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Abstract- Volatility is a central concept in financial 

engineering. It may be simply defined as the standard 

deviation of return values. A frequent modeling assumption is 

that volatility is constant. Unfortunately in many financial 

time series volatility appears to be anything but constant. This 

paper reports the results of an effort in modeling stock market 

volatility as a Generalized Autoregressive Conditional 

Heteroscedastic (GARCH) process.  
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I. INTRODUCTION 

OLATILITY may be simply defined as the standard 

deviation of return values. A frequent modeling 

assumption is that volatility is constant. Unfortunately in many 

financial time series volatility appears to be anything but 

constant. Figure 2 is a plot of 3,916 daily returns of the Kuala 

Lumpur Composite Index (KLCI). Immediately evident are 

the different regions where the daily returns (and therefore 

local volatility) are more and less extreme. This existence of 

the so-called volatility clustering has suggested the need for 

alternative ways to define volatility or to make volatility 

assumptions within a model. Prominent among these 

alternatives is GARCH. 
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Fig. 1  Plot of   KLCI Daily Index 
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Fig. 2 Plot of  KLCI Daily Returns 

 

A GARCH( p, q) model begins with a stationary time series 

ty  with an assumed form  tt cy ε+= .  In GARCH, the 

random variables tε   are allowed to have a dependency 

structure: the conditional distribution tε  of given p previous 
values is Gaussian with mean zero and time indexed, and 

potentially non-constant variances 
2

tσ , i.e., 

( )2t2t1tt ,0N,..., σ≈εεε −− .      The GARCH( p, q) model 

for 
2

tσ  then has the assumed form 

∑ ∑
= =

−− σ+ε+=σ
p

1i

q

1j

2

jtj

2

iti0

2

t baa . The essence of GARCH 

modeling is to estimate all the model parameters;  the time 

series constant c , the volatility constant 0a , the  sa i ' , and 

the sb i ' . Estimation of these p + q + 2 parameters is 

a nonlinear process and is followed by a statistical evaluation 

of their significance. For a typical financial time series, the 

choice of p and q is not intuitive. Experimentation may be 

made with different values of p and q. However, a starting 

point of p = q =1 is often itself an excellent model. 

II. MODELING KLCI  DAILY RETURNS AS  

A GARCH( 1, 1) PROCESS: PRE-ESTIMATION ANALYSES 

The sample consists of 3,916 daily observations of the 

KLCI for August 31, 1990 through August 31, 2005. Its plot 

in Figure 1 exhibits non-stationarity, thus giving the need to 

convert it to a daily returns series. The returns series is 

V 
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, where tp  is the KLCI index at time t.  

Its plot in Figure 2 exhibits stationarity. The ACF and PACF 

plots of   are shown in Figure 3 and Figure 4, respectively. 

Figure 2 shows a pattern of volatility clustering in the return 

series with high amplitude oscillations at several points. The 

highest jump in amplitude is between August 1990 and August 

1994. This clustering yields evidence of the feasibility of 

modeling the conditional variance as a GARCH process.. 

Hence, the Ljung-Box and Engle’s tests were performed to see 

whether the volatility clustering is in fact due to the presence 

of heteroscedasticity in the variance of the series, i.e., to check 

for the presence of the GARCH effect. 
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Fig. 3 ACF of Return Series 
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Fig. 4 PACF of Return Series 

 

The correlation in the return series is checked by examining 

the sample autocorrelation function (ACF) and partial-

autocorrelation (PACF) function under the assumption that no 

autocorrelation ahead of lag zero. Figures 3 and 4 present 

quite similar results. The autocorrelations are significantly 

different from zero at lag 1, 5 and 15, while the partial 

autocorrelations are significant at  lags 4, 6 and 19. Thus  the 

ACF and PACF indicate the presence of autocorrelation 

characteristics of the return series.  
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Fig. 5 ACF of Squared Return Series 

 

Significant correlation in the return series implies the 

existence of correlation in the variance process, and hence a 

justification for a GARCH model. Figure 5 shows correlation 

in the variance process. The ACF seems to die out more 

sluggish starting from lag 2. This result reveals the presence of 

a non-stationary variance process in the return series. 

