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Abstract: The motion of pieces system takes place when a device is moving in the launcher to be continuing on
the flying on a trajectory. General theorems of dynamics lead to the differential system of equations to move the
pieces. One considers the moving of a device in channel of the launcher as a rotation with translation, so that; the
centre of mass is translated in direction of OX axis. With the help of a numerical simulation the paperwork
presents the particular movement with its associated velocity of a safety cylinder.
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1. Introduction

Embarked pieces of board apparatus of the
rockets are any motion in time during displacement
in channel of launcher tube or guiding runner. The
functions of these systems are in connection with
reference time for a preciously time computing or
other works. Moreover, these functions are safe
properties of any other systems to enter in working
of any steps. To obtain motion of any embarked
pieces is a hard problem in the motion of a rocket.
This is the reason of any embarked pieces motion in
the channel of launcher tube so, where we have a
great acceleration of rockets, only in launcher or
runner guiding. Many safety-embarked pieces are of
special form configuration and as a system, are
combined of big number, because the forces applied
on are very small and for a good work these pieces
must be very sensitive. In this case, that means of a
reduced force, with any pieces working on the
principal of safety facilities’ piece.

In this way, we shall treat the motion of
embarked systems on rockets board with only
applying basic law of dynamics. The items will be
completed with graphs of motion and explanations.
For the first time we insist especially, on translation
motion of embarked safety pieces as cylinders with
special forms used in safety systems. We chose
these systems because in all parts of rockets these
have only translation motion without rotation.

ISSN: 1790-2769

43

2. Theoretical aspects

Cylinders with translation motion are very
important safety pieces in many systems of
embarked board apparatus on the rockets.[3] They
are especially, of a hard configuration because they
couldn’t move in normal form. This configuration is
a channel or any channels, which are practised on
external or inner surfaces. During the translation of
cylinder with the channel, it is moving on an axe
that is going in channel. So, the cylinder is working
in translation displacement and the channel is forced
to go on this axe. These cylinders have only
translation motion, but in this case are two channels
or only translation with rotation motions of one
channel on cylinder. In safety systems, these
cylinders have one or two phases of functions. In
many systems, the second phase of function is
produced after combustion of rockets engines, at the
ending of active portion of trajectories. In the
following figures we shall illustrate any safety
systems with cylinders.[4]

In Figure 1 we see the spring of cylinder 2 in
position 4 and safety balls 3 for blocking spindle 1.
We observe the forces, which are working on
cylinder with appliance of the second Newton’s law
or basic law of dynamics. The single action is axial
force of inertia under direction of Ox axis of
orthonormal system of co-ordinates taken with
origin in mass centre C of cylinder.[5]
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Figure 1 Safety cylinder

This represents displacement direction of
cylinder. We have also, the pressure No on inner
surface of cylinder by safety balls and action of
helicoidal spring R, .
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Figure 2 The axe in profile channel

In Figure 2 we illustrated the axe in profile
channel practice on cylinder surface. As we see in
the above picture this channel is in form of zigzag.

So, we find the axial moment of inertia J_ of

cylinder in proper rotation of this piece round
direction of Ox axis.

The reaction N of channel to the axe in section
as we see, determins appearance of friction uN

with the components on direction of motion in
channel and this perpendicularly on. The projections
of these reactions lead to a moment of rotation
cylinder round axis. After we presented these its
forces and moments work on cylinder, we can write
the relations to prepare differential system of
equations of motion in the channel of launching
tube. The equation of cylinder translation with mass
m, is as below [2]

F—Ry,—uNy—Ncosgp—uNsing —mx=0 @
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In this equation we don’t have any N reaction.
This problem was solved easily with an equation of
moments through Ox axis. As in above figure we
observe

rNsing —r,uNcose —J .o, =0 (2)

We do not know the rotation motion with

angular velocity o, of cylinder. Though, we know

this velocity in formula of peripheral velocity.

