COMPUTERS and SIMULATION in MODERN SCIENCE, Volume |

Project and implementation of an object oriented open-sour ce framework for
genome sequencing proj ects

Rodrigo C. M. Coimbra Shana S. Santos Alex V. Barbosa Anderson G. F. Pereira
Fernando A. A. C. de Albuguerque
Maria Emilia M. T. Walter
University of Brasilia (UnB)
Department of Computer Science
Darcy Ribeiro Campus, Brasilia, Brazil

Abstract tropherogram, having four colored graphics, each one cor-
responding to one of the four bases, A, C, G and T. When
Computational systems play an essential role on genomea graphic presents a peak on a certain position of the frag-
sequencing projects. Fragments of multiple copies of DNAment, a base is identified on this position. If a particular
or RNA are sequenced on molecular biology laboratories base can not be identified, the character N (uNknown) is
and computational systems must group these fragments irassociated to the corresponding position. The electrophero-
order to obtain the original DNA or RNA. These computa- grams are sent by the biologists to the bioinformatics labo-
tional systems have three phases: submission, assembly antory, usually using web interfaces. These fragments must
annotation. There are many efforts on bioinformatics cen- be joined in order to reconstruct the original DNA. Besides,
ters around the world to create systems that can be easilybiological functions or characteristics must be identified,
adapted to be used on different sequencing projects. In thisalso a task strongly supported by computational tools.
work, we propose a framework for computational systems : . .
) . . Typically, a computational system, developed inside a
that support genome sequencing projects, employing techs

niques of object-oriented systems, in the context of Open_b|0|m‘ormat|cs laboratory, processes the fragments on three

) . phases: submission, assembly and annotation. Osuthe
source projects. We also present two case studies of compu*

. . mission phase, each electropherogram is transformed on
tational systems generated using our framework. : : )
a string, calledread or sequencein which each charac-

ter is associated to a value measuring its error probability.
] Usually this task is made by thehred program [11, 10],
1 Introduction that generates a file, iphd format, containing a string
composed by characters A, C, G, T or N for each read,
Genome sequencing projects aim to discover the se-and the error probability associated to each base. Program
guence of bases forming DNA chromosomes, transcript Phd2Fastd14] converts thigphdfile to two text format files
genes or non-coding RNAs of an organism. Due to the large(in FASTAformat [18]),read fileandquality file Each se-
volume of these biological sequences, together with infor- quence is filtered to remove portions probably not belong-
mation related to each one of them, the sequencing projectsng to the organism being studied, but to vectors (DNA se-
are highly dependent of computational systems. On thequences of organisms used to replicate the DNA of the stud-
laboratories of molecular biology, biologists produce mul- ied organism) and contaminants (DNA sequences of other
tiple copies of long biological sequences of an organism organisms), using programs such@essmatctj14]. De-
and cut it in short pieces. These fragments are then sepending on each sequencing project, additional analysis can
guenced by automatic sequencers, since these machines cére made. For example, a redundancy analysis shows if the
not treat long sequences. Sequencing is the task of obtainfragments of a plaque do not overlap, since as fewer is the
ing the bases — A (Adenine), C (Cytosine), G (Guanine) number of overlapping fragments inside the plaque as bet-
and T (Thymine) or U (Uracyl) — composing biological ter is the quality of the generated fragments. Finally, these
sequences. Many fragments composing a plaque are simulfiles are stored on a database (Figure 1). Other informations
taneously sequenced, and each fragment generatde@n  also can be stored on databases, according to the sequencing

ISSN: 1790-2769 181 ISBN: 978-960-474-010-9



COMPUTERS and SIMULATION in MODERN SCIENCE, Volume |

Subrmit plague region possibly coding a gene, known apen reading
frame (ORF).Glimmerhas to be used on each contig con-
sensus sequence and on each singlet, and the positions of

each candidate gene must be stored on a database. For EST
projects there is no need to identify genes, so the consensus

