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Abstract: In this paper we discuss methods for 3D reconstruction from a single 2D image using multiple stripe
line projection. The method allows 3D reconstruction in 40 milliseconds, which renders it suitable for on-line
reconstruction with applications into security, manufacturing, medical engineering and entertainment industries.
We start by discussing the mathematical fundamentals of 3D reconstruction and the required post-processing oper-
ations in 3D to render the models suitable for biometric applications such as noise removal, hole filling, smoothing
and mesh subdivision. The incorporation of data acquired as 3D surface scans of human faces into such applica-
tions present particular challenges concerning identification and modelling of features of interest. The challenge
is to accurately and consistently find predefined features in 3D such as the position of the eyes and the tip of the
nose for instance. A method is presented with recognition rates up to 97% and a preliminary sensitivity analysis is
carried out concerning reconstructed and subdivided models.
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1 Introduction

Within our research group we have developed meth-
ods for fast 3D reconstruction using line projection
(e.g. [9], [2]). The method is based on projecting a
pattern of lines on the target surface and processing
the captured 2D image from a single shot into a point
cloud of vertices in 3D space. Once a point cloud is
obtained, it is then triangulated and relevant feature
points on the surface model can be detected for recog-
nition. It is a conceptually simple process but one
that offers a number of interesting challenges. First,
a method to determine the exact correspondences be-
tween projected space and camera space needs to be
determined. Second, a number of post-processing op-
erations are required such as noise removal, hole fill-
ing, smoothing and mesh subdivision. Third, for ob-
ject recognition it is necessary to determine consis-
tent characteristics from the 3D surface; this is nor-
mally defined in terms of feature points but can also
be defined in terms of areas or regions. Fourth, 3D
models must be aligned to a standard pose which also
takes care of scale for robust recognition. Fifth, if the
method is to be applied to other areas such as ani-
mation it is necessary to define methods to achieve
continuity when the 3D model is recorded over the
fourth dimension of time. These challenges are faced
variously in fields such as biometric face recognition,
industrial inspection, reverse engineering and media
applications among others.

This paper by no means describes the depth and

breadth of our research; instead it is our intention only
to highlight some of the approaches taken to those
challenges. We argue that fast 3D reconstruction has
the intrinsic advantage of speed and present the math-
ematical foundations to achieve this. Some recog-
nition algorithms may depend on the density of the
mesh model and we present methods to increase den-
sity allowing a wider range of algorithms to be used
that depend on sampling regions of the mesh. Equally,
higher density meshes can improve recognition meth-
ods that are based on a small set of feature points
as these can be more precisely determined. We also
present a method to align a mesh to a standard pose
such that recognition can proceed from a robust and
consistent set of feature points. We present some pre-
liminary sensitivity analysis on recognition results and
highlight their application into a biometric context.

The paper is structured as follows. In Section 2 we in-
troduce our multiple stripe method for fast 3D recon-
struction. In Section 3 we highlight methods for mesh
post-processing and pose alignment. In Section 4 we
describe our approach to 3D face recognition. Finally,
Section 5 presents a conclusion and highlights areas
of future work.

2 Fast 3D Reconstruction

Our research into 3D scanning has developed a novel
uncoded structured light method [9], which projects
a pattern of evenly-spaced white stripes onto the sub-
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ject, and records the deformation of the stripes in a
video camera placed in a fixed geometric relationship
to the stripe projector. A camera and projector config-
uration is depicted in Fig 1.

Fig 1: Top: The projector and camera axes meet at
the calibration plane which defines the origin of the
coordinate system. Bottom: a physical realisation of

the design.

A detail from a video frame is depicted in Fig 2 (top)
clearly showing the deformed stripes. Our research
has successfully tackled the indexing problem which
is to find the corresponding stripe indices in both im-
age and projector spaces. Even for continuous sur-
faces the problem can be severe as small discontinu-
ities in the object can give rise to un-resolvable ambi-
guities in 3D reconstruction. When there are large dis-
continuities over the object as shown in Fig 2 (bottom,
points a, b and c belong to the same stripe) and these
are distributed at many places the problem is particu-
larly severe.

Despite such difficulties, the advantage of this over
stereo vision methods [7] is that the stripe pattern
provides an explicitly connected mesh of vertices, so
that the polyhedral surface can be rendered without
the need for surface reconstruction algorithms. Also,
a smoothly undulating and featureless surface can
be more easily measured by structured light than by

stereo vision methods. These advantages for single
frame scanning are even more important for 4D appli-
cations such as animation and immersive game play-
ing.