Figure 3 Solid element

In the Figure 3 we took a solid element
dsxdxxr, of cylinder with channel of angle ¢ .
We can write the peripheral velocity as

ds

ot ®)

The problem is what size the angular velocity
@, has got? We observe that we can put relation of

dx dt dx 1 1 dx
e e B )
ds dt dt d5 re, dt
dt

From this relation we find angular velocity
expression, as

V=r, -0,

1 dx
o, =——Ct 5
c . dt Jgo )
Angular acceleration can easily be obtained in
form of

W =———-Clgy (6)

After substitution in relation (2) we have the
following formula of reaction N

NoJo  ctgp d2x

2 sing—pucoseg dt?

rC
In relation (1) we shall have translation motion
with differential equation

()
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mK=F —R_— N, —

_Jo. . cgp )
r’ sing— ucose
d*x . .
e (cosg + using)- %
With any simple operations we obtain
X=V
oo R Re N 9)
m+m m+m m+m
In relation we have
Je ctge

m =< (cosg + usin @) (10)

r2 "Sing — pcose

Axial force of inertia F;=mV is depending on

translation acceleration V.

Resistance of spring R, is depending on
displacement x of cylinder. So, we observe that in
mounting state of system, resistance of spring we
noted with R, after translation x=a, shall have a
new resistance of spring R,. Now, knowing initial
and final resistance for a displacement x, we shall
have resistance R, as, below

R, - Ry

R, =Ry + aa X (11)

With these substitutions the system of relation
(9) becomes

X=V
v ™ y__Re Ra-Ry x Ny (12)
m+m m+m m+m a m+m
With initial conditions
t:tOZO,XOZO,VOZO (13)

If we note any terms of these equations with

m R N
C= 1Ko: 0 ,Ll 0 ’
m+m, m+m  m+m (14)
KZZME
m+m, a
In this way we have
X=V
(15)

v=CV - K%x-K,
with the same initial conditions as in (13). This
equation represents the oscillations of cylinder in
motion on portion of channel. In each part of
channel we shall have other initial conditions. The
analytic solution is in form of relation [1]:
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t t
1 . 1 .
x(t)= ——cos gt I sinmptdV +——sin a)otj cosmptdV —
() 0 () 0

K
—2-(1-coswgt);
@o

t t
v(t)=sin a)ot.[sina)otdv +CoS gt I coswgtdV —

0 0
Ko ..
—Osin ampt
0]
with difference that we have the term of constant C
instead of unit 1. In any case of axe concussion in
each ending part of channel for the following parts
of channel we shall take a negative velocity v .

3. Numerical simulation

In the following example we shall give the
graphs with simulation of motion for a part of
channel of length a; =25mm for a cylinder of
mass m=15g.

The spring was
Ry ~15N, R, ~25N.

For motion of a rocket we shall take a mean

taken  with  values:

. : m

acceleration of V = 260—2.
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Figure 4 Displacement of cylinder on each part of

channel
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Figure 5 Velocity in translation of cylinder on each
part of channel
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In Figure 5 we give graph of velocity in
translation of cylinder on each part of channel,
going with negative values. In this simulation we
had elevation angle of each part of channel
measured after Oy axis was 60deg .

The figure below represents the diagram of
cylinder’s angular round translation axis velocity.
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Figure 6 - Angular velocities on each part of the
zigzag channel

Angular velocities on each part of the zigzag
channel have big values as we see in graph of

Figure 6.
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Figure 7 Displacement of cylinder on each part of
channel.

In Figure 7 we have the same system, which is
working with almost double variable acceleration as
in Figure 6. So, we see any zones of concussions
with recoil of cylinder.

In Figure 8 we observe diagrams of velocities
and their greater negative values as in previous
figures.
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Figure 8 Diagrams of velocities
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4. Conclusions

The present paperwork frames the theoretical
works that study the motion of mechanical
embarked systems in channel of launcher.

Due to special geometry of the safety cylinder
the mouvment of a mechanical embarked system is
very particular. (see Figures 4 and 7)

As a direct result of the particular mouvment of
the mechanical embarked system studied, the
longitudinal and angular velocities gain a special
profile. (see Figures 5, 6 and 8)
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