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Abstract: This paper presents a new method based on Fluctuationtss$heorem that was proven recently
for getting the numerical solutions to the Ordinary Diffieial Equations over appropriately defined Hilbert
Spaces. Approximations to the solution are evaluated atiessef discrete points. These points are con-
structed as the eigenvalues of the independent variablexmepresentation restricted to ardimensional
subspace of the Hilbert Space under consideration. Thezippated solution is written in the form of an
n—th degree polynomial of the independent variable. The owkncoefficients are found by setting up a
system of linear equations such that this solution satisifiesnitial condition and the differential equation at
the grid points. The numerical quality of the solution carifmeased by taking greater valuesnof
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1

An important element in the investigation of many
physical systems is the mathematical modeling in-
volving the constructions which are sufficiently cor-
rect descriptions. The handling of these formulae
should not be too complicated. Differential equations
arise in almost everywhere when we concern with the
dynamical behavior of the system under considera-
tion. These may be either ordinary or partial differ-
ential equations depending on the level of the multi-
variance in the system. Here we focus on the case of
univariance, and therefore, ordinary differential equa-
tions. Despite this may be considered too simple, our
main purpose is the methodology, and in a heuristic
point of view it is better to start with the simplest case
to construct a strong basis for a future theory. Al-
though there is a huge knowledge accumulation about
ordinary differential equations, the method we are try-
ing to develop here seems to have a great capabil-
ity of rapid numerical convergence. Despite the ex-
istence of a lot of clear and powerful methods to get
the solutions, there are rather limited number of ana-
lytical approaches containing finite number of manip-
ulations, in other words, exact solutions to the ordi-
nary differential equations under consideration. This
urged scientists to develop mostly iterative numerical
solutions.[1, 2]

Fluctuations arise in every probabilistic event and
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somehow describe the rather random plus or minus
deviations from the means. In these cases, the indi-
vidual components’ behaviors can not be determined
in the framework of causality. Instead, the evolution
of the probability can be determined. Amongst the
areas where the fluctuations gain a lot of importance,
Quantum Mechanics and Non-equilibrium Statistical
Mechanics, can be primarily considered. Our purpose
is not to get into the details of the fluctuations and their
roles in these kinds of phenomena here. Instead, we
will deal with the case of fluctuationlessness in math-
ematical sense. We will work in an appropriately cho-
sen Hilbert Space throughout the paper.

This paper is organized as follows: In the second
section Fluctuationlessness Theorem, which is needed
for this work, is explained. The third section is de-
voted the usage of this theorem in humerical solution
for the first order linear ODEs for rather illustration.
The fourth section covers the implementations pre-
sented in tables comparatively. The fifth section com-
pletes the paper via concluding remarks.

2 Fluctuationlessness Theorem

We consider the Hilbert Spadé on univariate func-
tions which are analytic and therefore square inte-
grable on a given interval as the main space and focus
on its subspacét,, spanned by: orthonormal func-
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tions uy (x) ,us (), ..., up (x). We define the inner
product of two functionsf, g € H as

b
(f.9)= [ dow@f@e@. @
wherew(z) is a given weight function. We can ex-
press a functiog(x) in H,, as a linear combination of
the functionsu; (z), us (2), ..., uy, (z) @s

g(x) = zn:giuz' (z) (2)
=1

where the coefficientg;’s are real constants and de-
pend on the structure of the functigriz). This de-
pendency can be determined by the use of the or-
thonormality property of the basis functions. There-
fore we can calculate the inner productgfandg(z)

as follows:

(uk, 9)

(zg) S g ()

=1 =1

> gibki=gr, 1<k<n (3
=1

Substituting this result into (2) we obtain

g9 () Zuz () (ui, g)
i=1

S Pg(z)=PMg(x) (&)
=1

Here P, is the integral operator which projects to the
subspace spanned by the basis functiofiz). The
operator P(") projects to then-dimensional space
spanned by the functions (z), ...,u, (x). The oper-
ator P() becomes unit operator when it acts on the
subspace spanned by the basis functiopgz), ...,
u,, (), otherwiseP™ projects from to this sub-
space.

Now we define a new operatarwhich multiplies
its operand byr and its domain ig{. The action of
this operator on a function frorK,, can be expressed
as follows.