Fhred Phoi2Fasta CrossMatch

sequences of contigs and singlets are directly stored on the
@@ database.
e The annotation phase has the objective of identifying

functions of the sequences generated on the assembly phase,

é and usually is divided on two steps. First, on the automatic
Store secuences in daranase annotation step, all the project sequences must be compared
with sequences stored on public databases, because their

Figure 1. Activity diagram of a pipeline of the fl_m<_:ti0ns are inferred by previously Qetermineq functions of
submission phase (UML notation [5]). similar sequences. The hypothesis is that similar sequences

have similar biological functions. The second step, the man-

ual annotation, is done by biologists, that use information

of the automatic annotation and their knowledge to decide
project needs. the biological function to be associated to a sequence. Data
The assembly phase consists in groupingimilar se- generated on both steps, automatic and manual, are stored

quencegsequences having “approximately equal” prefixes ON the databases of the project.

and suffixes). Two sequences are similar if there are simi- In the automatic annotation, programs liBeAST[2]
larities between the suffix from one and the prefix from the andFasta[20] are often usedBLAST (Basic Local Align-

other sequence. This clustering aims to put together frag-ment Search Tool) is broadly used to search similar se-
ments potentially belonging to the same region of the DNA. quences on DNA and protein databasB&ASTis a fam-
Groups formed by more than one sequence are catied ily of computational and statistical methods, also employ-
tigs (Figure 2), and groups formed by only one sequence areing heuristics, to search best alignments between two se-
calledsinglets From each one of the contigs, a consensus quences. Aralignmentof two sequences can be obtained
sequence is generated and represents the contig (Figure 2jutting one sequence above the other, showing correspon-
Program$hrap[14] andCAP3[16] are usually used to as- dences between two characters, one of each sequence, or
sembly sequences. Both generate, among others, a file oRetween a gap and a character, such that both sequences,
the aceformat (containing data about similar suffixes and With gap inserted, have equal lengths. Each alignment has
prefixes of the sequences composing a contig), a file con-associated values, to express reliability and error probabil-
taining data about the contigs, and another one Containindty. Higher reliabilities and lower error probabilities indi-

the singlets data. Finally, the assembly phase store somé&ate good alignments, and are caltest hits BLASThas
statistics, like the total number of groups (contigs and sin- many programs depending on the query sequence (bases

glets), the total number of identified genes, and some contigor aminoacids) and on the sequence database (bases or
visualizations. aminoacids)Fastais also a family of programs for search-

Genome sequencing projects can sequence genomi@g similarities between a query sequence and each of
DNA (chromosome DNA) or ESTs (Expressed Sequencethe.sequ.ences .of a daFabase, both composed by bgses or
Tags) — that are short sequences of transcript DNA. In the@Minoacids, using particular algorithms and strategies to
first case, it is necessary to identify possible genes on theob_talr_] _S|m|lar|t|es and best_ _ahgnments. It also associates
sequences. This is made by programs G{enmer[22, 8], reliability and error probability to each alignment. These

that identifies beginning or ending positions of a fragment Programs generate output in HTML format, that can be di-
rectly stored on the database, ottéxtformat, that can be

processed later. These data are visualized by biologists usu-

conserses . (D ally using web pages.
o —E) There are many projects to assist and support the devel-
i) opment of computational systems for genome sequencing
projects. Some of the systems covers the three phases of
Figure 2. A contig resulting from prefix and pipeline (submission, assembly and annotation), but most
suffix similarities, and its consensus se- of them were specifically developed to support the annota-
quence. tion phase.

ACeDB(A C. elegandataBase) [26], developed by the

ISSN: 1790-2769 182 ISBN: 978-960-474-010-9



COMPUTERS and SIMULATION in MODERN SCIENCE, Volume |

Sanger Institute, was originally written to analyze and to and translates these diagrams into multiagent systems that
store data from th€. elegangienome projectACeDBwas will execute the pipeline.

concerned on data storage more than on annotation pipeline, Most of the existing systems are not focused on project
and its first development was not based on techniqguesmodelling nor on free software concept. Some of them can
of software engineering — its code style was “baroque, be obtained by request to the authors or can be available for
sparsely comented and idiosyncratiap(d [15]). ACeDB nonprofit organizations, therefore they are not open source
is distributed under the GNU General Public Licence exceptin the wide sense of the word. An analysis regarding the
for a few parts which are distributed under the GNU Lesser architecture of those systems is harmed by the unavailability
General Public License. of the source code of most of them.

