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Abstract

Computational systems play an essential role on genome
sequencing projects. Fragments of multiple copies of DNA
or RNA are sequenced on molecular biology laboratories
and computational systems must group these fragments in
order to obtain the original DNA or RNA. These computa-
tional systems have three phases: submission, assembly and
annotation. There are many efforts on bioinformatics cen-
ters around the world to create systems that can be easily
adapted to be used on different sequencing projects. In this
work, we propose a framework for computational systems
that support genome sequencing projects, employing tech-
niques of object-oriented systems, in the context of open-
source projects. We also present two case studies of compu-
tational systems generated using our framework.

1 Introduction

Genome sequencing projects aim to discover the se-
quence of bases forming DNA chromosomes, transcript
genes or non-coding RNAs of an organism. Due to the large
volume of these biological sequences, together with infor-
mation related to each one of them, the sequencing projects
are highly dependent of computational systems. On the
laboratories of molecular biology, biologists produce mul-
tiple copies of long biological sequences of an organism
and cut it in short pieces. These fragments are then se-
quenced by automatic sequencers, since these machines can
not treat long sequences. Sequencing is the task of obtain-
ing the bases — A (Adenine), C (Cytosine), G (Guanine)
and T (Thymine) or U (Uracyl) — composing biological
sequences. Many fragments composing a plaque are simul-
taneously sequenced, and each fragment generates anelec-

tropherogram, having four colored graphics, each one cor-
responding to one of the four bases, A, C, G and T. When
a graphic presents a peak on a certain position of the frag-
ment, a base is identified on this position. If a particular
base can not be identified, the character N (uNknown) is
associated to the corresponding position. The electrophero-
grams are sent by the biologists to the bioinformatics labo-
ratory, usually using web interfaces. These fragments must
be joined in order to reconstruct the original DNA. Besides,
biological functions or characteristics must be identified,
also a task strongly supported by computational tools.

Typically, a computational system, developed inside a
bioinformatics laboratory, processes the fragments on three
phases: submission, assembly and annotation. On thesub-
mission phase, each electropherogram is transformed on
a string, calledread or sequence, in which each charac-
ter is associated to a value measuring its error probability.
Usually this task is made by thePhred program [11, 10],
that generates a file, inphd format, containing a string
composed by characters A, C, G, T or N for each read,
and the error probability associated to each base. Program
Phd2Fasta[14] converts thisphdfile to two text format files
(in FASTAformat [18]),read fileandquality file. Each se-
quence is filtered to remove portions probably not belong-
ing to the organism being studied, but to vectors (DNA se-
quences of organisms used to replicate the DNA of the stud-
ied organism) and contaminants (DNA sequences of other
organisms), using programs such asCrossmatch[14]. De-
pending on each sequencing project, additional analysis can
be made. For example, a redundancy analysis shows if the
fragments of a plaque do not overlap, since as fewer is the
number of overlapping fragments inside the plaque as bet-
ter is the quality of the generated fragments. Finally, these
files are stored on a database (Figure 1). Other informations
also can be stored on databases, according to the sequencing
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Figure 1. Activity diagram of a pipeline of the
submission phase (UML notation [5]).

project needs.

The assembly phase consists in groupingsimilar se-
quences(sequences having “approximately equal” prefixes
and suffixes). Two sequences are similar if there are simi-
larities between the suffix from one and the prefix from the
other sequence. This clustering aims to put together frag-
ments potentially belonging to the same region of the DNA.
Groups formed by more than one sequence are calledcon-
tigs(Figure 2), and groups formed by only one sequence are
calledsinglets. From each one of the contigs, a consensus
sequence is generated and represents the contig (Figure 2).
ProgramsPhrap[14] andCAP3[16] are usually used to as-
sembly sequences. Both generate, among others, a file on
the ace format (containing data about similar suffixes and
prefixes of the sequences composing a contig), a file con-
taining data about the contigs, and another one containing
the singlets data. Finally, the assembly phase store some
statistics, like the total number of groups (contigs and sin-
glets), the total number of identified genes, and some contig
visualizations.