Zg () = gjiuj(z) =2PMg(z)  (5)
Jj=1

As we can see from this equation, although the func-
tion P(Mg(z) is in the space spanned by the basis
functionsu, (), ..., un (x), the function formed by
multiplying this function withz may not be in this
space. In those cases,operator will cause a space
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extension. To avoid from this situation, we will work
with P("7 instead ofP(™ 7. In this case we obtain

n

> g Py, (x)

j=1
PMEPMg(x) 6)

If we denote the operator which is the restrictionzof
from H,, to H,, by Z,., and define as,

Bres = pzpn)

P™zg(x)

()

then we can construct its matrix representation by fol-
lowing standard procedures.
We define a functiom(x) via

h(z) = PMzP™ =3~ g, PMEPMy; (z)  (8)
j=1

and see thal(x) is in the space spanned by the func-
tionsu; (x), ug(x), ...,un(z). Therefore we can write

h(z) = i hrug () 9)
k=1

and
Z hrug(x) = Zng(”)fP(")uj (x) (10)
k=1 j=1

which implies
n
hi=>" (ui,P(")fP(”)uj) gj, 1<i<n (11)
j=1
It is better to express the above relation in terms of
cartesian vectors. We define

g=lg1...00)", h=[h...h)", (12

X(”) —

1]

-gn
(ui,P<">§P<”>uj), 1<ij<n (13)

So equation (11) can be rewritten in a compact form
by these matrices and vectors as follows:

h=X"g (14)

Here the matrixX(™) is the matrix representation of
the operatotz,..; from H,, to H,,. This matrix maps
from the n—dimensional cartesian spaég, to the
same space.

Now we can write the following equation for the
operatorz.

z

~

= PMEP™ 4 | — P| 3P™

~

+ PO [T P 4 [T P™] 3 [T P
(15)
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We callZ y;,,. for the part

[[A_ p(n)} zpm 4 pz [f_ P(n)}
[f— P(’ﬂ z [f— P(")}

i'\fluc

+ (16)

and the operatof now can be written as the sum of
Tres andfﬁﬂuc.

The operatov[f — P(”)] approaches to operator
asn goes to infinity. The matrix representation of this

Hencefis an algebraic operator in terms®fand its
fluctuationlessness approximation can be given as

P f(@res) = £ (PMEP™)

The matrix representation which is the counterpart of
this approximation is written as follows

(19)

M ~ f (X<">) (20)

operator in the space spanned by the basis functions whereM}") stands for the matrix representation of the

ui(x), ..., up(x) is the 0 matrix. However, its infi-
nite matrix representation ifi differs from infinite
zero matrix, although its norm gets smallerrain-

creases. This nonzero behavior can be interpreted as

the interactions betweeH,, and its complementary
companion ovef. The indices of the basis functions
appearing in the operat({lf — P(")} are greater than

n. The orthonormality of the basis functions brings
the oscillations in the variation of these basis func-
tions. As a matter of fact,,, has exactlyn zeros in

the orthogonality domain. This means oscillations be-
tween positive and negative values. The frequency of
these oscillations increasesragrows and this results

in great cancelations amongst the output terms from

the action of[f— P(")} on any function in. In
other words, the image of any function frohd un-

operatorf’s restricted form mapping frorit,, to H,,.
[3,4, 5]

3 Application of the Fluctuationless-
ness Theorem on Numerical Solu-
tion of ODEs

We consider the following first order linear nonhomo-
geneous ordinary differential equation with an initial
condition, for illustrative purposes.

f (@) +ao (2) f (2)
£(0)

We will search for the solution in the interval [di, 1 ].

q(x),
(21)

der this operator fluctuates around zero and somehow We take the space of the square integrable functions as
measures the fluctuations around zero. Hence we call the Hilbert Spacel?. We define the inner product of

this entity “Fluctuation Operator of—th Order”.

The discussions above can be applied on the
square oft also. In this case the matrix representation
of 2%, operator inH,, is not equal to zero matrix and
the matrix representation @#™z |I — P(™) | zpP(")
operator in this space is equal to the subtraction of
the square of the matrix representation/$f)zP(™)
from P("z2P(") hence it is a positive definite en-
tity. This term describes the dominant contribu-
tion coming from the fluctuations. Therefore we

call PMz [f— P(")] zP(™) “Independent Variable’s
First Order Fluctuation Operator”.