Examples of systems that contemplate the three phases [N this context, the objective of this work is to propose
of the pipeline areSABIA and GARSA SABIA (Sys- a framework that supports the three phases of a computa-
tem for Automated Bacterial Integrated Annotation) [1] tional system supporting a genome sequencing project, de-
is composed by an automated web enviroment and a seveloped employing techniques of object-oriented develop-
of Perl/CGI scripts for data manipulation on a relational ment (class modelling is in the core of the project), in the
database (MySQL). It is distributed under proprietary li- context of open source projects. We want to offer a frame-
cense GARSAGenomic Analyses Resources for Sequence Work with the most common computational systems func-
Annotation) [7] aims to integrate, to analyze and to presenttionalities, but with a simpler system configuration and ar-
information of several bioinformatics tools and genome chitecture, when comparing with other systems.

databases. Its architecture is based on Perl scripts, result- Funcionalities of the framework are presented on Sec-
ing in code effort to add new tools to the p|pe||ne It ex- tion 2. The system architecture is described on Section 3.

ecuts some Speciﬁc programs, accepting the definition OfT\.NO case StUdieS are presented and discussed on Section 4.
programs parameters, but not plug-ins. AlthouBARSA Elnally, on Section 5 we conclude and make some sugges-
is distributed under GPL license, download is allowed by tions of future work.

request.

Examples of systems mainly developed for the annota-2 The framework and its functionalities
tion phase includé&enotator[15], used by several groups
in LBNL (Lawrence Berkeley National Laboratory),aswell  Qur framework, calledimina, is an object-oriented web
as in Stanford University and other genome study cen- gpplication developed in Java. It is a free software (dis-
ters. It was developed for the automated execution of triputed under the GNU General Public License [12]) de-
some programs for sequence analysis and annot&®aM  yeloped on the SourceForge.net. The project is a free soft-
(Genome Annotation and Information Analysis) [19, 3], de- ware seed at this moment, but it will migrate to a colab-
veloped by the Bioinformatics Center of Pennsylvania Uni- orative free software environment soon. It is available at
versity, supports semiautomated annotation, being first de-ht t p: // t i ni na. sour cef or ge. net . Timinacan be
signed to support the human genome annotation. Its comownloaded and installed to be used on UNIX environ-
ponents include a configurable pipeline, an storage managements.
of relational information and a Java-based user interface. The web interface ofimina follows the W3C recom-
Its annotation mechanism is based on autonomous compomendations, which allow its correct visualization on differ-
nents, calledsensorseach one performing a specific anal- ent browsers. We also used Cascading Style Sheets (CSS),
ysis, and the communication among sensors is made usinghat allows changes on the style of the interface without
the annotation databasBASy9] generate more than 60  changing the source code. Whenever possible we make web
separate annotations for a gene, but the computacional efcontent accessible to people with disabilities [25]. There are
fort of its developers is more focused on data graphic pre-translations for Brazilian Portuguese and English, but more
sentation Manateg24], created by the Bioinformatics De-  translations can be easily added.
partment of The Institute for Genomic Research (TlGR), is The framework provides support for p|aque submission
an open source web based interface for interactive editingand for reports containing details of the reads from submit-
of annotation data. It is used after the submission of the ted p|aques' It also reports, for each user, how many p|aques
sequence data to TIGR Annotation Engine, that is an auto-were submitted. Total number of submitted plaques and to-
mated annotation pipeline. tal number of users that submitted plaques are other useful
Another example of a system that aims to model bioin- informations available (Figures 3 and 4).
formatics pipelines is BioWMS [4]. This system does not  Timinasupports sequence assembly, starting the process-
support genome sequecing projects as a whole, but introing from a shell script. It provides reports containing in-
duces an elegant way to define bioinformatics pipelines.formation such as execution date, total number of accepted
BioWMS uses UML activities diagrams to model pipelines sequences, total of contigs, total of singlets and the base av-