Fig 2: Top, detail from a bitmap, showing the stripes
deforming across the face. Bottom, the indexing

problem due to large discontinuities.

2.1 Mapping image space to system space

Fig 3:The coordinate system is defined in relation to
the projector.

We define a Cartesian coordinate system here called
system space in relation to the projector. In Fig 3
left, the axes are chosen such that: the X-axis coin-
cides with the central projector axis; the XY plane
coincides with the horizontal sheet of light cast by
the projector; and the system origin is at a known dis-
tance Dp from the centre of the projector lens. Each
projected stripe lies in a specific plane that originates
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from the projector, and the position and shape of a
certain stripe in such a plane depend on the surface
it hits. Fig 3 right shows the arrangement of these
planes as viewed down the Y -axis. They are all par-
allel to the Y -axis and their intersections with the Y Z
plane are evenly spaced. To discriminate between the
planes we assign successive indices as shown. The
horizontal plane containing the projection axis has an
index of 0. The distance W between two consecu-
tive stripes on the Y Z plane can be measured and
enables us, for example, to write the point of inter-
section between the Z-axis and a plane with index n
as (0, 0,Wn) in system coordinates. The position of
the camera is fixed in system space with the follow-
ing constraints: (a) the central camera axis points to
the origin of system space; (b) the centre of the cam-
era lens is at point (Dp, 0, Ds) in system space, with
Ds > 0, where Ds is the distance between camera
and projector axes.

Fig 4: the position of a pixel in the image at row r
and column c is transformed to coordinates (v, h) and

then to a point p in system space.

An image is recorded in the sensor plane of the camera
located behind the lens perpendicular to the camera
axis as depicted in Fig 4. The transformation is given
as

v = r − 1
2
(M + 1) and h = c− 1

2
(N + 1) (1)

Since the focal point of the camera is located at
(Dp, 0, Ds) the centre of the sensor plane is located
at c = (Dp + F, 0, Ds) in system space. Here F is
the focal length of the camera, i.e. the distance from
the focal point of the camera to the sensor plane, as
shown in Fig 4. Assuming that each pixel on the sen-
sor plane is a square of size PF × PF , we can write
the coordinates of point p as

p = c + (0,−hPF, vPF ). (2)

We have shown [9] that mapping a pixel (v, h) on
stripe n to its corresponding surface point (x, y, z) can
be written as:

x =
DcvP + Wn(cos θ − vP sin θ)

vP cos θ + sin θ + Wn
Dp

(cos θ − vP sin θ)
(3)

z = Wn(1− x

Dp
) (4)

y = hP (Dc − x cos θ − z sin θ). (5)

Here Dc measures the distance from the focal point
of the camera to the origin. A considerable challenge
is to map the stripe index n from projector to camera
space as pictured in Fig 5 below.

Fig 5: Detecting and mapping stripe indices from
projector to camera space. Different colours mean

different indices.

Fig 6: Top: estimating the point cloud from equations
3–5 and building a triangulated mesh with texture
mapping from the stripe colour scheme. Bottom:

texturing with a colour bitmap.

We have developed a number of successful algorithms
to deal with the mapping as described in [9] and [2].
Once this mapping is achieved, a 3D point cloud is

8th WSEAS International Conference on SIGNAL PROCESSING, COMPUTATIONAL GEOMETRY and ARTIFICIAL VISION (ISCGAV’08) 
                                                                         Rhodes, Greece, August 20-22, 2008

ISSN: 1790-5109 17 ISBN: 978-960-6766-95-4



calculated from equations 3–5 and the output is trian-
gulated using the connectivity of the vertices as de-
picted in Fig 6. Once the surface shape has been
modelled as a polygonal mesh, a texture image can
be overlaid over the mesh either by using the same
striped image or an identical image possibly taken by
a second camera. The final model therefore contains
the (x, y, z) coordinates and their corresponding RGB
(red, green, blue) values for each vertex, and the face
can be visualised as in Fig 6. This shows the model
bitmapped with a sequence of stripe colours, and with
a colour bitmap.

We can process point clouds at different resolutions
by processing white and dark stripes followed by a
sub-division scheme to increase mesh density without
undue loss of accuracy. The resolution depends on
how close together we can pack stripes in the verti-
cal direction, while in the horizontal direction we can
process one vertex per pixel.