Genome sequencing projects can sequence genomic
DNA (chromosome DNA) or ESTs (Expressed Sequence
Tags) — that are short sequences of transcript DNA. In the
first case, it is necessary to identify possible genes on the
sequences. This is made by programs likeGlimmer[22, 8],
that identifies beginning or ending positions of a fragment

Figure 2. A contig resulting from prefix and
suffix similarities, and its consensus se-
quence.

region possibly coding a gene, known asopen reading
frame(ORF).Glimmerhas to be used on each contig con-
sensus sequence and on each singlet, and the positions of
each candidate gene must be stored on a database. For EST
projects there is no need to identify genes, so the consensus
sequences of contigs and singlets are directly stored on the
database.

The annotation phase has the objective of identifying
functions of the sequences generated on the assembly phase,
and usually is divided on two steps. First, on the automatic
annotation step, all the project sequences must be compared
with sequences stored on public databases, because their
functions are inferred by previously determined functions of
similar sequences. The hypothesis is that similar sequences
have similar biological functions. The second step, the man-
ual annotation, is done by biologists, that use information
of the automatic annotation and their knowledge to decide
the biological function to be associated to a sequence. Data
generated on both steps, automatic and manual, are stored
on the databases of the project.

In the automatic annotation, programs likeBLAST [2]
andFasta[20] are often used.BLAST(Basic Local Align-
ment Search Tool) is broadly used to search similar se-
quences on DNA and protein databases.BLASTis a fam-
ily of computational and statistical methods, also employ-
ing heuristics, to search best alignments between two se-
quences. Analignmentof two sequences can be obtained
putting one sequence above the other, showing correspon-
dences between two characters, one of each sequence, or
between a gap and a character, such that both sequences,
with gap inserted, have equal lengths. Each alignment has
associated values, to express reliability and error probabil-
ity. Higher reliabilities and lower error probabilities indi-
cate good alignments, and are calledbest hits. BLASThas
many programs depending on the query sequence (bases
or aminoacids) and on the sequence database (bases or
aminoacids).Fastais also a family of programs for search-
ing similarities between a query sequence and each of
the sequences of a database, both composed by bases or
aminoacids, using particular algorithms and strategies to
obtain similarities and best alignments. It also associates
reliability and error probability to each alignment. These
programs generate output in HTML format, that can be di-
rectly stored on the database, or intext format, that can be
processed later. These data are visualized by biologists usu-
ally using web pages.

There are many projects to assist and support the devel-
opment of computational systems for genome sequencing
projects. Some of the systems covers the three phases of
pipeline (submission, assembly and annotation), but most
of them were specifically developed to support the annota-
tion phase.

ACeDB(A C. elegansDataBase) [26], developed by the
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Sanger Institute, was originally written to analyze and to
store data from theC. elegansgenome project.ACeDBwas
concerned on data storage more than on annotation pipeline,
and its first development was not based on techniques
of software engineering — its code style was “baroque,
sparsely comented and idiosyncratic” (apud [15]). ACeDB
is distributed under the GNU General Public Licence except
for a few parts which are distributed under the GNU Lesser
General Public License.

Examples of systems that contemplate the three phases
of the pipeline areSABIA and GARSA. SABIA (Sys-
tem for Automated Bacterial Integrated Annotation) [1]
is composed by an automated web enviroment and a set
of Perl/CGI scripts for data manipulation on a relational
database (MySQL). It is distributed under proprietary li-
cense.GARSA(Genomic Analyses Resources for Sequence
Annotation) [7] aims to integrate, to analyze and to present
information of several bioinformatics tools and genome
databases. Its architecture is based on Perl scripts, result-
ing in code effort to add new tools to the pipeline. It ex-
ecuts some specific programs, accepting the definition of
programs parameters, but not plug-ins. AlthoughGARSA
is distributed under GPL license, download is allowed by
request.