ISSN: 1790-2769 183 ISBN: 978-960-474-010-9



COMPUTERS and SIMULATION in MODERN SCIENCE, Volume |

RS e Itis possible to insert, remove and modify user informations

PN LY T ——— by a web interface. Permissions are given to each user, so
T S e ifmm_ access to parts of the system can be controlled. Authentica-
ﬁ'imina N | e o tion security, as well as navigation, must be done by a server

T ot supporting HTTPS.

e The architecture of the framework, to be described on the
T —— T e, next section, provides an interface for plug-ins and exten-
e T e sions, especially for annotation, so that it is easy to imple-
o T — e e ment and add new funcionalities. The project of the frame-

work also permits that a unique servlet container supports
one or more sequencing projects.

a1z 63 572 2%
01 945 ss2 %
802 46 403 2%
803 767 a0s %
o4 58 a1 0%
808 o5 77 %
810 1278 a7 0%
11 o84 aa %
12 1is a3 0%

e e e : i 3 Thearchitecture of the framework

Figure 3. A plaque report generated by Tim- The design ofTimina is based on a layered architec-

Ina. ture: presentation, business and persistence. Our project
makes a clear distinction among layers, defining interfaces

& s Lo oo L@ W 3 s @ and builder classes, and using design patternsBikider

andSingletor{13], such that the three layers composing the

s = - software can be distributed in distinct packages, that can be

Ii L e e e easily replaced or shared.

Timina .. [ovreivar I

Presentation layer is composed by Servidisiinacan
be executed in any servlet container, such as Tomcat, in
which it was developed and tested. The database manage-
ment system used Byiminais PostgreSQL, adopted due to
its reliability, good performance attributes and because it is
a free software. Project and implementation of presentation
and persistence layers are not the focus of this article, so in
this work we will detail only the business layer.
The processing of sequencing project phases — submis-
sion, assembly and annotation — requires three steps: 1)
to generate files, 2) to execute programs using previously
Figure 4. A productivity report. generated files (pipeline), and 3) to parse resulting files
of executed programs. These data must be stored on the
database created for the project. For each phase, there is a
erage of all contigs.Timinashows the history of previous  sypsysterhto control its steps containing modules to gen-
assemblies. As discussed before, in the case of genomigrate files, to execute programs and to parse resulting files.
DNA projects, identification of possible genes in contigs Figure 5 shows the general structure of modules from the
and singlets is made. business layer.
Automatic annotation ofliminais supported by a pro- From the general description of the business layer, we
cess also started by a shell scrifdest hitsare listed in || specify the classes for each subsystem. Next subsec-
order to facilitate biological analysis. A form for manual tjons will present the modules of submission, assembly and

annotation of sequences is disposed by a web interface. Itisannotation subsystems. But first, we will define the classes
possible to search the fields of manual annotation form us-corresponding to the system entities.

ing keywords and to search hits produced by the automatic
annotation. _ _ 3.1 Entities
Submission, assembly and automatic annotation phases
are configurable. Using properties files, it is possible to de-
fine which programs must be executed, their execution or-
der and parameters (Figures 14 and 15). It is possible to
define the fields of the manual annotation form (Figures 16
and 17).
Timinaprovides a management system for project users. A subsystem is an aggregate of correlated modules.