Fig 7: Top: sub-pixel estimator to determine the
“true” position of the centre of the stripe. Bottom:

resolution as a function of the distance to the
projector.

In an effort to improve the depth resolution we have
incorporated a sub-pixel estimator. Following [4] and
others we assume that the spread of luminance values
across a recorded stripe in one column conforms ap-
proximately to a Gaussian distribution. We fit such a
profile to a neighbourhood around an identified stripe

pixel, and the “true” position of the stripe in the con-
tinuous pixel space is then chosen as the maximum.
Fig 7 illustrates the basic principle on a small region
of a typical recorded image and the achieved resolu-
tion in depth as a function of the distance to the pro-
jector.

3 Post-Processing & Pose Alignment

We now turn our attention to some of the required
post-processsing operations on the point cloud. These
are appropriate for face processing and relate to the
removal of noise, hole filling, mesh sub-division, and
mesh alignment for recognition. The first operation on
the mesh is to deal with holes in the structure. We use
a bilinear interpolation by navigating the data struc-
ture through following each stripe index in the model.
Once holes are filled in, we apply a Gaussian smooth-
ing algorithm which has the effect of removing most
noise – given that the face is a smooth ondulated struc-
ture. The area of the eyes represent a particular prob-
lem and a good solution for this is to punch an ellip-
tical hole on the position of the eyes (which can be
recovered from texture mapping). Once the holes are
in place, we then apply again a bilinear interpolation
and the final result is the model at the bottom of Fig 7.

The remaining aspect that we would like to com-
ment on relates to sub-division to increase mesh den-
sity. First, a point cloud is generated by processing
the available stripes. Due to the stripe patterns, the
data has a convenient structure to perform all opera-
tions of hole filling, smoothing, and sub-division. The
sub-division algorithms operate along both directions
across and along stripes by using a 4th order polyno-
mial. This process can be repeated indefinitely up to
computer memory constraints, so in principle a mesh
can have any desired density.

Figure 8 highlights some aspects of subdivision. On
the left we processed only the white stripes leading
to a sparse mesh density. On the right, first we have
doubled the mesh density by processing both white
and dark stripes then double again by applying one
step of subdivision across the stripes. Effectively the
model on the right has three extra stripes in between
each original stripe of the left model. It can be noted
that it captures more details on the face which can lead
to a more robust recognition.

Our method to extract features from a face model for
recognition is based on cutting oriented planes from
defined feature points and detecting all points on the
mesh that intercept those planes. We thus, require
pose alignment but this may not be necessary if alter-
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Fig 8: The post-processing pipeline from the top:
noisy model with holes, hole filling, smoothing,

punching eye holes, filled eye holes.

Fig 9: The effects of processing only white stripes
(left) and by processing both white and dark followed

by one subdivision step across stripes.

native feature extraction methods are developed. We
start by detecting face and eyes in 2D through Haar
transforms so the exact eye positions in 2D can be pre-
cisely known. We use the Intel OpenCV libraries for
this task [5]. The assumptions thus are that the 2D eye
positions are known and that the face is upright. The
following iterative method will transform the face to
its standard pose:

1. determine the 3D position of the eyes through
their 2D texture positions

2. search for a point in 3D on the front above eye
positions located at 0.75 times the distance be-
tween the two eyes

3. determine the highest point in 3D below eye po-
sitions, this is an approximation of the tip of the
nose

4. translate the mesh to the tip of the nose and rotate
the mesh to a constant angle between the X-axis
and the point on the front

5. repeat steps 3 and 4 until the position of the tip
of the nose moves less than a set threshold.

This method has proved to work successfully even if
the subject is not directly facing the camera, it has
been tested on images facing over 45 degrees to ei-
ther side so in those cases the 3D model tends to be
more of a profile model.

Figure 10 shows two models of two different subjects
in their automatically normalised pose. Note that the
tips of the nose coincide and that the angle between
the X axis (yellow) and the point on the front are the
same for the two models. The trasnparent green model
allows us to inspect the area around the mouth of the
underneath pink model.
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Fig 10: Pose normalisation: centred at the tip of the
nose with a constant angle between X-axis (yellow)

and a point between the two eye positions.

