 
5% RSD; that is the homogeneity criteria recommended 
by BUWG. However, the type of regression for optimal 
identification of the point where blending RSD goes 
below 5% is unknown. With exponential regression, 
blending time estimated from lab analysis was 126 
rotations, or 4 min 50 s, but the blending curve may 
also be simply linear between run #2 and run #3 and 
then stable until the RSD values of run #1. In that case, 
the necessary blending time to reach an acceptable 
mixing time would be just below 50 rotations.
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Table 1: Quantified components and their gravimetric concentration value (8 out of 16 ingredients) 

Compound Range (wt%) 
Vitamin C 40-50 wt% 
Vitamin E 1-5 wt% 

Calcium (Mineral) 1-5 wt% 
Vitamin B6 1-5 wt% 
Vitamin B3 5-10 wt% 
Vitamin B2 1-5 wt% 
Vitamin B1 1-5 wt% 

Microcrystalline Cellulose  (MCC) 10-15 wt% 
Total ± 80wt% 

 

 
Figure 2: Blend analysis of Vitamin C 
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Figure 3: Blending curve from laboratory analysis 

 
 

4 NIR qualitative results and discussion 
Two types of qualitative analyses were investigated in 
this study. The 2 selected qualitative methods have 
different advantages and disadvantages, but are similar 
in a way that no value of weight concentration of any 
component is ever predicted. The qualitative methods 
investigated are: spectral variance analysis and distance 
analysis with Hotelling T². 
 

4.1 Spectral variance analysis 
Spectral variance analysis has the advantage of being 
independent of the product formulation, meaning that it 
can be applied quickly to any product formulation. It 
eliminates the need for a reference to determine blend 
homogeneity and thus removes a critical step that may 
induce significant error with other types of analyses. 
However, it has the disadvantage of only evaluating the 
time beyond which the mixture composition does not 
change. There is no information about the components 
of the formula or their concentrations. The minimum 
variance obtained when the process has reached 
stability should correspond to the repeatability error of 

the instrument if the formula is perfectly mixed.  Many 
algorithms calculate spectral variance. Some of these 
algorithms were used in the course of this study, and 
the results of their application have been compared 
between each other to investigate which one could most 
accurately identify the mixing endpoint in accordance 
with the laboratory analysis.   

 

The following formulas monitor the variance of 2 or 3 
consecutives spectra. Equation 1 calculates spectral 
variance as defined by Blanco et al. [9]. Equation 2 is a 
slightly modified version of Equation 1, with the 
exception that the value of Equation 2 will always be 
higher than that of Equation 1. Equation 3 monitors the 
standard deviation of 3 consecutive spectra at every 
wavelength and then computes the average. The results 
of these 3 equations applied to the analysis of run #1 are 
shown in Figures 3 to 5. 
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Equation 3: Formula for moving block standard 
deviation 

 
Where: 
N = the number of scanned wavelengths 
Ai: the absorbance value at wavelength “i” 
t: time or iteration of mixing 
σ3: standard deviation of 3 consecutive absorbance 
values. 
 
To remove the light-scattering effect during the 15-min 
blending time, pre-treatment was applied to the spectra 
prior to analysis. A SG first-derivative pre-treatment 
with 15 points was chosen to remove the light-
scattering effect and highlight chemical differences. 
Note that to maintain the advantage of spectral variance 
analysis, data pre-treatment, such as unit scaling, 
normalization and mean centering, could not be 
performed as they require knowledge of the mean and 

standard deviation of the whole data set prior to 
analysis. Note also that in Figures 3 to 5, the values are 
normalized between 0 and 100 to facilitate comparison 
between the different types of analysis.  
 