A. Ljung-Box-Pierce Q-Test (LBQ) 

Under the null hypothesis of no serial correlation, the Q-test 

statistic is asymptotically Chi-Squared (Box, Jenkins and 

Reinsel, 1994). The result of the LBQ test is summarized in 

Table 1. The test is applied for 10, 15, and 20 lags of the ACF 

at the 0.05 level of significance. The results indicate the 

presence of serial correlation in the series. 

 

Table 1: Ljung-Box-Pierce Q-Test on Return Series 

Lags Test Statistic p-value 

10 76.0 0.0000 

15 98.5 0.0000 

20 113.5 0.0000 

 

Results of the application of the  LBQ test on  the squared 

returns (Table 2) for 10, 15, and 20 lags of the ACF at the 0.05 

level of significance indicates the presence of serial 

correlation. 

 

Table 2:   Ljung-Box-Pierce Q-Test on Squared 

Return Series 

Lags Test Statistic p-value 

10 1797.7 0.0000 

15 1935.8 0.0000 

20 1969.3 0.0000 

 

B. Engle’s ARCH Test 

Under the null hypothesis that a series is a random sequence 

of Gaussian disturbances, Engle (1982) showed that the test 

statistic is asymptotically Chi-Squared. The test was applied 

for 10, 15, and 20 lags at the 0.05 level of significance. The 

result shows significant evidence in support of the presence of 

the GARCH effects. 
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Table 3  Engle’s ARCH test 

Lags Test Statistic p-value 

10 1034.0 0.0000 

15 1053.8 0.0000 

20 1062.9 0.0000 

 

III. MODEL  ESTIMATION 

The results in Table 3 has indicated the presence of the 

GARCH effect in the returns series, hence the modeling of the 

series as a GARCH process is warranted. To estimate the 

model parameters the Maximum Likelihood Estimation 

(MLE) was used. . In this case, the baseline GARCH (p,q) 

regression model is defined as: 

 

tt cy ε+=   T1t ,.....=  such that   

( )2t2t1tt ,0N,..., σ≈εεε −− ,           (1) 

 

and  ∑ ∑
= =

−− σ+ε+=σ
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 The equations in (1) and (2) is based on the following 

constraints: 

         

1ba
p

1i

q

1j

2

iji

2

iti <σ+ε∑ ∑
= =

−− ,  0a0 ≥ , 0a i ≥ , 0b j ≥   

 

Table 4 exhibits the results of fitting a GARCH(1,1) to the 

returns series. 

 

Table 4  The Estimated GARCH(1,1) Model Parameters 

Coefficient Value 
Standard 

Error 

t-

Statistic 

c  0.00045 0.00015 2.9775 

0a  1.7943e-006 1.6653e-007 10.7742 

1a  0.89762 0.00382 234.9927 

1b  0.09567 0.00491 19.5039 

 
Hence, a GARCH(1,1) process representing the returns 

KLCI series can simply be expressed as: 

 

tt 00045.0y ε+= ;     

2

1t

2

1t

2

t 09567.089762.00000018.0 −− σ+ε+=σ      (3) 
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Fig. 6 Plot of Innovations, Conditional Standard Deviations 

and Returns of KLCI 

IV. COMPARING RESIDUALS (INNOVATIONS), CONDITIONAL 

STANDARD DEVIATIONS AND RETURNS 

The residuals derived from the fitted model, the conditional 

standard deviations and the observed returns were plotted. In 

Figure 6 the innovations series (top plot) and the returns series 

(bottom plot) exhibit volatility clustering particularly between 

t = 1750 and t = 2250. Further, the sum for the estimated 

parameters 11 ba +  = 0.89762 + 0.0957 is 0.9933, which is 

quite close to the non-stationary boundary given by the 

constraints of equation 2. However, a plot of the standardized 

residuals (residuals divided by their conditional standard 

deviation) in Figure 7 indicates that standardized residuals is 

more stable and the series shows little clustering as compared 

to the plot of innovations in Figure 6. Further, the ACF plot of 

the squared standardized innovations shows that they are not 

significantly different from zero at all lags except for lag 1. 