4 3D Recognition

The theoretical and practical issues related to robust
3D face recognition can be translated to a number of
other applications. Much research has been under-
taken in the area of 2D face recognition [8], [1] while
3D is incipient. It is often said that 3D face recog-
nition has the potential for greater accuracy than 2D
techniques, as 3D is invariant to pose and illumina-
tion and incorporates important face descriptors em-
bedded within the 3D features [1]. The challenges to
improved 3D face recognition for real-time applica-
tions reflect the shortcomings of current methods:

1. the need for fast and accurate 3D sensor technol-
ogy,

2. improved algorithms to take into consideration
variations in size and facial expression, and

3. improved methodology and datasets allowing al-
gorithms to be tested on large databases, thus re-
moving bias from comparative analyses.

Many approaches to 3D face recognition are based
on 2.5D (e.g. [6] and references therein) and most
try to compare scans through registration such as ICP
(iterative closest point estimation) and their variants
[10]. Performing recognition by comparing 3D scans
through registration in this way becomes impractical
for many reasons. First, there are too many data points
leading to exponential time consuming algorithms and
this can only work if one is to search a relatively
small database. Second, there is a practical constraint
on registration, as it works best when models are ac-
quired with scanning devices with the same charac-
teristics. There is also an issue of defining what is a
match in terms of global error between two surfaces
and, perhaps equally important, which exactly are the
data points being used to define a match.

This leads us naturally to feature point extraction as
the most likely solution to 3D recognition. The prob-
lem of 3D recognition can thus be stated as:

1. Define a set of stable measures mi(i =
1, 2, . . . , n) on a 3D scan and build a vector
M = (m1,m2, . . . ,mn)T that uniquely charac-
terises a given face

2. Build a matrix Ω of vectors M where the index
of M points to the identity of the scanned ob-
ject: Ω = (M1,M2, . . . ,Ms)T where s is the
total number of scans in the database

3. Define a method to identify a given scanned
vector M with the most similar vector in the
database (e.g. Principal Components Analysis).

In order to apply this method we start with pose nor-
malisation. Once pose is normalised we already know
a set of initial points namely the position of the tip of
the nose, eyes, and point on the front. We then define a
set of 43 points located in planes parallel to the axes at
the tip of the nose and within geometric relationships
defined by the set of initial points. An example of such
points is depicted in Fig 11 below. Measurements are
taken from such points as distances and ratios in ad-
dition to area, volume, perimeter, and various types of
diameters such as breath and length resulting in a set
of 191 measurements per face model.

Fig 11: Automatically detected feature points on the
face model.

The discussion on recognition presented here is only
related to sensitivity analysis. We wanted to estab-
lished whether or not we could achieve equivalent
recognition rates by using a standard model processed
from the stripe data (white plus dark stripes) as com-
pared with data from a subdivided model. We col-
lected data from 69 subjects, from each subject 6 shots
were taken: frontal, smiley, looking slightly to one
side (then this sequence was repeated). We used the
first set for enrolment by including in the database
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only the frontal and smiley models at standard and
subdivided mesh densities. Thus, every subject ap-
pears in the database 4 times.

We then used the remaining set of data for testing pur-
poses, only testing the frontal models at both densities
using Principal Components Analysis. Two important
observations were made that require further investiga-
tion. All subdivided models had their closest match to
another subdivided model while the standard model
had closest match to both. We had 2/69 mismatches
for subdivided (97% accuracy) while 8/69 for stan-
dard models (88%). The accuracy obviously reflects
the particular set of measurements taken and the rela-
tive influence of a subset on overall performance. De-
spite lower accuracy rate, the standard models cannot
be discarded at this stage as it suggests that it can be-
come more robust in the long run for large databases.

5 Conclusions

This paper has discussed methods for incorporating
data acquired as 3D surface scans of human faces into
biometric applications. We start by introducing our
current method of fast 3D acquisition using multiple
stripes which allows 3D reconstruction from a single
2D video frame. This lends the technique suitable for
capturing moving objects such as a moving face in
multimedia applications. We then discussed methods
for noise removal, hole filling, mesh smoothing and
subdivision.

Our method includes automatically eye detection in
2D and pose normalisation in 3D based on facial and
scanning constraints. A method for automatically de-
tecting feature points on a face model was presented
in conjunction with feature based recognition using
PCA. Sensitivity analysis was conducted on both stan-
dard and subdivided face models which calls for fur-
ther investigation on the relative influence of mea-
sured parameters on recognition rates. Research is
under way and results will be published in the near
future.
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