GAN-AC-F01-02290 7 s 3
cinin GRN-AC-F01.02300 &) 3 a1 7
2 145 45

GAN-AC-F01-0300g 7 s ani 7
rodbr GRN-AC-F01-0666 &) 3 a11% 7

We first investigated the possibility to use BioJava [21],
a framework containing classes to represent, for example, a
DNA sequence and parsers to files commonly used in bioin-
formatics. But, its data structures would lead to a worse

ISSN: 1790-2769 184 ISBN: 978-960-474-010-9



COMPUTERS and SIMULATION in MODERN SCIENCE, Volume |

genomic DNA), represented by tii#RF class. The results
: reseraton e of an assembly program and its associated statistics are rep-
: Business layer resented by thAssenbl y class.
JF Figure 8 shows the entities for the annotation sub-
icontroter system. Aut omati cAnnot ati on represents the re-

sults obtained from comparisons done by a program, like
m ,,,,,,,,,,,, B_LAS'I.' Aut omat i cAnnot ati onHi t class store;best
IPipeline hits produced by a program. Manual Annot ati on

' h class represents an annotation made by a biologist. A

properties file defines the form fields (represented by
IFileParsers TeParsers Manual Annot at i onFi el d) that can be used by a bi-
Persistence layer ologist in his annotations.

IPersistence
3.2 The business layer
Figure 5. Module view of a subsystem. Definition of the entity classes allowed us to project and
to implement the subsystems — submission, assembly and
performance when compared to a system developed specif-annOtat'(.)n —using the strqcture shown in Figure 5.
Submission subsystem is composed by the classes and

ically to manage a sequencing project by a group with ex- . ) .
pertise in Java and bioinformatics. For example BioJava'nterfaceS presented on Figure 9. Note that this subsystem
' have no module to generate files. TRiepel i ne class al-

needs to loa®ynbol Li st andAl phabet objects [21] | . ¢ ; tollowing th
to represent a DNA sequence whilninarepresents a se- ows execution of any sequence of programs otiowing the
: : definitions found in theproperties file On Section 4 we

guence using a simpteshar [ ] . il show how t : ineline i ties file. S

In Figure 6 we present the entities of submission sub- VSV' bs ow! OWPP splequ apipe ltne I a proper |efsﬂ|1e. g'
system (UML notation [5])Sequence represents a string ubm SS|hon ' pe hl netexecu_ es plrocessesdot glsut t-h
of subunits (bases or aminoacids) of DNA, RNA or pro- MISSION phase, such as 1o unzip a plaque and to adjust the

name of the reads of a plaque.

tein. BaseSequence is a DNA or a RNASequence The cl dinterf fih bl bsvst

with error probabilities (qualities) related to each base. The € classes and Intertaces ot the assembly Subsystem are

string of subunits is stored withchar [ ] because the Java descnbgd on Figure 1CP'. pel i ne is also the core of Fhe

classSt ri ng has more resources than needed and its usgrocessing, here executing assembly_ programs. During the
assembly phase, ORFs can be identified. So modules with

would require more memongaseSequence has meth- the same structure for assembly processing can be used to
ods to translate and transcribe a sequeRead consists of ) . noly’p >INg
entify ORFs: file makers, pipeline and file parsers.

_ . i
a base sequence and other useful informations computed byOI Annotation subsystem has the structure of modules and

the system during submission phase, such as the number of

bases with acceptable qualities, and the percentage of connterfaces shown on Figure 11. The class structure of this

taminant bases in the sequené®.aque class contains a ill;bsssf‘sti(r)n 'Zr:g?af:;ﬂ:SOftéhgxiiiinb% srgt:ﬁgs;i;nloha\ggge
set ofRead objects.Subm ssi on class represents a par- 9 ! prog P

ticular submission of DNA fragments to the system, and it files, but without _specific classes for dealing_with ORFs.
is identified by two users, one that has submitted the plaque Module . Fi el\/hke.rs (exemplified by
and another that has confirmed its inclusion. To confirm aAssean yFil eMakers in the assembly subsystem)
plague means that its reads will be used on the assembly
phase.

Figure 7 shows the entities of the assembly sub-
system. Al i gnedBaseSequence class represents a
base sequence involved on an alignment. This class
contains informations about gaps and orientation of a
BaseSequence. Al i gnedRead class represents a se-
guence belonging to a contig. It stores the initial po-
sition and the list of pieces forming the consensus se- mser
guence. Cont i g class contains sequences forming the
contig Al i gnedRead) and the consensus sequence rep-  Figure 6. Entity classes for the submission
resenting the contigA i gnedBaseSequence). A subsystem.

