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Abstract: - In the face of a practical chaotic system whose mathematical model is not available, because of 

unknown input factors and unavailable dynamical equations, using time series approach can be useful. 

Therefore, space state reconstruction of a chaotic system by using a scalar time series from its output 

observations is considered for obtaining information on this system from its one-dimensional signal. In this 

paper a method for estimation of an appropriate embedding dimension for phase space reconstruction of 

underlying high dimensional  system from the observed chaotic time series by a Distributed Time Delay 

Neural Network (DTDNN) is proposed. Various methods for embedding dimension estimation have been 

previously studied from which False Nearest Neighbours (FNN) is the most conventional method, however the 

performance of this method for the high dimensional chaotic systems is not acceptable. The proposed 

method is applied to high dimensional chaotic systems such as approximated Mackey-Glass time 

series with dimensions 7, 13 and data set D1 from the Santa Fe institute. Our method for embedding 

dimension estimation has been compared with the conventional estimation method, and their comparisons 

showed the effectiveness of the proposed methodology. The results show that this method is feasible and fit 

for the embedding dimension estimation of high-dimensional chaotic systems. 

 

Key-Words: - Embedding dimension, High dimensional chaotic time series, False nearest neighbors, 

Distributed time delay neural network. 

 

1   Introduction 
Observation of chaos has been reported in numerous 

fields such as in physics, laser technology, 

chemistry, biology, and etc. Hence, in last decade 

there have been successful attempts by many 

researchers to apply a branch of nonlinear analysis, 

chaos theory, to model and study highly irregular 

signals arising in different fields of natural sciences.                                

Nonlinear time series analysis is a powerful tool for 

obtaining information on the nonlinear dynamical 

system from their one-dimensional signals. The 

basic idea of nonlinear time series analysis is that a 

complex system can be described with a strange 

attractor. This idea is called embedding, which has 

been proved by Takens [1]. The embedding theorem 

of Takens offers the concept of embedding a single 

variable series in a multi dimensional phase space to 

represent the underlining dynamics. By examining a 

single as a geometric object in its state space, new 

types of information about the underlining system 

become available to the practitioner. The embedding 

theorem guarantees that the space of time delayed 

vectors with sufficiently large dimension will 

capture the structure of original phase space. 

However, the embedding theorem did not directly 

answer how to choose embedding dimension m  and 

delay timeτ .Therefore determination of the optimal 

embedding parameters for phase space 

reconstruction of nonlinear dynamics has been 

studied as an important problem. There have been 

many discussions on how to estimate the appropriate 

embedding dimension from a scalar time series. 

Three basic methods are used to choose the optimal 

embedding dimension: 

      1) Correlation theorem is employed to estimate 

appropriate dimension .m By increasing the 

embedding dimension used for the computation one 

notes an appropriate dimension m  when the value of 

the correlation dimension stops changing, in other 

words, the concept of the correlation function is that 

a seemingly irregular phenomenon arising from 

deterministic dynamics will have a limited number 

of degrees of freedom equal to the smallest number 

of first order differential equations that capture the 

most important features of dynamics. This method is 

often very data intensive, certainly subjective, and 

time-consuming for computation.  
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    2) The idea of singular system analysis that 

determines an appropriate embedding dimension m  

directly from the raw time series. It provides its 

convenience for the further analysis of the given 

system. Numerical experience, however, led several 

authors [2-3] to express some doubts about 

reliability of singular system analysis in the attractor 

reconstruction. Singular value decomposition 

(SVD), the heart of singular system analysis and by 

nature a liner method may cause to misleading 

technique when it is used in nonlinear dynamics 

studies that reconstruction parameters are time-delay 

and embedding dimension.  

     3) The method of false nearest neighbours (FNN) 

that is a geometric approach for the estimation of the 

sufficient embedding dimension. It is based on the 

property of chaotic attractors in that their orbits 

should not intersect or overlap with each other. Such 

an intersection or overlap may result when the 

attractor is embedded in a dimension lower than the 

sufficient one stated by the delay embedding 

theorem [4].  

     Disability of these methods for determining 

embedding dimension using measurements taken 

from a high dimensional chaotic time series 

encouraged us to use alternative models. One that 

has become popular over the last decades is the 

artificial neural network. One popular choice of 

neural network for some practical engineering 

problem such as recognition and nonlinear 

prediction is the time delay dynamic neural network 

(TDNN). Stability analysis of TDNNs has been 

analyzed in several studies [5-7]. 