Spectral variance analysis with Equations 1 and 3 
seems to underestimate the blend time required to 
achieve homogeneity when compared to the laboratory 
results. Indeed, they predict that stability can be reached 
after only 30 rotations, which may be due to a lack of 
sensitivity of the formula. Sensitivity may be improved 
by Equation 2. In this variance calculation formula, the 
absorbance values are squared before being subtracted. 
It results in increased sensitivity of the formula to any 
spectral differences. The formula has been developed 
during this study and is not found in the open literature. 
Figure 3 using Equation 2 shows a necessary blending 
time of at least 50 rotations, but also strong variation at 
100 rotations and higher; the latter suggests over-
blending.   

The distance from a fixed reference can also be an 
alternative to Equations 1 to 3. In this kind of spectral 
variance, Hotelling T² distance is computed with the 
scores of principal component analysis (PCA). The 
reference selected here is simply the scan of 99% 
‘blank’ and would be the same for the analysis of any 
formulation. The stability of distance is the criterion 
investigated not the value of distance itself. Therefore, 
statistical process control rules must determine the 
stability of the signal to thus determine the mixing 
endpoint. The result in Figure 6 reveals a similar trend 
than other spectral variance analyses, that is, a steep 
increase for the first 50 rotations, followed by a slow 
decrease of variance for rotations 51 to about 125. This 
reveals 2 distinct mixing steps, a first fast one followed 
by a second slower one. See the next section for more 
information about the computation of Hotelling T² 
distance. 
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Figure 4: Spectral variance analysis using Equation 2 
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Figure 5: Spectral variance analysis using Equation 1 
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Figure 6: Spectral variance analysis using Equation 3 

 

 
Figure 7: Distance analysis used as a spectral variance method 
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4.2  Distance analysis with Hotelling T² 
The idea behind distance analysis is to compare every 
newly-acquired spectrum during a batch with a 
reference group of spectra. This reference group must 
be carefully chosen to represent an homogeneous state 
of the studied formula. A dimensionless distance value 
is then computed between the newly-acquired spectrum 
and the reference group. When that distance is less than 
a pre-defined limit value, the blend is homogeneous and 
the mixing process can be stopped.  

Many types of mathematical tools can compute the 
distance between the reference group and the newly-
acquired spectrum. For instance, the Mahalanobis 
distance is such a mathematical tool; it was first 
introduced in 1936 [14]. This tool assigns a different 
weight to every variable; in our case, every wavelength. 
The reference group is first described in vector space, 
and variables with the most significant variations are 
assigned a weight of greater magnitude in the analysis. 
The Hotelling T² distance investigated in this study is 
similar to Mahalanobis distance but does not use a co-
variance matrix. It performs best when applied to scores 

of the variables after PCA. The distance value is 
computed by Equations 4 to 7. 

 

This analysis provides additional information when 
compared to spectral variance since it can also assess, 
to some extent, whether the mixture contains the 
measured ingredients at the target concentrations. 
However, the challenge resides in reference selection. 
The reference should be able to model the noise present 
in the production environment and the variation from 
batch to batch throughout the year. The need for a 
homogeneous reference is a disadvantage of this 
analysis when compared to the previous qualitative 
analysis of spectral variance presented earlier since a 
new reference will be required for every product 
formulation targeted. Furthermore, the reference will 
need to be updated frequently if a raw material supplier 
changes. 
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With 
• Ti²: Hotelling T² value of spectrum at time or 

increment “i” 
• i: time or increment of data acquisition 
• ta: score value of principal component “a”  
• at : mean value of principal component “a” for 

all ta,n of the reference group 
• N: number of observations in the training set 

(reference group) 

• A: total number of principal components (PCs) 
• Fcritical: F distribution critical value with A(v1) 

and N-A(v2) degrees of freedom at “p” 
• T²critical: limit value of the confidence interval. 
 

In our study, the reference selected was scans of the 
sample thieves from run #1. The reference group was 
selected because run #1 was proven homogeneous from 
laboratory reference analyses. Figure 7 illustrates 
distance analysis with the reference group selected. In 
this figure, the distance value of each NIR spectrum (1 
per turn) is plotted versus its rotation number. The red 
and green lines are the confidence intervals determined 
by MVDA software. A spectrum with a distance value 
higher than 17.01 (red line) should have a 99% chance 
of being different from the reference. In the same way, 
a spectrum with a value higher than 12.21 (green line) 
should have a 95% chance of being different from the 
reference. Notice that the Y axis is in logarithmic scale. 