Conti g or aSi ngl et can have one or more genes (for

< < BNty >
Sequence
£N
- 1 1 - 11
< < BNty > 3 | < <Entity> > = :l < <BRlity> >
BaseSequence Read Plaque

ISSN: 1790-2769 185 ISBN: 978-960-474-010-9



COMPUTERS and SIMULATION in MODERN SCIENCE, Volume |

< < entity> > < < entity> > < < entity> >
AlignedRead N N AlignedBaseSequence N N BaseSequence

<<interfaces » L
1Assembly Controller R

TN 4

<-<interface > > L+ - -1 AssemblyFileMakers
71 lAssemblyFileMakers
<<interface>> L4 ____{ AssemblyPipeline
e 1AssemblyPipeline
<-<interface > > Ll - - { AssemblyFileParsers
__ -3 lAssemblyFileParsers
<<controlx >
AssemblyController | .
Pl <<interface>> L4 ORFFileMakers
N 10RFFileMakers
TN L cimerfaces > - -ORFFipelinE
. IORFPipeline
lAssemblyPersistence A
< < BNty > ¥ A ccimerfacess> La ORFFileParsers
Assembly IORFFileParsers

< < entity> >
Contig

. ’I

< < BRIy >
ORF

Figure 7. Entity classes for the assembly sub- Figure 10. Classes and interfaces for the as-
system. sembly subsystem.

< <inerface> > 1 - - --{ AnnotationFileMakers
‘ o p—
- . < - <<inerfaces > =
AutomaticAnnotation |, o + | AutomaticAnnotationHit \AnnotationContraller e
. Ay .

T -
\ -
< <entity> » o < <entity> » ! PN
ManualAnnotation ManualAnnotationField - -
1 o AnnotationController |- ----2 <<inmerface > > K- -----
lAnnotationPipeline

AnnotationPipeline

Figure 8. Entity classes for the annotation ‘ h

Q i [
Su bsyStem IAnnotationPersistence lAnnotationFileParsers

Figure 11. Classes and interfaces for the an-
hides classes defined in an inheritance tree that effectively notation subsystem.
generates the files. In fact, mod#el eMaker s manages
the use of these classes. For each file format, a class to
write an object on the file can be implemented using the Java classProcess to execute
Fi | eMaker abstract class.Timinaincludes a class that
generates files dRASTAformat (Fast aQual i t yMaker,
an extension ofFi | eMaker), that writes the sequence and
quality files.

Pi pel i ne uses classes for configuring the execu-

tion of a program that uses a class structure similar 10 | epar ser s module manages the use of classes that

the Commanddesign pattern [13]. ProgramRunner effectively analyze files, iteratively parsing files to specific
controls the execution of a program or command de- objects. For exampleEast aPar ser setsSequence

fined in ProgranRunner Paraneters, using the  hiects fromFASTAfiles andAcePar ser setsConti g
objects fromacefiles (Figure 13).

it. For each pro-
gram executed byTimina, there is an extension of
Pr ogr anRunner Par anet er s for properly configure it
(Figure 12). If necessary, any command can be executed by
setting it inPr ogr amRunner Par anet er s.

Analogously to the Fil eMakers module, the

< <interface > >
ISubmissionController
FA)

I
I
| <<interface: > S
_ - -=-7| ISubmissionPipeline
<<controls > -
< <singletan> >

SubmissionPipeline
SubmissionController |_
i e <<interfaces > - - -+ SubmissionFileParsers
ISubmissionFileParsers

| F H F Parameters |

Cap3RunnerParameters

| CrossmatchRunnerParameters

Phd2FastaRunnerParameters
PhredRunnerParameters

ISubmissionPersistence

Figure 9. Classes and interfaces for the sub-
mission subsystem.
Figure 12. Classes for executing programs.