     In this work, a DTDNN, called Distributed Time 

Delay Neural Network is introduced for estimating 

embedding dimension, with emphasis on utilizing 

temporal characteristics, which has special 

structures that store temporal information explicitly 

using time-delayed structures at the first layer 

(hidden layer), and also implicitly time-delayed 

structures are connected to the input of other  layers.   

In our method number of the taps in the first Tapped 

Delay Line (TDL) changes and for each  m  value, 

the network is trained to predict the current 

measurement ),1( +ty after training process, mean 

absolute prediction errors for training, validation and 

test sets are recorded as a function of .m   

    In section 2, the most popular conventional phase 

space reconstruction method of a chaotic time series 

will be given. Proposed method to accurately 

determine the embedding dimension of high 

dimensional nonlinear time series will be presented 

in section 3. Introduction of approximated Mackey-

Glass chaotic systems, real data set D1 and 

performance of DTDNN on them over widely used 

conventional method (FNN) is evaluated in section 

4. Finally in section 5, the conclusion of this work 

will presented. 

 

 

2 phase space reconstruction of chaotic 

time series 
In real life, the system under study gives usually one 

observable, i.e., the only information about the 

system, is one-dimensional signal. The monitoring 

of a single scalar observable is sufficient for 

characterizing and understanding the dynamics on a 

finite-dimensional attractor, although we have any 

knowledge neither of system equations nor of 

geometry of its phase portraits.  For a scalar time 

series )(),...,2(),1( Nyyy the phase space can be 

reconstructed using method of delays. The basic 

idea in the method of delays is that the evolution of 

any single variable of a system is determined by the 

other variables with which it interacts. Information 

about the relevant variable is thus implicitly 

contained in the history of each single variable. 

Equivalent phase space can be reconstructed by 

assigning an element of the time series )(ty and its 

successive delays as coordinates of a new vector 

called time-delay vector , and so according to 

Tankens [1] and Packard [8], the method of delays 

can be used to embed a scalar time series into an m-

dimensional space as follows:  

[ ]Tiiiii mtytytytyt ))1((),...,2(),(),()( τττΥ −−−−=  

τ)1(,...,2,1 −−= mNi                               (1) 

where m  is the embedding dimension and τ is the 

time delay. Note that )(tiΥ  means ith reconstructed 

vector whit embedding dimension .m  It is clear that 

for correct reconstruction, a fine estimation of the 

parameters ( τ,m ) is needed. 

 

 

2.1 Determination of the delay time 
Takens`s theorem assumes that we have an infinite 

noise-free data set , in which case , we can choose 

the delay time almost arbitrarily. Of course, infinite 

noise-free data simply do not occur, therefore, some 

thought must be given to choosing a delay such that 

the underlying dynamical attractor is faithfully 

reconstructed. If the time delay is too small, the 

reconstructed attractor is compressed along the 

identity line (the °45  line in phase space), i.e. the 

resulting vectors will be very nearly the same and 

each will be carrying a great deal of redundant. If 

the time delay is too large, the attractor dynamics 

may become causally disconnected and this is called 
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irrelevance. For chaotic systems, tiny errors in data 

become exponentially magnified in time so that too 

large a delay will tend to decorrelate the signal from 

itself τ  time steps into the future [9]. There are 

several heuristic methods for determining parameter 

time delay τ  such as [10]. The most representative 

way for choosing the time delay is the probabilistic 

method advocated by Fraser [11] known as Average 

Mutual Information (AMI). The idea is to extract the 

amount of information that a vector at discrete time 

t, conveys about itself some lag ,τ  later by 

computing: 
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 where ))(( typ , ))(( τ+typ and ))(),(( τ+tytyp are the 

marginal and joint probability densities for 

observations )(ty , )( τ+ty and the sum is taken over 

all non-zero probabilities. According to [11] the first 

minimum in the AMI graph is considered as the 

most suitable choice for ,τ since this is the time 

when  )( τ+ty  adds maximum information to the 

knowledge we have from ).(ty  

 

  

2.2  Determination of the embedding 

dimension 
The most popular conventional method used for the 
estimation of sufficient embedding dimension is 

based on the fact that choosing too low an 

embedding dimension results in points that are far 

apart in the original phase space being moved closer 

together in the reconstruction space.In order to 

apply false nearest neighbours (FNN) method, we 

do following steps. First we should make delay 

vectors in dimension m  according to Eq. (1), using 

the time delay τ  suggested by average mutual 

information .Then we examine rth near neighbour in 

phase space of each delay vectors: 

[ ]
5,...,1

))1((),...,2(),(),()(

=

−−−−=

r

mtytytytyt
T

rrrr
NN

r τττΥ

  

that can be in proximity in the phase space because 

of the dynamic evolution of the orbits or due to an 

overlap resulting from the projection of the attractor 

to a lower dimension. 

If the vector )(tNN
rΥ  is a false neighbour of )(tiΥ  

having arrived in its neighbourhood by projecting 

from a higher dimension because the present 

dimension m  does not unfold the attractor, then by 

going to the next dimension 1+m  we may move this 

false neighbour out of the neighbourhood of )(tiΥ . 

By looking at every delay vectors )(tiΥ  and asking 

at what dimension we remove all false neighbours, 

we will sequentially remove intersections of orbits 

of lower and lower dimension until at last we 

remove point intersections. At that juncture we will 

have identified that m  where the attractor is 

unfolded. 

    The square of the Euclidian distance between 

neighbours points in m  dimension �is:�� 
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Moving from dimension m  to 1+m  means that a 

new coordinate equal to )( τmty − is being added in 

each delay vectors, so the Euclidean distance of two 

points in dimension 1+m  will be:  
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The relative distance between the two points in two 

consecutive embedding dimension m  and 1+m  will 

be the ratio: 

m

r

m

mm

R

mtymty

R

RR )()(

2

22
1 ττ −−−

=
−+  (6)   

 

when this distance ratio is greater than a predefined 

threshold, we have a false neighbour (being in the 

same neighbourhood because of the projection and 

not because of the dynamics). It should be 

mentioned that the determination of which 

neighbour is true and which is false is quite 

insensitive to the threshold we use. A scalar value of 

15=γ  are recommended by Abarbanel [9] is usually 

used although values of 10 to 20 will produce little 

variability in the results. 

    Although FNN is one of the most conventional 

methods for determining embedding dimension, the 

performance of this method for the high dimensional 

chaotic systems is usually not acceptable and it gives 

poor estimate of m  as we will show in the sec. 4.2.1.  

In order to remove this defect, we present a method 

that will improve the embedding dimension 

estimation for the high dimensional chaotic systems. 

 

 

3 Proposed method for embedding 

dimension estimation  

(3) 

(2) 
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When the system or physical mechanism is 

nonlinear time-varying, we have a more difficult 

task in the context of neural network, usually time 

lagged feed forward networks are good candidate for 

temporal processing. Temporal tasks and static tasks 

have fundamentally different characteristics. The 

coordinates of a static vector in an N-dimensional 

feature space can be randomly permuted with out 

affecting the classification. In contrast, the temporal 

sequence is order sensitive. The results will strongly 

depend on the order of each feature.  

    In practice, time is important in many of cognitive 

tasks such as signal processing. The memoryless 

networks are inadequate for temporal tasks. For a 

neural model to deal with temporal tasks, the 

network should have dynamic properties which 

make the network responsive to time-varying 

signals. For a memoryless network to be dynamics, 

it must be given the memory. For example, a 

multilayer perceptron network may be made 

dynamic by introducing time-delayed structures to 

the hidden, and/or output layers. Another way is to 

route delay connections from one layer to another. 

The memory elements can be either fully or sparsely 

interconnected. 

   In order to estimate optimal embedding 

dimension, we will use a class of dynamic neural 

network, which consist of a feed forward network 

with a tapped delay line (TDL) at the first layer 

(hidden layer) and also distributed tapped delay lines 

at other layers throughout the network. This is called 

the Distributed Time Delay Neural Network 

(DTDNN), in which the dynamics appear at the 

layers of a static multi layer feed forward network. 