The data used to obtain Figure 7 have been pre-
processed with a SG first-derivative with 15 points. 
Distance analysis predicts a minimum blending time of 
58 rotations to achieve distance values consistently 
below the 95% confidence value; this is similar to the 
result obtained by spectral variance analysis with 
Equation 2. However, as in analysis of variance, it can 
be seen that the mix seems to shift at the 100th rotation 
and to stabilize afterwards, suggesting an over-blend or 
a bias of the reference. Note that this over-blend or bias 
is mild since the value just barely exits the 99% 
confidence interval. 
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Figure 8: Distance analysis with Hotelling T² distance on PCA scores of run #1 with T2
critical(95%, Green line) = 

12.21 and T2
critical(99%, Red line) = 17.01 
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5 Conclusions 
Two types of blend homogeneity analyses are presented 
in this study, each having its own strengths and 
weaknesses. However, in each case, a tremendous 
amount of information is acquired when compared to 
current sample thief analysis and, consequently, the 
level of confidence for the results is greatly improved. 
In addition, this information can be obtained in real-
time once appropriate chemometric models are 
developed. This represents a huge time saving when 
compared to laboratory analysis that can take hours to 
days to perform. It is expected that any one of the 
presented NIR analyses may be beneficial on many 
aspects of pharmaceutical blending: 

• In real-time quality monitoring of current 
manufacturing batches. 

• In improving process efficiency and performance 
by selecting adequate process parameters and 
blending time. 

• In quality by design and design space definition 
initiatives when developing and/or validating 
blending processes of new formulations. 

 

When comparing the results of the 2 types of analyses 
with the referenced laboratory methods, it seems that 
some spectral variance analyses may underestimate the 
blend time required to achieve optimum homogeneity, 
Equations 1 and 3 in this study. With Equation 2, the 
mixing endpoint could be considered at around 50 

rotations. This would correspond well with the lab data 
if a linear regression of the RSD points is assumed. 
 
However, when using distance analysis for spectral 
variance, stability seems to be achieved at about 120 
rotations, which would correspond more closely to the 
lab data blending curve if an exponential curve is 
assumed. It is concluded that Equation 2 outperforms 
Equations 1 and 3, and that it can clearly detect macro-
mixing. This indicator can be considered sufficient for 
simple formulas where micro-mixing is less critical. 
Distance analysis for spectral variance could be more 
efficient in detecting micro-mixing. It is also noted that 
each spectral variance analysis should be investigated 
in conjunction with a statistical process control method 
(SPC) to objectively determine the mixing endpoint.  

In the distance from a homogeneous reference analysis, 
it seems that the noise or baseline effect present in the 
mixing process is not replicated during reference scans 
of thief samples, thus inducing a small bias. This again 
highlights the fact that reference selection is a critical 
step for such analyses and should be done with spectra 
acquired during the target process over more than 1 
batch.  

The type of NIR analysis should be selected by the 
user, depending on what type of information is required 
and the time available to construct the model. Table 2 
presents the pros and cons of each type of NIR analysis 
investigated. The next step of this investigation is to 
develop a quantitative model and to apply these 
methods to commercial and full-scale V-blender lots. 

 
 
 

Table 2: Comparative study of NIR blend analysis of this study 

Qualitative study 
Variance study Distance from homogeneous reference study 

Pros 
• Quick implementation for every formula 
• Diminishes errors due to reference selection 
• Spectral pre-process less critical 

Pros 
• Precise information about blending state 
• Can detect wrong components or wrong concentrations 
• Moderate modeling effort required 

Cons 
• No information about component concentrations 
• No information about types of components 
• Can slightly underestimate blending time 
• Should be used with statistical process control rules 

Cons 
• No information about component concentrations 
• Spectral pre-process is critical 
• Reference is critical 
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