Examples of systems mainly developed for the annota-
tion phase includeGenotator[15], used by several groups
in LBNL (Lawrence Berkeley National Laboratory), as well
as in Stanford University and other genome study cen-
ters. It was developed for the automated execution of
some programs for sequence analysis and annotation.GAIA
(Genome Annotation and Information Analysis) [19, 3], de-
veloped by the Bioinformatics Center of Pennsylvania Uni-
versity, supports semiautomated annotation, being first de-
signed to support the human genome annotation. Its com-
ponents include a configurable pipeline, an storage manager
of relational information and a Java-based user interface.
Its annotation mechanism is based on autonomous compo-
nents, calledsensors, each one performing a specific anal-
ysis, and the communication among sensors is made using
the annotation database.BASys[9] generate more than 60
separate annotations for a gene, but the computacional ef-
fort of its developers is more focused on data graphic pre-
sentation.Manatee[24], created by the Bioinformatics De-
partment of The Institute for Genomic Research (TIGR), is
an open source web based interface for interactive editing
of annotation data. It is used after the submission of the
sequence data to TIGR Annotation Engine, that is an auto-
mated annotation pipeline.

Another example of a system that aims to model bioin-
formatics pipelines is BioWMS [4]. This system does not
support genome sequecing projects as a whole, but intro-
duces an elegant way to define bioinformatics pipelines.
BioWMS uses UML activities diagrams to model pipelines

and translates these diagrams into multiagent systems that
will execute the pipeline.

Most of the existing systems are not focused on project
modelling nor on free software concept. Some of them can
be obtained by request to the authors or can be available for
nonprofit organizations, therefore they are not open source
in the wide sense of the word. An analysis regarding the
architecture of those systems is harmed by the unavailability
of the source code of most of them.

In this context, the objective of this work is to propose
a framework that supports the three phases of a computa-
tional system supporting a genome sequencing project, de-
veloped employing techniques of object-oriented develop-
ment (class modelling is in the core of the project), in the
context of open source projects. We want to offer a frame-
work with the most common computational systems func-
tionalities, but with a simpler system configuration and ar-
chitecture, when comparing with other systems.

Funcionalities of the framework are presented on Sec-
tion 2. The system architecture is described on Section 3.
Two case studies are presented and discussed on Section 4.
Finally, on Section 5 we conclude and make some sugges-
tions of future work.

2 The framework and its functionalities

Our framework, calledTimina, is an object-oriented web
application developed in Java. It is a free software (dis-
tributed under the GNU General Public License [12]) de-
veloped on the SourceForge.net. The project is a free soft-
ware seed at this moment, but it will migrate to a colab-
orative free software environment soon. It is available at
http://timina.sourceforge.net. Timinacan be
downloaded and installed to be used on UNIX environ-
ments.

The web interface ofTimina follows the W3C recom-
mendations, which allow its correct visualization on differ-
ent browsers. We also used Cascading Style Sheets (CSS),
that allows changes on the style of the interface without
changing the source code. Whenever possible we make web
content accessible to people with disabilities [25]. There are
translations for Brazilian Portuguese and English, but more
translations can be easily added.

The framework provides support for plaque submission
and for reports containing details of the reads from submit-
ted plaques. It also reports, for each user, how many plaques
were submitted. Total number of submitted plaques and to-
tal number of users that submitted plaques are other useful
informations available (Figures 3 and 4).

Timinasupports sequence assembly, starting the process-
ing from a shell script. It provides reports containing in-
formation such as execution date, total number of accepted
sequences, total of contigs, total of singlets and the base av-
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Figure 3. A plaque report generated by Tim-
ina.