In the context of neural network, time delay feed 

forward networks are appropriate candidate for 

temporal processing because in order to understand 

complicate chaotic dynamical system, a layered feed 

forward neural network need that have multiple 

layers and sufficient interconnections between units 

in each of these layer, this is to ensure that the 

network will have ability to learn complex nonlinear 

decision surfaces [12], another necessary property 

that persuades us to use time delay feed forward 

networks, is the ability to represent relationships 

between events in time [13]. For a neural network to 

be dynamic, it must be given memory. Most 

commonly used form of short-time memory is called 

a  tapped delay line (TDL) memory. In our 

distributed time-delay dynamic neural network, 

historical information is stored in its first layer 

(hidden layer) explicitly using time-delay structures 

of order m . This memory element is the τ  time 

delay, which has the transfer function τ−= ZZH )( . 

Although such a memory give 100% accurate 

historical information, its size is always limited 

because an increase in memory size increases 

significantly the complexity of the structure and 

makes learning much more difficult. A hidden 

neuron with TDL at its input is shown in Fig. 1. 

 
Fig. 1.  A hidden neuron (processing unit) with TDL at its input. 

 

The output, in response to the input )(ty and it's past 

values, ))1((),...,2(),( τττ −−−− mtytyty given by:  

�
−

=

+−=

1

0

))()((

m

i

jjj bityiws τϕ   (7) 

Where ϕ  is the transfer function of jth neuron, the 

)(iw j  is its synaptic weights, and jb  is the bias. The 

model of Fig. 1 is  referred  to as a multiple input to 

neuronal filter. It is considered as a distributed 

neuronal filter, in the sense that the filtering action is 

distributed across different points in space. 

    Since, we have a chaotic time series generated by 

a deterministic dynamic system, what has been 

learned from historical behaviour always apply 

future. Our measurements arising from a chaotic 

system are produced from a map 1: RRh
n →  where 

n
R   is the space of the original unknown attractor of 

the system. The evolution of original state can be 

expressed as ))(()1( tFt ΥΥ =+ , where )(tΥ  and 

)1( +tΥ  are n dimensional vectors describing the 

state of the system at times t  and ,1+t  the problem 

is to find a good approximation to F . The original 

system dynamics can be reconstructed in space of 

dimension ,m  using the delay-coordinate map. The 

states in this space are the time-delay 

vectors m
i Rt ∈)(Υ  as shown in Eq. (1) and evolution 

of reconstructed states expressed as 

))(()1( tFt iii ΥΥ =+ .  However, as it often happens, 

we are only interested in forecasting the first 

component ( )1( +ty ) of next time delay vector 

),1( +tiΥ the search is limited to a map 

1: RRg
m → ,which interpolates the pairs 
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( )1(),( +tytiΥ ) instead of a function 

mm
i RRF →: [14]. 

    If the reconstructed system is equivalent to the 

original one, the function 1: RRg
m →  can be used 

to recreate the original measurements{ }N
tty 1)( = . The 

learning of nonlinear predictive mapping is the most 

important task for us. A neural network should be 

used with m dimensional phase space vectors )(tYi as 

the inputs and the scalars )1( +ty as the outputs to 

approximate a map .: 1
RRg

m →     

    We used a distributed time-delay neural network 

which consists of two Layers. The first layer has 10 

neurons with tangent hyperbolic transfer function 

and a tapped delay line (TDL) at its input. The 

second layer has one neuron with a linear transfer 

function which is the customary practice in the 

design of nonlinear regression models and also a 

TDL at its input. Our  distributed time delay 

dynamic neural network is shown at Fig. 2,  that is a 

more powerful nonlinear filter consisting of a tapped 

delay line memory of order m  and delay time τ  at 

the input of its hidden layer and also another tapped 

delay line of order 2 with zero and unit delay time at 

the input of its output layer. Some other different 

structures were also tried but the best results were 

obtained with this structure. 

 
Fig. 2.  Distributed time delay neural network 

 

    In order to pre-processing of data, desired  time 

series is normalized by mapping minimum and 

maximum values to [-1 1], then the TDL is fed with 

normalized { }N
tty 1)( =  to produce delay vectors�

m
i Rt ∈)(Υ  according to Eq. (1). 

We used LM back propagation that is a network 

training that updates weight and bias values 

according to Levenberg-Marquardt optimization 

[15].The DTDNN requires dynamic back 

propagation to compute the network gradient. This 

is because the tapped delay line appears at the input 

of every layer in the network. 