The approximations by ignoring the terms which
contain the Fluctuation operator is called ”sictu-
ationlessness Approximation. Therefore we can ex-
press the: operator as

T Bres = PMzPM (17)
in the fluctuationlessness limit. An algebraic multipli-
cation by a function type operatgfris defined via an
analytical functionf(z) on the intervalla, b] as fol-

lows:
(18)

ISBN: 978-960-6766-65-7 164

two functionsg, g- in this space as

1
(91,02) = /0 drw () g (2) g2 (), (22)

wherew (z) is a weight function normalized as fol-
lows:

/Olda:w(a:)zl

We define an orthonormal set of functions as

{ui (#)}2,

Each function in this set is generated from the inde-
pendent se{1,z,2?%,...,2",...}, successively. We
take the first element as

(23)

up () = 1. (24)
Instead of using the independent variablewe will
use the algebraic multiplication operafowhich mul-
tiplies its operand by the independent variahige
throughout the work. The spectrum of this operator
is the closed intervéD, 1]. Therefore it has a con-
tinuous spectrum and there is no multiplicity in any
eigenvalues. For the functioms (), f () andg (z)
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we will respectively usei, f and ¢ which multi- following result.

ply their operands by (=), f () andq (z), respec-

tively. Their spectrums are the continuous intervals T _(n)

OF [0 (i 80 (D 1F (@) (P 00 22 (6 +00(6) £(6) —a (6] (e i = 0

[q ()04 (%), ), rESPectively. They may have = (30)
multiple eigenvalues depending on the structure of the  gjce the eigenvectors are linearly independent the co-
functions. The operatof’ is used for the derivative of  efficients ofx; should vanish. So we can write the
f (z) which multiplies its operand by’ (x). The or- following equations:

dinary differential equation in (21) can be expressed
in terms of the images af; under all these operators F &) +ao (&) F&) —q(&) =0 1<i<n

mentioned above as follows: (31)
PPN R We propose the following structure for the approxi-
(f + aOf) w1 (z) = quy (25) mated solution of the differential equation.
We can express the equation (25) in corresponding n ,
cartesian space by changing each operator by its ma- p(x) =) fir (32)
trix representation and the functien (x) by the unit =0

cartesian vectot; whose only nonzero element is lo-
cated at the first position and has the valuel ofin

other words, lefM, denote the matrix representation
of the operatorg. We can write the following equa- T
tion: f :{fl f"}

[Mf’ + MaOMf} e] = qul, (26)

To find the unknown constangs, (1 <i < n)in (32)
we construct a set of vectors and matrices as follows:

Here the vectors and the matrices are of infinite di T
mension. In order to work on finite dimensional en- a = [ ao (&1) - a0 (§n) }
tities we will use am—dimensional subspac¥,, of

'H spanned by the functions; (z), ua (), ..., up (x)

instead of the spack. Therefore we need to reduce q’ = [ q(&) .. q&) }
the dimension by using x n upperleftmost part of

the related matrices. Hence, we can rewrite (26) as

1 ot
M+ MM ef = MiPel” - (27) e

If we denote the matrix representation of the operator 1 & ... &
7 on the subspack,, asX(™) as we did before, then

we can write the following approximated expressions

by using the Fluctuationlessness Theorem. ag (§1) & 0 e 0

My~ f(x0) (28) K, : : . :
MEZOL) ~ ag (X(n)) 0 0 coeoap (&n) én
MY~ f(x™)

M~ q(X<">) 10 0

The matrixX (™) is symmetric and its spectral repre-
sentation can be written as follows.

n) __ A
X = Z&lexi ; (29) Since all the eigenvalues are distinct, thérs inver-
=1 tible. Thereforef can be found uniquely as

Herex; is the eigenvector with a unit norm of theth .
eigenvalues;. Substituting (28) in (27) we obtain the f=(KiV+VKy)  (g—a) (33)
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4 Implementation

In this section we will give some numerical exam-
ples. For the implementations some linear first or-

The analytical solution for this equation is

y(z) =e

der differential equations are SeleCtEd, their exact and In the fo”owing table we present the ana|ytica| and
numerical solutions are presented in tables compara- numerical solutions we obtained.

tively. The mesh points we used for calculations are

chosen in the interveD, 1] as the eigenvalues of the i | Analytical | Numerical

representation matriX (™) which has the general term 1| 0.910446| 0.910462

formed by the inner product of the functiong«) and 2| 0630318 0.630296

zu;(x), where the indicesand; are between andn

included. We used Mathematica 5.2 for calculations. 3| 0.367879 ) 0.367904
. ; ; . 4| 0.214710| 0.214686

We obtain the results ahgrid points for the solutions

of the differential equations. We work on the space S| 0.148647| 0.148665

that is spanned by the orthonormal vectors _ _
We can observe from this table that, the numerical so-

u(z) = 1 (34) lution is correct up to 4 digits. If we compare this
solution with the previous solution, although the prob-
up(z) = V3(2r-1) lems and the solutions are similar, the accuracy shows
us(z) = V5 (6952 — 6z + 1) a slight difference. This is because of the behavior of
the exponential function. As the absolute value of the
ug(z) = V7 (20553 — 30z% + 12z — 1) power of exponential functions increases, the smooth-
us(z) = 2102* — 42023 + 27022 — 60z + 3 ness of the graph decreases. Therefore the numerical

solution moves away from the exact solution depend-

The representation matrix obtained by the inner prod-
uct of the vectors in (34) is a symmetric, positive def-
inite, 3-banded matrix. The eigenvalues of this matrix
are0.0469, 0.2300, 0.5000, 0.7692 and0.9531. We
will consider the initial value problems throughout the
work.

Ouir first equation is a homogenous linear first or-
der ODE with constant coefficients given as:
y(0) =1 (35)
The analytical solution for this equationgéx) = e*.
Using the methods we developed in the third section,

ing on the power oéxp(x).
Now we will work with the following first order
linear ODE with variable coefficients presented be-

low:

y'(z) +zy(z) =0,
The exact solution for this problem is

y(z) =e

—z2/2

y(0) =1 (37)

We can see the results for the exact and approximated
solutions in the following table.

. ) : i | Analytical | Numerical
we obtained the following results for the numerical
and analytical solutions. 1] 0.998300) 0.998896
2| 0.973725| 0.973730
. . . 3| 0.882497| 0.882493
i | Analytical | Numerical 4| 0743891 | 0.743893
1| 1.0480277| 1.0480289 5| 0634962 | 0.634961
2 | 1.2595636| 1.2595603 : :
i ;?ggﬁ;g ;?ggﬁ;g We observe from this table that the accuracy is of or-
' ' der 5. Therefore we had a good approximation for this
5| 2.5937116| 2.5937127 problem.

Continuing with the first order linear ODEs with

From this table we can see that the approximated and variable coefficients, we will obtain a numerical solu-
the exact functions are almost equal to each other, the tjon for the following problem.

numerical solution is accurate up to 6 digits.
Now, we consider the following first order homo-
genous ODE with constant coefficients.

y(0)=2  (398)

Here the analytical solution ig(x) = 2e**~!. The
table below shows the results for the analytical and

Y (x) + sin(z)y(z) = 0,

y'(x)+2y(x) =0, y(0)=1  (36)
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numerical solutions to the equation (38).

Numerical

1.9977937
1.9476848
1.7695603
1.5092068
1.3130095

Analytical
1.997801058
1.947679782
1.769557902
1.509216170
1.312999357

a b wN P —

It can be seen from this table that the numerical solu-
tion of the problem in (38) has a 4-digit accuracy.

Now we will focus on the nonhomogeneous lin-
ear first order ODEs. The following is an initial value
problem with constant coefficients and the right hand
side of the equation is a constant.

y'(z) +4y(z) =20,  y(0) =2
The exact solution for this equation can be given as

y(x) =5 — 3™,

(39)

We present the numerical and analytical results in the
following table.

i | Analytical | Numerical
1| 251326 | 2.51203
2| 3.80810 | 3.80978
3| 4.59399 | 4.59215
4| 4.86170 | 4.86356
5| 4.93371 | 4.93216

We observe from this table that the numerical solu-
tion to the problem (38 ) is 2-digit accurate. Since the
exact solution contains 4-th power of the exponential
function, the numerical solution showed a slight dif-
ference.

Our last example is with constant coefficients but
the right hand side is a function of

y(0) =1

The analytical solution for this equation is

y'(z) — 4y(z) = cos z, (40)
y(x) = 1 (2164”3 —4cosz + sinm)
17 '

The numerical and analytical results can be seen in the
following table.

i | Analytical | Numerical
1| 1.25798 | 1.29379
2| 2.89361 | 2.85366
3| 8.94937 | 8.99647
4| 26.6677 | 26.6461
5| 55.8175 | 55.8789
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This numerical solution is a 1-digit accuracy to the
problem (40). This accuracy is less than the results we
obtained for the other problems. This may be caused
again by the high power of the exponential function in
the solution, which diminishes the smoothness of the
function.

5 Conclusion

In this work a new method has been developed for an
approximation of the numerical solution to the linear
ODEs by using Fluctuationlessness Theorem. Only
initial value problems were considered in this stage
and the solution was achieved in the interval @f1 ].

The results are considerably satisfactory. However the
structure of the functions in the solution affected the
order of approximation. If the coefficients in the ap-
proximated solution are compared with the Maclaurin
coefficients of the exact solution, the quality of the
approximation can be noticed. This method is an in-
troductory form for the moment, but it will be applied
to higher order initial and boundary value problems.
Also the convergence will be tested for an arbitrary in-
terval|a, b]. It is aimed to solve nonlinear ODEs and
even PDEs numerically by Fluctuationlessness Theo-
rem for the future applications.
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