Mobile SQL Server CE Database on Smartphone, PDA and Embedded device as mobile monitoring stations of Biotelemetric System

ONDREJ KREJCAR, JINDRICH CERNOHORSKY, PETR FOJCIK
Centre for Applied Cybernetics, Department of Measurement and Control
VSB Technical University of Ostrava
17. listopadu 15, Ostrava Poruba 70833
CZECH REPUBLIC

Abstract: - Existence of software platform, which will allow us to monitor the patients’ bio-parameters and provide us with services which help with full health care, is more than relevant these days. Practically developing system works with an ECG sensor connected to mobile equipment, such as PDA/Embedded, based on Microsoft Windows Mobile operating system. The whole system is based on the architecture of .NET Compact Framework, and SQL Server. Mobile SQL Server CE database is used as buffer for measured data from external measurement sources. The project was tested in real environment in cryogenic room (-136°C).

Key-Words: - Smartphone, PDA, Embedded device, biotelemetry, SQL CE Database

1 Introduction
In our world society exist widely spectrum of middle-aged people like businessmen, CEOs, managers and other have very hectic lives with much stress and without good ways of living. Sometimes these people have a collapse, breakdown or heart attack and must be in hospitals or health resorts for a long time to regenerate their bodies. The time that they spend in these institutions, is nonutilisable and very long for them. Possibilities of today physics are restricted by many of prescripts so patients cannot use some of the newest techniques (like hyperbaric or arctic chambers), which make it possible to reduce the regeneration time by weeks or months. For example, these chambers are restricted to patients in the first six months after heart attack due to no information about patients’ conditions during the procedure. Here is the main area of utilization of our telemetric system. Of course the use of our system is not limited only to businessmen, but it is targeted to middle-aged people with some knowledge about new technology like mobile phones. The price of client devices of our system is not low, so we suppose people who can invest to these sorts of assistants.

The basic idea is to create a system that controls important information about the state of a wheelchair-bound person (monitoring of ECG and pulse in early phases, then other optional values like temperature or oxidation of blood ...), his situation in time and place (GPS) and an axis tilt of his body or wheelchair (2axis accelerometer). Values are measured with the existing equipment, which communicates with the module for processing via Bluetooth wireless communication technology. Most of the data (according to heftiness) is processed directly in PDA or Embedded equipment to a form that is acceptable for simple visualization. Two variants are possible in case of embedded equipment – with visualization and without visualization (entity with/without LCD display). Data is continually sent by means of GPRS or WiFi to a server, where it is being processed and evaluated in detail. Processing and evaluating on the server consists of - receiving data, saving data to data storage, visualization in an advanced form (possibility to recur to the older graph, zoom on a histogram (graph with historical trend), copying from the graphs, printing graphs), automatic evaluation of the critical states with the help of advanced technologies (algorithms) that use Artificial intelligence to notify the operator about the critical state and its archiving.

![Figure 1 Architecture of platform](image)

Application in PDA, Embedded equipment is comfortable, with minimum time - the first configuration, but also configuration after downfall of
application. The level of visualization will be lower. The
described system can be used with small modifications
for monitoring of patients in hospitals or people working
in extremely hard conditions. The biggest limitation is
the availability of measuring devices in acceptable and
adaptable sizes or comfortable enough to have one
around.

2 Developed Parts of Platform

Complete proposition of solution and implementation of
the platform for patients bio-parameters monitoring as it
was described in previous chapter requires determination
and teamwork. Every single part of the architecture have
to be designed for easy application and connectivity
without user extra effort, but user must be able to use
given solution easily and effectively. Crucial parts of
whole architecture are network servers, database servers
and client applications. Due to these crucial parts
development is focused particularly on proposition and
implementation of desktop client application, database
structure and some other important web services.

Scenario for communication among desktop client,
web services and Microsoft SQL Server is: desktop
client runs on user’s computer and connects to web
services on remote application server. After the desktop
client is connected, web services connect to remote
database server. Web services provide methods for users
so users are capable to work with different data stored in
database.

Figure 2 Desktop Client connections to database

2.1 Mobile part

The main part of the whole system is an Embedded or
PDA device. The difference in applications for
measurement units is the possibility to visualize the
measured data in both Real-time Graph and Historical
Trend Graph, which can be omitted on an embedded
device.

Figure 3 Smartphone and PDA/MDA visualization

PDA is a much better choice for Personal Healthcare,
where the patient is already healthy and needs to review
his condition, or for multiple person usage. Embedded
devices can be designed for one user, with the option to
use an external display used for settings or with the
possibility of usage in extreme conditions.