    The first TDL as an SIMO structure (Single Input 

Multiple Output)  takes )(ty  as input and according 

to selected τ (from sec. 2.1) and different m  

produces time delay vectors )(tiΥ  with various 

dimensions to predict the current measurement 

)1( +ty  where m  is the number of taps in TDL.As 

m  is changed, each time the network is trained to 

predict the current measurement )1( +ty  and the 

prediction error between the output of network 

)1(ˆ +ty  and )1( +ty �is computed. When we change 

the number of taps in TDL, mean absolute error 

measurement is recorded as a function of m . The 

mean absolute error (MAE) is given as: 

 
N

yy

MAE

N

i

ii�
=

−

= 1

ˆ

                     (8) 

where iy  is the desired value and iŷ  is the predicted 

value. 

    As the number of taps in the tapped delay line 

increases, the MAE decreases. At one point, further 

increase of taps does not improve absolute error 

significantly. This point is considered as the optimal 

embedding dimension if we have no improvement of 

error for several later dimensions, so we consider  

the number of taps in the TDL equals m  of the 

system. 

 

 

4 Simulation Experiment 
In order to evaluate performance of our proposed 

method, data generated from approximated Mackey-

Glass chaotic system has been used for simulation. 

Furthermore, , we have used one practical system 

which is D1 data set from the Santa Fe institute for 

simulation one real data set. 

 

 

4.1 Description of data set 
We   introduce three high dimensional chaotic time  

series in this section. 

 

4.1.1   Real world data sets D1 

Data set D1 were recorded by Santa Fe institute, the 

details can be found  in [16]. The 6400 sequential 

data is used in our study. The first 4000 points uses 

to feed the net and perform the training. The 

validation process is carried out for the next 1200 

points, and the last 1200 points is considered as the 

test set.  

 

4.1.2 Mackey -Glass time series 
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 MG system is represented by the following 

differential equation: 

),(1.0
)(1

)(2.0
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=�              (9) 

where ∆  is a lag-time, above equation can be 

approximated by the following difference equation: 
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 which can be used to produce chaotic systems of 

dimension 1+m  [17]. The time series is generated 

with the parameters ,2.0=a  1.0=b  and � initial 

values are generated randomly. 5000 values of this 

)1( +nx  time series is used in this study. We 

consider the first 3000 points as the training set, next 

1000 points as the validation set and the last 1000 

points as the  test set. We fixed ft  to be 23 and 

tested our proposed method with two examples from 

the MG approximation of dimension 7,13. 

 

 

4.2 Simulation Results 
An investigation on the performance of FNN and the 

proposed approach in embedding dimension 

estimation is conducted in this section. 

 

4.2.1  Simulation results by conventional methods 

The simulation  results of the conventional methods 

are shown in Figs. 3 and 4. From the Fig. 3 the delay 

time τ  are given for all three time series. In order to 

determine the time delay τ  in the memory structure 

(TDL) at the first layer (hidden layer), we need to 

know .τ  AMI algorithm gives 4=τ  (MG7), 7=τ  

(MG13), 7=τ  (data set D1)  respectively. 

 
Fig. 3. Average mutual information. 

 

    The plots in Fig. 4 show the results of the 

estimated m  for the three systems using FNN 

method. As we can see from the Fig. 4, FNN gave 

poor estimates of m  for the MG systems of 

dimension 7, 13 and data set D1 which has 9 degrees 

of freedom [16]. FNN gives 4=m  (MG7), 5=m  

(MG13), 5=m  (data set D1) respectively. 

 
Fig. 4. False nearest neighbors for high dimensional chaotic 

systems.  

 

4.2.2  Simulation results by proposed methods 

The resulting plots for training, validation and test 

sets when using our method to estimate m  for the 

high dimensional systems from the observed chaotic 

time series are shown in Figs. 5,6 and 7.As we can 

see from these figures the MAEs have dropped 

significantly when the dimension m  has reached the 

minimum embedding dimension which the MAE of 

the prediction  error  was  not  changing 

significantly after it. The number of tap that after it, 

there is no significant improvement in mean 

absolute errors are 7=m (MG7), 13=m (MG13) and 

9=m  (data set  D1)  respectively. As seen from 

these figures, our proposed method gave good 

estimates of m  for the high dimensional cases. 

These simulation results show that the estimated 

embedding dimension is good enough for 

reconstruction of the phase space as is evident from 

comparison with the results of conventional method. 

 
Fig. 5. The mean absolute error for the training, validation and 

test set of Mackey-Glass data with dimension 7. 

(10) 
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Fig. 6. The mean absolute error for the training, validation and 

test set of Mackey-Glass data with dimension 13. 

 
Fig. 7. The mean absolute error for the training, validation and 

test set of  D1 data set. 

 

 

5   conclusion 
In a typical chaotic time series analysis, all we can 

observe is a set of scalar measurements { }N
tty 1)( =  

taken from the system which can be low or high 

dimensional. Estimation of an appropriate 

embedding dimension for phase space 

reconstruction of the underlying dynamical system 

from the observed chaotic time series is greatly 

considered for the purpose of its understanding and 

correct prediction of future values. It has been 

shown in this work that distributed time delay neural 

network as a dynamic neural network can be 

successfully used to determine optimal embedding 

dimension. The prediction error approach used 

herein has shown to have considerable advantages in 

terms of quality of the result especially for high 

dimensional systems.  

 

 

References: 

 [1] F. Takens, Detecting strange attractors in 

turbulence, in: lecture notes in mathematics, 

Vol.898, 1981, pp.366-381.  

 [2] A.I. Mees, P.E. Rapp, L.S. Jennings, Singular 

value decomposition and embedding dimension. 

Phys,  Rev.A, Vol.36, No.1, 1987,pp.340-346. 

 [3]A.M. Fraser, Reconstructing attractors from 

scalar time series: A comparison of singular 

system and redundancy criteria,  Physica D 

Vol.34, 1989,pp.391-404.  

[4] M. Kennel, R. Brown, H. Abarbanel, 

Determining embedding dimension for phase 

space reconstruction using a geometrical 

construction,Phys. Rev. A,Vol.45,1992, pp.3404-

3411.  

[5] H. Lu, On stability of nonlinear continuous-time 

neural networks with delays, Neural Network 

Vol.13, No. 10,  2000, pp.1135-1143.  

[6] Y.J. Cao and Q.H. Wu, A note on stability of 

analog neural network with time delays, IEEE 

Trans.Neural Network 7, 1996, pp.1533-1535.  

[7] J. Peng and H. Qiao, A new approach to stability 

of neural networks with time-varing delays, 

Neural Network, Vol.13, No.10, 2002, pp.95-

103.  

[8] N.H. Packard, J.P. Crutchfield, J.D. Farmer, R.S. 

Shaw, Geometry from a time series,Phys. Rev. 

Lett, Vol.45, No.9,1980,pp.712-716.  

[9] H. Abarbanel, Analysis of observed chaotic data, 

Springer, 1996. 

[10]A.A Tsonis, Chaos From Theory to 

Applications,  plenum press, New York, 1992 .        

[11] A.M. Fraser and H.L .Swinney, Independent 

coordinates for strange attractors from mutual   

information,Physical Review A,Vol.33,No.2, 

1986, pp. 1134-1140. 

[12] R.P. Lippmann, An introduction to computing    

with neural nets, IEEE ASSP Mag, Vol.4, 

Apr.1987.  

[13] A. Waibel and T. Hanzawa, Phoneme 

recognition using time-delay neural network 

IEEE Trans on ASS, Vol. 37, No.3, 1989 pp.328-

339.  

[14] A. Porporato, L. Ridolfi, Clues to the existence 

of deterministic chaos in river flow, 

Int.J.Mod.Phy.B, Vol.10 No.15, 1996 pp.1821-

1862. 

[15] M.T. Hagan and M. Menhaj, Training feed-

forward networks with the Marquardt algorithm, 

IEEE Trans on Neural Networks, Vol.5, No.6, 

1999, pp.989-993. 

[16]The Santa Fe Time Series Competition Data 

(URL:http://www.psychstanford.edu/~andreas/Ti

me Series/SantaFe.html).  

[17] H. Kantz and T. Scheriber, Nonlinear Time 

Series Analysis, Cambridge University Press, 

1997.  
 

8th WSEAS International Conference on SYSTEMS THEORY and SCIENTIFIC COMPUTATION (ISTASC’08) 
                                                      Rhodes, Greece, August 20-22, 2008

ISSN: 1790-2769 290 ISBN: 978-960-6766-96-1


	Text1: 