ISSN: 1790-2769 186 ISBN: 978-960-474-010-9



COMPUTERS and SIMULATION in MODERN SCIENCE, Volume |

pi pel i ne = phred, phdFst, cnmatch, cap3

<k

phred. cl ass
= br.unb.tim na. prograns. PhredRunner Par aneters
phred.input = esd
phred. out put = phd
phred. paraneterFile = /usr/local / phred/ phredpar. dat

GlimmerCoordParser
BlastHTMLParser

QualityParser
FastaHTMLParser

phdFst . cl ass

= br.unb.tim na. prograns. Phd2Fast aRunner Par anet er s
phdFst. i nput = phd
phdFst. out put = reads. fst
Figure 13. Classes for parsing files.

cmat ch. cl ass

= br.unb.tim na. prograns. Crossmat chRunner Par anet er s
cmatch. i nput = reads. f st
3.3 Extension points crat ch. m nhat ch = 12

cmat ch. m nScore = 20

cmatch.filter = /var/timnal/data/vectors.fst

As  described before, business  layer s cap3. ¢l ass
the core of Timina Interfaces provided by = br.unb. tini na. prograns. Cap3Runner Par anet er s
this  layer ~— | SubnissionController,  ¢a3.input =reads.fst.screen
| Assenbl yControl | er and mi ni nunQual ity = 20
| Annot ationControl l er — must be used by MM mumunmberOBasesWthM nimumuality = 100

an implementation of the presentation layer, not describedr eadsFast aToPar se = reads. f st. screen

here. In fact, presentation is not the objectivdmhiina so readsQual | (yToparse = reads. ;iﬁeZﬁrﬁzg qual

a user of the framework could project a particular imple-

mentation. Likewise, the persistence layer was designed as

an independent module that can be replaced. A framework Figure 14. Properties file of the submission

user would project a specific persistence layer, for example, phase for the Jararaca Project.

to access other database systems, instead of the Post-

greSQL. This layer can be replaced by implementing the

persistence interfaces +Submi ssi onPer si st ence,

| Assenbl yPer si st ence and

| Annot ati onPersi stence — to provide the

services required by the business layer and to imple- Inthis section, we present the computational systems for

ment the interface that defines a framework module: the Anaplasma Projecf17] and theJararaca Project[6],

| Ti mi naMbdul e. Finally, for loading a persistence both generated using our framework.

module ofTiming, the user must implement a builder class  Figures 14 and 15 show examples of how a user

(realizing | Ti mi naMbdul eBui | der interface) and  can create a pipeline for submission phase ugingna

must add the name of the builder in the main properties file. These definitions will be used b9 pel i ne class to in-
Another important extension point is the interface for stancePr ogr anRunner Par anmet er s, configuring ex-

additional processing during the annotation phase. Im-ternal programs to be executed in the order specified on

plementingl Annot at i onPl ugi n (an extension of the the properties file. The pipeline defined at Figure 15 is the

| Ti mi naMobdul e), a module can modify data in the same presented on Figure 1. Basically the main differences

Manual Annot at i on objects during the automatic anno- among the pipelines are the filters (files with contaminants

tation processing. Thighnual Annot at i on objects will and vectors sequences) and reports required by each project.

be used as pre-annotations that may help biologists in the Some computational systems for genome sequencing

manual annotation task. Using the best hits of the automaticprojects were previously developed on the Bioinformatics

annotations, a particular annotation plug-in can use somelLaboratory of the University of Brasilia, and these pipelines

other methods (heuristics or data mining, for example) to were defined on the source code, particulary using the JAVA

infer informations for the fields of the manual annotation. language. A class was used to control the execution of sev-

Multiple plug-ins can be executed during the automatic an- eral programs by invoking aexecut e() method for spe-

notation processing. Loading an annotation plug-in is simi- cific classes of each external program.