Figure 4. A productivity report.

erage of all contigs.Timina shows the history of previous
assemblies. As discussed before, in the case of genomic
DNA projects, identification of possible genes in contigs
and singlets is made.

Automatic annotation onTimina is supported by a pro-
cess also started by a shell script.Best hitsare listed in
order to facilitate biological analysis. A form for manual
annotation of sequences is disposed by a web interface. It is
possible to search the fields of manual annotation form us-
ing keywords and to search hits produced by the automatic
annotation.

Submission, assembly and automatic annotation phases
are configurable. Using properties files, it is possible to de-
fine which programs must be executed, their execution or-
der and parameters (Figures 14 and 15). It is possible to
define the fields of the manual annotation form (Figures 16
and 17).

Timinaprovides a management system for project users.

It is possible to insert, remove and modify user informations
by a web interface. Permissions are given to each user, so
access to parts of the system can be controlled. Authentica-
tion security, as well as navigation, must be done by a server
supporting HTTPS.

The architecture of the framework, to be described on the
next section, provides an interface for plug-ins and exten-
sions, especially for annotation, so that it is easy to imple-
ment and add new funcionalities. The project of the frame-
work also permits that a unique servlet container supports
one or more sequencing projects.

3 The architecture of the framework

The design ofTimina is based on a layered architec-
ture: presentation, business and persistence. Our project
makes a clear distinction among layers, defining interfaces
and builder classes, and using design patterns likeBuilder
andSingleton[13], such that the three layers composing the
software can be distributed in distinct packages, that can be
easily replaced or shared.

Presentation layer is composed by Servlets.Timinacan
be executed in any servlet container, such as Tomcat, in
which it was developed and tested. The database manage-
ment system used byTimina is PostgreSQL, adopted due to
its reliability, good performance attributes and because it is
a free software. Project and implementation of presentation
and persistence layers are not the focus of this article, so in
this work we will detail only the business layer.

The processing of sequencing project phases — submis-
sion, assembly and annotation — requires three steps: 1)
to generate files, 2) to execute programs using previously
generated files (pipeline), and 3) to parse resulting files
of executed programs. These data must be stored on the
database created for the project. For each phase, there is a
subsystem1 to control its steps containing modules to gen-
erate files, to execute programs and to parse resulting files.
Figure 5 shows the general structure of modules from the
business layer.

From the general description of the business layer, we
will specify the classes for each subsystem. Next subsec-
tions will present the modules of submission, assembly and
annotation subsystems. But first, we will define the classes
corresponding to the system entities.

3.1 Entities

We first investigated the possibility to use BioJava [21],
a framework containing classes to represent, for example, a
DNA sequence and parsers to files commonly used in bioin-
formatics. But, its data structures would lead to a worse

1A subsystem is an aggregate of correlated modules.
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Figure 5. Module view of a subsystem.

performance when compared to a system developed specif-
ically to manage a sequencing project by a group with ex-
pertise in Java and bioinformatics. For example, BioJava
needs to loadSymbolList andAlphabet objects [21]
to represent a DNA sequence whileTiminarepresents a se-
quence using a simplechar[].

In Figure 6 we present the entities of submission sub-
system (UML notation [5]).Sequence represents a string
of subunits (bases or aminoacids) of DNA, RNA or pro-
tein. BaseSequence is a DNA or a RNASequence
with error probabilities (qualities) related to each base. The
string of subunits is stored with achar[] because the Java
classString has more resources than needed and its use
would require more memory.BaseSequence has meth-
ods to translate and transcribe a sequence.Read consists of
a base sequence and other useful informations computed by
the system during submission phase, such as the number of
bases with acceptable qualities, and the percentage of con-
taminant bases in the sequence.Plaque class contains a
set ofRead objects.Submission class represents a par-
ticular submission of DNA fragments to the system, and it
is identified by two users, one that has submitted the plaque
and another that has confirmed its inclusion. To confirm a
plaque means that its reads will be used on the assembly
phase.