As measurement device is possible to connect several
device with Bluetooth communication possibility:

- ECG – electrocardiogram
 - electric hearth activity
 - Corscience CorBELT device (bipolar)
- Blood pressure
 - informations about hearth activity and
 - blood vessels
 - pressure gage measurements
- Spirometry
 - lungs capacity
 - measurement using spirometrs
- Oximetry
 - haemoglobin saturation measurement
 - oximeters measurements

In our application we use an ECG Measurement Unit
(Corbelt or BlueECG [Figure 4]) through a virtual serial
port using wireless Bluetooth technology. Then, after
pushing a button, all necessary parameters are set and the
communication may begin. Measured data is stored on a
SD Memory Card in a database in MS SQL Server 2005
Mobile Edition.
The performance of available devices seems insufficient for sequential access; parsing of incoming packets is heavily time-consuming. Pseudo paralleling is required. If Windows Mobile OS versions 2003 to 5.0 are used, the processing of data from a professional EKG is not realizable due to thread count limitations. A newer operating system (Windows Mobile 6) can be used to solve this.

Current application is highly specialized and written to accommodate specific hardware. Usage of any other hardware is not possible. This is due to different methods of packet folding, which are unique on each device. This is partly caused by the length of the Telemedicine branch. Operating of the device is simplified as much as possible with the least possible number of steps regarding user registration, measurement device connection and the measurement itself. The informations about user, as ID, name, surname, address and application properties are stored in the system registry (HKEY_CURRENT_USER / Software / Guardian). Working (saving, reading, finding) with registry is easier and faster as saving this informations in file. User registry values are crypted with simple algorithm (shifting char ASCII value).

2.2 Server part
In order to run a server, an operating system supporting IIS is needed. IIS is an Internet Information Server application allowing users to connect to the web server by the well-known HTTP protocol. The web service transfers data between the server and PDA/Embedded devices. It reads the data, sends acknowledgments, stores the data in the database and reads it from there. The service is built upon ASP.NET 2.0 technology. The SOAP protocol is used for the transport of data, which is in XML format. That is an advantage since it allows communication of multiple different technologies and platforms.

The Wireless ECG approaches a real professional ECG with data rate as high as 800 records per second [1]. That makes 48,000 records per minute and 2,880,000 per hour. Considering 100 patients, the value gets to 288,000,000 records per hour. Even if the server accepted only 50 records per second, the sum of records for 100 patients per hour would be 18 million. That is an extreme load for both the server and the database system; hence a better way of storing data is needed. Methods that devices communicating with the web service can use include: receiving measured data, receiving patient data, deleting a patient, patient data sending. To observe measured data effectively, visualization is needed. A type of graph as used in professional solutions is an ideal solution. To achieve this in a server application, a freeware Zed Graph library can be used. For data analysis, neural nets are a convenient solution. However, there are problems in the automatic detection of critical states. Every person has a specific ECG pattern. What is completely normal for one person can indicate crisis for another. The Neural net has to learn to distinguish critical states of each patient separately. To make the specialist’s or operator’s intervention possible, the system must be provided with a user-friendly interface, possibly imitating those on medical appliances. This area of development is described in next chapter.

2.3 Embedded mobile device
Devices based on PDA type have a several limitations such as low CPU performance, low battery life or small display. These limitations are possible to solve by embedded version of such mobile clients. We create a special windows mobile based embedded device (see [Figure 5]).
needs. We used the Microsoft PlatformBuilder for Windows CE 4.2 tools (Figure 6). The created operation system based on standard windows mobile has several drivers which we need to operate with communication devices and measurement devices.

Figure 6 PlatformBuilder for Windows CE 4.2

2.4 Web services
Next important parts of the platform are web services, which allow us effectively work with medical records or other data.

Guardian web services are:
- User management – complete patients management. Provides interface that allows deleting, editing and creating records about new patients.
- Data management – operations with measured data gained from different devices such as personal ECG, manometer or oxymeter.
- Configuration management - provides information about users roles and functions which belong to these roles.
- User management – users = doctors, nurses, other medical staff.

Each web service deals with common security module, which provides methods for one-way encryption and also implementation of methods for authorization and other security components is planned.

2.5 Database
Important part of Guardian is central database. There are stored all data of medical staff and patients. Data of patients include different records such as diagnosis, treatment progress or data which are results of measuring by small portable devices designated to home care. These data represent the greatest problem, because amount of these data rapidly increase with increasing amount of patients. Due to this fact database servers are very loaded.

Current version contains 12 database tables. Database design is made with Microsoft SQL Server Management Studio – graphical application, which provides set of quality and powerful tools for Microsoft SQL Server administration. There are some interesting tables:
- Patient – table which is used to save information about each patient.
- User – this table is used to save information about each user (user = member of medical personnel).
- Role – information about user roles.
- Diagnosis – information about patient diagnosis.
- Treatment – treatments associated with related diagnosis.
- File – all user files.
- EcgRecord – the measured values of ECG. All measured values are saved as byte array.

Figure 7 Infracamera picture from Cryogenic room

Acknowledgement
The support for this research work has been provided by the project 102/06/1742: Experimental real-time database testing system, provided by Czech Science Foundation.
This work was also supported by the Ministry of Education of the Czech Republic under Project 1M0567.

3 Conclusion
The measuring device (ECG, plethysmograph) and Guardian PDA client was tested in extreme conditions in a cryogen room in Teplice (-136°C), where the final system will be installed [Figure 7]. Implementation of the data transmission security was not solved. The whole system is classified as „work in progress“ system and it is in a testing phase where we found mistakes and repaired them.

References:

