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Abstract: - In previous works[1,2], carbon dioxide diffusion into n-decane inside cylindrical and square capillary 
tubes was modeled. Two different models were done for each tube and the convective model for the square tube 
depended on the results of the cylindrical one.  For those models, the liquid phase density was always considered 
constant and its value was adjusted from the experimental data of gas-liquid interface position. This approach 
was done using the diffusivities obtained by correlations which modify the infinite dilution diffusion coefficient 
using a thermodynamical factor. Now, the liquid phase density is considered variable on time with perfect 
mixing inside the phase and an effective diffusivity can be determined. This effective diffusivity involves the 
molecular and convective contributions to the global mass transfer. Both interface displacements (inside 
cilyndrical and square tubes) can be modeled using the same model without dependency between their results. 
Also, the liquid phase density vs time is obtained for each displacement. The terms inside the finite difference 
matrix for the liquid phase are not constant, because they depend on the solute concentration and on the liquid 
density. The numerical solution was partially implicit because this matrix was evaluated for the liquid density 
value at the previous time (j) and the concentration terms were evaluated at the present time (j+1), using the 
iterative algorithm developed in [1]. Results showed that the model results, adjusted to the experimental interface 
position values,  predicted effective diffusivities which are variable on time. The effective diffusivity is higher 
for the square capillary tube, as it was expected for the convective effect of the liquid filaments in the tube 
corners. Simulation time (60 min) in this model is considerably higher than simulation time in the previous 
constant density models (6 to 10 min). 
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1   Introduction 
Estimation of mass diffusivities is always a major 
concern for mass transfer processes, because 
correlations are not applicable in all the systems or 
process conditions. To obtain diffusivities by 
experimental methods usually involves mathematical 
simplification, like constant phase density and no 
convective effects [3-5]. On the other hand, fluid 
displacement inside polygonal capillary tubes or cells 
has been studied trying to understand fluid-solid 
interactions in porous media [6-13]. The corners of 
capillary tubes promote fluid movement by a liquid 
filament which rises along the crevice and this 
behavior avoided that displacement experiments in 
polygonal capillary tubes could be used to determine 
molecular diffusivity because a simplified mass 
transfer model deviates from the experimental 
behavior. In this work, experiments with carbon 
dioxide diffusing into liquid n-decane were done, 
with both fluids contained in square and cylindrical 
glass capillary tubes. Experimental gas-liquid 

interface positions at the center of the tube were 
observed and it was found that the interface moves 
faster inside the square capillary tube. A moving 
boundary mass transfer model of this miscible 
displacement is necessary, to determine the 
contribution of the corner presence to an improved 
mass transfer process like the miscible CO2 injection 
in hydrocarbons. Such contribution is determined by 
adjustment of an effective diffusivity which counts 
for molecular and convective mass transfer. 
 
2   Problem Formulation 
 
2.1 Mathematical Model 
 
For a component “i”, the one-dimension continuity 
equations for liquid and gas phases are: [14-16]   
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For the liquid phase, the global mass balance is 
shown in eq.(3) and the total flux n can be related to 
the diffusive flux j. [15] 
 

( )L
L s T

d V
U A

dt
ρ

ρ= −   (3) 

 
ref

iii U nj ρ+ =   (4) 
 
The reference velocity for the phase (Uref) can be 
defined in different ways. One of them, is the average 
mass velocity, and for a binary mixture “i,j” can be 
expressed by: 
 

j j i jmass U n n nU
ρ
ρ ρ ρ

+
= = =∑   (5) 

 
Equation (5) is replaced in equation(4), and defining 
an effective diffusivity, the total flux can be related to 
concentration gradient by the Fick law, eq.(7). The 
thermodynamical factor Q depends on the solute 
concentration. 
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For carbon dioxide, one-dimension continuity 
equations for liquid and gas phases are: [14-16]   
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Equations (8) and (9) are for mass transfer process 
without chemical reaction. Equation (8) includes 
convective effects and the liquid phase is calculated, 
using equation (3). The CO2 mass concentration ρC, 
can be related to mass fraction wC using equation (10)
.  
   CC Lwρ ρ=    (10) 