Figure 7 shows the entities of the assembly sub-
system. AlignedBaseSequence class represents a
base sequence involved on an alignment. This class
contains informations about gaps and orientation of a
BaseSequence. AlignedRead class represents a se-
quence belonging to a contig. It stores the initial po-
sition and the list of pieces forming the consensus se-
quence. Contig class contains sequences forming the
contig (AlignedRead) and the consensus sequence rep-
resenting the contig (AlignedBaseSequence). A
Contig or aSinglet can have one or more genes (for

genomic DNA), represented by theORF class. The results
of an assembly program and its associated statistics are rep-
resented by theAssembly class.

Figure 8 shows the entities for the annotation sub-
system. AutomaticAnnotation represents the re-
sults obtained from comparisons done by a program, like
BLAST. AutomaticAnnotationHit class storesbest
hits produced by a program. ManualAnnotation
class represents an annotation made by a biologist. A
properties file defines the form fields (represented by
ManualAnnotationField) that can be used by a bi-
ologist in his annotations.

3.2 The business layer

Definition of the entity classes allowed us to project and
to implement the subsystems — submission, assembly and
annotation — using the structure shown in Figure 5.

Submission subsystem is composed by the classes and
interfaces presented on Figure 9. Note that this subsystem
have no module to generate files. ThePipeline class al-
lows execution of any sequence of programs following the
definitions found in theproperties file. On Section 4 we
will show how to specify a pipeline in a properties file. So,
SubmissionPipeline executes processes of the sub-
mission phase, such as to unzip a plaque and to adjust the
name of the reads of a plaque.

The classes and interfaces of the assembly subsystem are
described on Figure 10.Pipeline is also the core of the
processing, here executing assembly programs. During the
assembly phase, ORFs can be identified. So modules with
the same structure for assembly processing can be used to
identify ORFs: file makers, pipeline and file parsers.

Annotation subsystem has the structure of modules and
interfaces shown on Figure 11. The class structure of this
subsystem is the same of the assembly subsystem, having
classes to generate files, to execute programs and to parse
files, but without specific classes for dealing with ORFs.

Module FileMakers (exemplified by
AssemblyFileMakers in the assembly subsystem)

Figure 6. Entity classes for the submission
subsystem.
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Figure 7. Entity classes for the assembly sub-
system.

Figure 8. Entity classes for the annotation
subsystem.

hides classes defined in an inheritance tree that effectively
generates the files. In fact, moduleFileMakers manages
the use of these classes. For each file format, a class to
write an object on the file can be implemented using the
FileMaker abstract class.Timina includes a class that
generates files onFASTAformat (FastaQualityMaker,
an extension ofFileMaker), that writes the sequence and
quality files.
Pipeline uses classes for configuring the execu-

tion of a program that uses a class structure similar to
the Commanddesign pattern [13]. ProgramRunner
controls the execution of a program or command de-
fined in ProgramRunnerParameters, using the

Figure 9. Classes and interfaces for the sub-
mission subsystem.

Figure 10. Classes and interfaces for the as-
sembly subsystem.

Figure 11. Classes and interfaces for the an-
notation subsystem.

Java classProcess to execute it. For each pro-
gram executed byTimina, there is an extension of
ProgramRunnerParameters for properly configure it
(Figure 12). If necessary, any command can be executed by
setting it inProgramRunnerParameters.

Analogously to the FileMakers module, the
FileParsers module manages the use of classes that
effectively analyze files, iteratively parsing files to specific
objects. For example,FastaParser setsSequence
objects fromFASTAfiles andAceParser setsContig
objects fromacefiles (Figure 13).

Figure 12. Classes for executing programs.
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Figure 13. Classes for parsing files.