This indicates no correlation in the squared standardized 

innovations as compared to the plot in Figure 3.  
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Fig. 7 Plot of Standardized Residuals 
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Fig. 8 Plot of the ACF of the Squared Standardized 

Residuals 

 

In order to quantitatively check whether GARCH effects are 

present in the residuals, the LBQ and Engle’s ARCH tests 

were carried out in the series of standardized innovations. The 

results of both tests are given in the Tables 4 and 5. Both tests 

were applied for 10, 15, and 20 lags at the 0.05 level of 

significance. Tables 4 and Table 5 gives evidence of   no serial 

and no GARCH effects in the residuals, respectively. 

  

Table 4:  LBQ test on the the standardized 

innovations 

Lags Test Statistic p-value 

10 18.3070 0.1554 

15 24.9958 0.3353 

20 31.4104 0.4775 

 

Table 5:  Engle’s ARCH test on the standardized 

innovations 

Lags Test Statistic p-value 

10 18.3070 0.1828 

15 24.9958 0.3789 

20 31.4104 0.5331 

 

V. SIMULATION OF KLCI RETURNS SERIES. 

Figure 9 is a plot of the respective values obtained from the 

simulation of a single realization (path) for return series based 

upon the estimated model in Equation (3), its innovations and 

conditional standard deviations. A total of 1,000 observations 

were simulated by assuming that there are 250 trading days 

per year.  
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Fig. 9 Plots of residuals (innovations), conditional standard 

deviation and simulated returns 

VI. COMPARISON OF FORECASTS WITH SIMULATION RETURNS 

The estimated model in Equation (3) was used to compute 

forecasts for the return series for 30 days into the future. 

Figure 10 compares the results from forecasted standard 

deviations of future residuals and its counterpart derived from 

the simulation. The result shows that both forecast and 

simulated standard deviations of the residuals exhibits similar 

results. However, results of forecasted conditional mean of the 

return series compared with the simulated results in Figure in 

11 shows large differences. 
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Fig. 10 Forecast and simulation of the conditional standard 

deviations of residuals (innovations) 
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Fig. 11 Forecast and simulation of the conditional mean of the 

KLCI return series 

VII.FITTING A MODEL TO A SIMULATED RETURN SERIES 

A GARCH(1,1) specification for the variance model was 

used with the  constant term c   given the value of  0 and the  
other parameters  specified as  in Table 6.  

 
Table 6  The Estimated GARCH(1,1) Model 

Parameters 

Parameter Value 

c  0.000 

0a  0.005 

1a  0.300 

1b  0.100 

 

The model is then fitted into a simulated return series, using 

2000 simulated values of the innovations, tε , conditional 

variance, 
2

tσ and returns ty  as a GARCH(1,1) process.  The 

parameters of the simulated return ty  series were then 

estimated and then compared to those of the earlier estimates.  

Table 7 exhibits the coefficients obtained. They are found to 

be quite close to the set of coefficients in Table 6. 

 

Table 7:   The Estimated GARCH(1,1) Model 

Coefficient Value 
Standard 

Error 
t-Statistic 

c  9.0012e-005 0.0020 0.0446 

0a  0.0050 0.0018 2.8393 

1a  0.29872 0.2239 1.3341 

1b  0.08548 0.0275 3.1131 

VIII. CONCLUSION 

This paper reports an effort in modeling stock market 

volatility as a simple GARCH process using a sample of 3,916 

daily observations of the KLCI. Initial test results on the 

returns series indicated a need for modeling them as a 

GARCH process. Tests on the residuals indicate fair 

performance of the estimated model, which is fairly supported 

by the simulation results. 
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