 
The initial and boundary conditions are in Table 1. 
Making a mass balance for carbon dioxide across the 
moving interface, its position can be determined by 
solving the ordinary differential equation (11). 
[14,17, 18] 
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Following the methodology developed by Illingworth 
and Golosnoy[14], the moving boundaries are 
transformed in fixed ones, by definition of new 
spatial variables u and v. The mass fractions are 
defined by new dependant variables p and q. 
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Table 1. Initial and border conditions 
Gas phase Liquid phase 

0, ini
C Ct y y= = 0, ini

L Lt ρ ρ= =

0, ini
C Ct w w= =

( ), sat
C Cz s t y y= = ( ), sat

C Cz s t w w= =

, ini
CCz L y y= = 0, 0Cwz

z
∂

= =
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The transformed equations inside the phases are (12) 
and (13), and their respective transformed initial and 
boundary conditions are in Table 2.  
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Table 2. Transformed initial and border conditions 

Gas phase Liquid phase 
0, ini

Ct q y= =  0, ini
Ct p w= =  

0, sat
Cv q y= =  1, sat

Cu p w= =  

1, ini
Cv q y= =  0, 0

pu
u
∂

= =
∂

 

 
The transformed interface equation is converted to an 
expression, eq.(14), which conserves solute [14]. 
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For discretisation, the liquid phase equation is written 
in a divergent form, eq.(15) , and it is integrated, eq. 
(16), between the indicated u and t intervals, defined 
according equation (17).  
 

( ) ( )L LL
S L

sp pDU up
t u s u
ρ ρ

ρ
⎛ ⎞∂ ∂∂
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  (15)

 After the first integration equation (16) is 
transformed in eq. (18). For the second integration, 
these are the considerations. For the left side of 
eq.(18), p is considered constant for the u integration 
interval.  

 

     

( )1
2

1
2

1
2

1
2

j
i

j
i

j i

j
i

u t L

u t

u
t

L L
S L

ut

sp
dtdu

t

D pU up dudt
u s u

σ

σ

ρ

ρρ

+
+

−

+ +

−

∂
∂

∂ ∂⎛ ⎞= +⎜ ⎟∂ ∂⎝ ⎠

∫ ∫

∫ ∫
       (16) 

 

       1 1
1 1

2 2
;

2 2
i i i i

i i

u u u uu u+ −
+ −

+ +
= =    (17)

     
 

{ }

( )

( )

1
2

1

1
2

1
2

1 1
2 21

1
2

11 22
1

2

1 1

1
2

i
j j

i

i

i i
j

j

i

ii
i

u

j j j j
L L

u

L L

S L
it

L Lt

S L

p s p s du

D pU p u
s u

dt
D

pU p u
s u

ρ ρ

ρ
ρ

ρ
ρ

+
+

−

+

+ +
+

−

−−

−

+ +

+

− =

⎧ ⎫⎛ ⎞
∂⎪ ⎪⎜ ⎟+⎪ ⎪⎜ ⎟∂⎜ ⎟⎪ ⎪⎝ ⎠

⎨ ⎬
⎛ ⎞⎪ ⎪∂⎜ ⎟⎪ ⎪− +⎜ ⎟∂⎪ ⎪⎜ ⎟
⎝ ⎠⎩ ⎭

∫

∫

(18) 
 
For the right side of eq.(18), p and other time 
functions are considered constant for the t integration 
interval defining the parameter σ (0≤σ≤1). This 
constant value is defined according eq. (19). 
 

( )1 1j j j
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Equation (20)  is the general finite difference scheme 
for the mass fraction in the liquid phase, except for 
the border points. This scheme will be fully implicit 
when σ=1. In our case, it is partially implicit, because  
σ=1 for all the terms except for ρL, where σ=0. For 
the liquid phase density, equation (3)  is discretised 

and the finite difference scheme is shown in eq. (23). 
For the gas phase, the general finite difference 
scheme is the same developed by Illingworth and 
Golosnoy [14]. 
 

( ) ( ) ( ) ( )
( )

( )

( )

1 1 1
1 1 1 1

2 2 2 2

1

1
2

1 1
2 2 1

2

1
2

1 1
2 2 1

2

j j j j j j
i ii i i i

j j

jj j
L L ij j j

S L ji i
i

jj j
L L ij j j

S L ji i
i

p r r p r r

t t

D pU p u
s u

D pU p u
s u

σσ σ
σ σ σ

σ

σσ σ
σ σ σ

σ

ρ
ρ

ρ
ρ

+ + +
+ − + −

+

++ +
++ + +

++ +
+

++ +
−+ + +

+− −
−

⎡ ⎤ ⎡ ⎤− − −⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ =
−

⎧ ⎫⎡ ⎤
∂⎪ ⎪⎢ ⎥+⎪ ⎪⎢ ⎥∂

⎢ ⎥⎪ ⎪⎣ ⎦
⎨ ⎬

⎡ ⎤⎪ ∂⎢ ⎥⎪− +
⎢ ⎥∂⎪
⎢ ⎥⎣ ⎦⎩

⎪
⎪
⎪
⎭

(20) 
 

1 1
2 2

j j j
i i

r s uρ
± ±

=      (21) 

 
 
 

1 1 1j j j j j
L T L T L S TA s A s U A tρ ρ ρ+ + +− = − ∆  (22) 

 

1
12

j j
j L

L j j

s
s s
ρρ +
+=
−

  (23) 

 
This mathematical model in one dimension does not 
consider the real shape of the interface, with a 
meniscus (both tubes) and the filaments in the corners 
of the square tube.(Fig.1) 

    
Fig. 1. Meniscus and filament (square capillary tube) 
 
2.2 Experimental Equipment 
A visualization cell was built and the capillary tube is 
fixed to brass connectors in upper and lower extremes 
of the cell using epoxy glue (Fig. 2). The space 
between the capillary and the cell walls is filled with 
glycerol (99.5%) which has the same refractive index 
than the glass, to avoid distortion by light diffraction. 

Liquid 
filament
Liquid 
filament
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In the capillary lower extreme, a membrane is 
inserted between the tube and the brass connector to 
seal this side during the test. The hydrocarbon (n-
C10: n-Decane) is injected by this extreme, passing a 
syringe through a small hole in the connector and 
penetrating the membrane. The carbon dioxide is 
injected through the upper side at 23.5 ºC and 1480 
kPa (abs) and the recording process begins. The 
camcorder is a Sony mini DV, model DCR-HC42 
with a 12X macro lens, positioned in a way that the 
meniscus can be observed between the marks on the 
capillary (Fig. 3 and 4). The space between marks is 
5 mm, so it is possible to have the calibration 
pixel/mm direct from the test images. Capillary tubes 
are 2 mm inner side (square tube) and 2 mm inner 
diameter (cylindrical tube). 
 

 
Fig.2. Visualization cell 

 
 

3   Problem Solution 
3.1 Mathematical Model Results 
Diffusion coefficients are considered variable in 
liquid phase and constant in gas phase. For DL 
estimation, eq.(24), the thermodynamic factor is 
calculated using activity coefficient estimated by 
Margules with two subscripts and the A parameter for 
this model was determined for a previous model [2]. 
 

  ( )2
1 1L ef

AD D p p
RT

⎡ ⎤= − −⎢ ⎥⎣ ⎦
     (24) 

 
DG is calculated by Wilke and Lee correlation [19]. 
CG is approximated to pure CO2 molar density which 
it is calculated by Pitzer and Sterner equation of state 
[20]. Calculated and experimental data are shown in 
Table 3.  
The partial derivative equation system(12), (13) and 
(14) is discretised and numerically solved by finite 
difference method. The algorithms used are of first 
order accuracy [14]. The space discretisation is done 
with a fixed mesh for gas phase and with three 
different step sizes for liquid phase, the smallest one 

near the interface. The time discretisation is done 
with four different time step sizes, because very small 
time step improves the solution stability but increases 
the simulation time as it was found when the no 
convective model was solved [22]. The finite 
difference solution scheme is partially implicit as it 
was explained before.   

  
Table 3. Data at P=1480 kPa, T=23.5 ºC 
sat
Cy 0.998 

[21] 
DG  
[m2/s] 

5.9.10-7

ini
Cy 1 A  

[kJ/kmol] 
7900 
[2] 

sat
Cw 0.067 

[21] 
ρG  
[kg/m3] 

28.7 

ini
Cw 0 ini

Lρ (nC10 pure)  
[kg/m3] 

680.92 

 
 
3.2 Experimental Results 
Cylindrical and square capillary experimental 
interface positions are shown in figures 3 and 4.  

a)t=0 b)t=60 min 
Fig.3. Displacement inside cylindrical capillary 

 
The experimental results for interface displacement, 
s(t), relative to its initial position, s(0), are compared 
with the results predicted by the mathematical model 
as it is shown in Fig. 5. Experimental interface 
displacement for the square capillaries is larger than 
the displacement for the cylindrical ones. This 
behavior is similar to the reported by other authors, in 
experiments done at different temperature and 
pressure and with other saturated hydrocarbons 

[3,5,6]. Also, Fig. 5 shows that the model results 
represent the interface displacement inside both 
capillary tubes in a satisfactory way. Simulation time 
is 60 min, which is considerably higher than the 
simulation time for the previous models [1,2]. The 
different results for  both capillary tube shapes can be 
observed in the figures 6 and 7.  
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a)t=0 b)t=60 min  
Fig.4. Displacement inside square capillary 

  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
Fig.5. Experimental and model results comparison 

 
 
 
 
 
 
 
 
 
 
 
 
Fig.6. Liquid density - model results comparison 
 
In Fig. 6, a reduction in the liquid density is observed 
inside both capillary tubes, being more drastic for the 
square capillary. It can be explained by the presence 
of the liquid filaments in the corners of the square 
capillary tube, which improve the mixing in the liquid 
phase. A similar reduction is observed for the liquid 
effective diffusivity (Fig.7). However, the effective 

diffusivity in the square capillary tube is considerably  
higher than the diffusivity for diluted solution, 
estimated by Scheibel correlation [23], used in 
previous models [1,2] for diffusivity estimation. Only 
at the end of the experiment, both diffusivities are 
similar for the square capillary tube. This behavior 
can be explained because the driven force is reduced 
by the dissolved CO2 into the hydrocarbon at this 
moment. The improved mixing induced by the 
filaments, may be is also responsible for the higher 
effective diffusivity in the square capillary tubes.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig.7. Effective diffusivity- model results comparison 
 

4   Conclusion 
This more complex mass transfer model, which 
considers both variable liquid diffusion coefficient 
and liquid density, is better to represent interface 
displament in a CO2 diffusion process in liquid n-
C10, inside capillary tubes. The capillary shape 
effects can be observed in the variation in the liquid 
effective diffusivity and in liquid density.  The 
disadvantage against previous simplified models [1,2] 
is the increase in the simulation time.  
 
List of Symbols 
 
AT= mass transfer area, [m2] 
Def= Effective CO2 diffusion coefficient in liquid 
phase, [m2/s]. 
j= Mass diffusive flux, [kg/(m2 s)] 
L= capillary tube lenght, [m]. 
n= Mass total flux, [kg/(m2 s)] 
P= absolute pressure, [kPa] 
R= 8.3144 kJ/kmol K 
s=s(t)= interface position, relative to capillary tube 
bottom [m]. 
US= interface velocity,[m/s]. 
V= Liquid phase volume, [m3] 
T= temperature, [K] 
wC=  CO2 mass fraction in liquid phase, [-]. 
yC=  CO2 mass fraction in gas phase, [-]. 
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Greek letters 
ρk= mass density of “k” phase, [kg/m3]. 
 

Subscripts Superscripts 
L= liquid phase ini= initial 
G= gas phase sat= saturation 
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