3.3 Extension points

As described before, business layer is
the core of Timina. Interfaces provided by
this layer — ISubmissionController,
IAssemblyController and
IAnnotationController — must be used by
an implementation of the presentation layer, not described
here. In fact, presentation is not the objective ofTimina, so
a user of the framework could project a particular imple-
mentation. Likewise, the persistence layer was designed as
an independent module that can be replaced. A framework
user would project a specific persistence layer, for example,
to access other database systems, instead of the Post-
greSQL. This layer can be replaced by implementing the
persistence interfaces —ISubmissionPersistence,
IAssemblyPersistence and
IAnnotationPersistence — to provide the
services required by the business layer and to imple-
ment the interface that defines a framework module:
ITiminaModule. Finally, for loading a persistence
module ofTimina, the user must implement a builder class
(realizing ITiminaModuleBuilder interface) and
must add the name of the builder in the main properties file.

Another important extension point is the interface for
additional processing during the annotation phase. Im-
plementingIAnnotationPlugin (an extension of the
ITiminaModule), a module can modify data in the
ManualAnnotation objects during the automatic anno-
tation processing. TheManualAnnotation objects will
be used as pre-annotations that may help biologists in the
manual annotation task. Using the best hits of the automatic
annotations, a particular annotation plug-in can use some
other methods (heuristics or data mining, for example) to
infer informations for the fields of the manual annotation.
Multiple plug-ins can be executed during the automatic an-
notation processing. Loading an annotation plug-in is simi-
lar to load a persistence module, just adding the name of the
class that implements the plug-in in the properties file.

New screens in the web interface can be designed for an-
notation plug-ins. For example, projects that need to study
genes categories [23] could implement an annotation plug-
in to cross data and to generate a corresponding report.

pipeline = phred, phdFst, cmatch, cap3

phred.class
= br.unb.timina.programs.PhredRunnerParameters

phred.input = esd
phred.output = phd
phred.parameterFile = /usr/local/phred/phredpar.dat

phdFst.class
= br.unb.timina.programs.Phd2FastaRunnerParameters

phdFst.input = phd
phdFst.output = reads.fst

cmatch.class
= br.unb.timina.programs.CrossmatchRunnerParameters

cmatch.input = reads.fst
cmatch.minMatch = 12
cmatch.minScore = 20
cmatch.filter = /var/timina/data/vectors.fst

cap3.class
= br.unb.timina.programs.Cap3RunnerParameters

cap3.input = reads.fst.screen

minimumQuality = 20
minimumNumberOfBasesWithMinimumQuality = 100

readsFastaToParse = reads.fst.screen
readsQualityToParse = reads.fst.screen.qual
readsAceToParse = reads.fst.screen.cap.ace

Figure 14. Properties file of the submission
phase for the Jararaca Project.

4 Two case studies

In this section, we present the computational systems for
the Anaplasma Project[17] and theJararaca Project[6],
both generated using our framework.

Figures 14 and 15 show examples of how a user
can create a pipeline for submission phase usingTimina.
These definitions will be used byPipeline class to in-
stanceProgramRunnerParameters, configuring ex-
ternal programs to be executed in the order specified on
the properties file. The pipeline defined at Figure 15 is the
same presented on Figure 1. Basically the main differences
among the pipelines are the filters (files with contaminants
and vectors sequences) and reports required by each project.

Some computational systems for genome sequencing
projects were previously developed on the Bioinformatics
Laboratory of the University of Brasilia, and these pipelines
were defined on the source code, particulary using the JAVA
language. A class was used to control the execution of sev-
eral programs by invoking anexecute()method for spe-
cific classes of each external program.

Figures 16 and 17 show examples of how a user can de-
fine fields for the manual annotation usingTimina. These
definitions will be used to create columns in the database
table that stores manual annotations. For each defined field,
an instance ofManualAnnotationField will be cre-
ated for aManualAnnotation object. The definitions
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pipeline = phred, phdFst, cmatch1, cmatch2 cmatch3, cap3

phred.class
= br.unb.timina.programs.PhredRunnerParameters
phred.input = esd
phred.output = phd
phred.parameterFile = /usr/local/phred/phredpar.dat

phdFst.class
= br.unb.timina.programs.Phd2FastaRunnerParameters
phdFst.input = phd
phdFst.output = reads.fst

cmatch1.class
= br.unb.timina.programs.CrossmatchRunnerParameters
cmatch1.input = reads.fst
cmatch1.minMatch = 12
cmatch1.minScore = 20
cmatch1.filter = /var/timina/data/vectors.fst

cmatch2.class
= br.unb.timina.programs.CrossmatchRunnerParameters
cmatch2.input = reads.fst.screen
cmatch2.minMatch = 12
cmatch2.minScore = 20
cmatch2.filter = /var/timina/data/bostaurus.fst

cmatch3.class
= br.unb.timina.programs.CrossmatchRunnerParameters
cmatch3.input = reads.fst.screen.screen
cmatch3.minMatch = 12
cmatch3.minScore = 20
cmatch3.filter = /var/timina/data/ecoli.fst

cap3.class
= br.unb.timina.programs.Cap3RunnerParameters
cap3.input = reads.fst.screen.screen.screen

minimumQuality = 20
minimumNumberOfBasesWithMinimumQuality = 100

readsFastaToParse = reads.fst.screen.screen.screen
readsQualityToParse = reads.fst.screen.screen.screen.qual
readsAceToParse = reads.fst.screen.screen.screen.cap.ace

Figure 15. Properties file of the submission
phase for the Anaplasma Project.

of the fields are also used to show them for the biologists
on the web interface. There is also the option to specify
external links and translations for the field names.

For the previous computational systems, not generated
by Timina, these fields were defined on the source code
of the web interface and they were added manually in the
database definition. In order to add new fields, the class
representing the manual annotation also require changes in
the source code.

Figure 19 shows the main page of theAnaplasma Project
as generated byTimina. Note thatTiminaallows changes on
the layout of the user interface by changing the style sheet.
This is an interesting feature when comparing with the pre-
vious systems, in which changes in the layout definitions
required modifications on the source code. Figure 18 shows
some annotation pages in theJararaca Project.

The use of properties files and CSS byTimina makes
easier to adapt the system to the needs of each project.

annotationFields = ec, cat1, cat2, cat3

ec.name = ec
ec.name.en_US = EC (GO)
ec.name.pt_BR = EC (GO)
ec.link = yes
ec.link.name.en_US
= GO "enzymes" to Enzyme Commission Numbers

ec.link.name.pt_BR
= "Enzimas" GO para Enzyme Commission Numbers

ec.link.url
= http://www.geneontology.org/external2go/ec2go

cat1.name = cat1
cat1.name.en_US = Category 1
cat1.name.pt_BR = Categoria 1
cat1.link = no

cat2.name = cat2
cat2.name.en_US = Category 2
cat2.name.pt_BR = Categoria 2
cat2.link = no

cat3.name = cat3
cat3.name.en_US = Category 3
cat3.name.pt_BR = Categoria 3
cat3.link = no

Figure 16. Properties file of the annotation
form fields for the Jararaca Project.

Previous implementations of other genome projects were
not focused in software architecture. For example, the class
representing a plaque also controled the submission pro-
cessing and the access to database. These characteristics
implied on reuse problems on these systems — there was
not a shared core between them. This implied that common
funcionalities of these systems now have different imple-
mentations.

Timina tried to solve these problems with its software
architecture (Section 3). Presentation, business and persis-
tence are distributed on different packages, increasing reuse
and reducing evolution problems. Business and persistence
packages should be placed on the path of the libraries of
the servlet container application. Presentation package and
properties files must be placed on the specific path of a
project in the servlet container (Figure 20).

5 Conclusions and future work

In this work we presented the frameworkTimina, that
builds the three phases of a computational system support-
ing genome sequencing projects — submission, assembly
and annotation — employing techniques of object-oriented
development, in the context of open-source projects.Timina
offers the most common functionalities of computational
systems for sequencing projects, but with a simpler config-
uration and architecture, when compared to other systems.
We also presented and discussed two case studies of bioin-
formatics systems generated by our framework.
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annotationFields = cogCat, cogName, ec, cat1, cat2, cat3,\\
defGO1, defGO2, defGO3, defGO4, defGO5, ortoGene, ortoName

cogCat.name = cogCategory
cogCat.name.en_US = COG Category
cogCat.name.pt_BR = Categoria COG
cogCat.link = yes
cogCat.link.name.en_US = COG table
cogCat.link.name.pt_BR = Tabela do COG
cogCat.link.url
= ftp://ftp.ncbi.nih.gov/pub/COG/COG/fun.txt

cogName.name = cogName
cogName.name.en_US = COG Name
cogName.name.pt_BR = Nome do COG
cogName.link = no

ec.name = ec
ec.name.en_US = EC (GO)
ec.name.pt_BR = EC (GO)
ec.link = yes
ec.link.name.en_US
= GO "enzymes" to Enzyme Commission Numbers
ec.link.name.pt_BR
= "Enzimas" GO para Enzyme Commission Numbers
ec.link.url
= http://www.geneontology.org/external2go/multifun2go

cat1.name = cat1
cat1.name.en_US = Category 1
cat1.name.pt_BR = Categoria 1
cat1.link = no

cat2.name = cat2
cat2.name.en_US = Category 2
cat2.name.pt_BR = Categoria 2
cat2.link = no

cat3.name = cat3
cat3.name.en_US = Category 3
cat3.name.pt_BR = Categoria 3
cat3.link = no

defGO1.name = defGO1
defGO1.name.en_US = GO Definition 1
defGO1.name.pt_BR = Defini\u00E7\u00E3o GO 1
defGO1.link = no

defGO2.name = defGO2
defGO2.name.en_US = GO Definition 2
defGO2.name.pt_BR = Defini\u00E7\u00E3o GO 2
defGO2.link = no

defGO3.name = defGO3
defGO3.name.en_US = GO Definition 3
defGO3.name.pt_BR = Defini\u00E7\u00E3o GO 3
defGO3.link = no

defGO4.name = defGO4
defGO4.name.en_US = GO Definition 4
defGO4.name.pt_BR = Defini\u00E7\u00E3o GO 4
defGO4.link = no

defGO5.name = defGO5
defGO5.name.en_US = GO Definition 5
defGO5.name.pt_BR = Defini\u00E7\u00E3o GO 5
defGO5.link = no

ortoGene.name = ortoGene
ortoGene.name.en_US = Ortholog gene on E. coli
ortoGene.name.pt_BR = Gene ort\u00F3ologo em E. coli
ortoGene.link = no

ortoName.name = ortoName
ortoName.name.en_US = Name of ortholog gene on E. coli
ortoName.name.pt_BR = Nome do gene ort\u00F3ologo em E. coli
ortoName.link = no

Figure 17. Properties file of the annotation
form fields for the Anaplasma Project.

Figure 18. Manual and automatic annotation
pages in the Jararaca Project, respectively
from left to right.

Figure 19. Layout of the homepage of the
Anaplasma Project, as generated by Timina.

As future work we intend to develop: (i) a system that
helps biologists to decide which function to infer for a gene
— it could use the plug-in interface, also described on this
work, (ii) a visual interface to make easier the system con-
figuration, and (iii) a performance analysis comparing the
implementation using Servlets with an implementation as-
sisted by a presentation framework. Another possible future
work is to adopt the aspect oriented paradigm for the design
and implementation ofTimina. The framework could get
benefits from this technique considering that its subsystems
have very similar code.
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Figure 20. Distribution of the components of
Timina in a server for the Anaplasma Project.
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