lar to load a persistence module, just adding the name of the  Figures 16 and 17 show examples of how a user can de-

class that implements the plug-in in the properties file. fine fields for the manual annotation usifignina These
New screens in the web interface can be designed for an-definitions will be used to create columns in the database

notation plug-ins. For example, projects that need to studytable that stores manual annotations. For each defined field,

genes categories [23] could implement an annotation plug-an instance olanual Annot at i onFi el d will be cre-

in to cross data and to generate a corresponding report.  ated for aManual Annot at i on object. The definitions

4 Two case studies

ISSN: 1790-2769 187 ISBN: 978-960-474-010-9



COMPUTERS and SIMULATION in MODERN SCIENCE, Volume |

pi pel i ne = phred, phdFst, cmatchl, cmatch2 cmatch3, cap3 annot ationFields = ec, catl, cat2, cat3
phred. cl ass ec.name = ec

= br.unb. tim na. prograns. PhredRunner Par anet er s ec. nanme. en_US = EC (GO
phred.input = esd ec. nanme. pt _BR = EC (GO
phred. out put = phd ec.link = yes
phred. paranmeterFile = /usr/local / phred/ phredpar. dat ec. link. nanme. en_US

= GO "enzynmes" to Enzyne Conmi ssion Nunbers

phdFst . cl ass ec. | ink. nanme. pt _BR

= br.unb. tim na. prograns. Phd2Fast aRunner Par anet er s = "Enzi mas" GO para Enzyne Conmi ssi on Nunbers
phdFst. i nput = phd ec.link.url
phdFst. out put = reads. fst = http://ww. geneont ol ogy. or g/ ext er nal 2go/ ec2go
cmat chl. cl ass catl.name = catl

= br.unb. tim na. prograns. Crossmat chRunner Par anet er s cat 1. name.en_US = Category 1
cmatchl. i nput = reads. fst catl.nanme.pt_BR = Categoria 1
cmat chl. mi nMatch = 12 catl.link = no
cmat chl. m nScore = 20
cmatchl. filter = /var/tim naldata/vectors.fst cat2. name = cat2

cat 2. nane. en_US = Category 2

cmat ch2. cl ass cat 2. nane. pt _BR = Categoria 2

= br.unb. tim na. progranms. Crossmat chRunner Par anet er s cat2.link = no
cmat ch2.input = reads.fst.screen
cmat ch2. m nMatch = 12 cat3.name = cat3
cmat ch2. mi nScore = 20 cat 3. nane. en_US = Category 3
cmatch2. filter = /var/tim nal/data/bostaurus.fst cat 3. nane. pt _BR = Categoria 3

cat3.link = no
cmat ch3. cl ass
= br.unb. tim na. prograns. Crossmat chRunner Par anet er s
cmatch3. i nput = reads. fst.screen.screen

crat ch3. mi nMat ch = 12 Figure 16. Properties file of the annotation
cmat ch3. mi nScore = 20 ; ;
cmatch3.filter = /var/tim nal/datal/ecoli.fst form fields for the Jararaca PI‘O]eCt.

cap3. cl ass
= br.unb. tim na. progranms. Cap3Runner Par anet er s

cap3.input = reads.fst.screen.screen. screen . . . .
Previous implementations of other genome projects were

mnimmuality = 20 A A not focused in software architecture. For example, the class
m ni munNunber Of BasesW t hM ni munQual ity = 100 . .
representing a plaque also controled the submission pro-
readsFastaToParse = reads. fst.screen. screen. screen cessing and the access to database. These characteristics
readsQual i tyToParse = reads. fst.screen.screen. screen. qual . .
readsAceToParse = reads. f St. Screen. screen. screen. cap. ace implied on reuse problems on these systems — there was
not a shared core between them. This implied that common
_ o o funcionalities of these systems now have different imple-
Figure 15. Properties file of the submission mentations.
phase for the Anaplasma Project. Timina tried to solve these problems with its software

architecture (Section 3). Presentation, business and persis-
tence are distributed on different packages, increasing reuse
and reducing evolution problems. Business and persistence
packages should be placed on the path of the libraries of

the servlet container application. Presentation package and
doroperties files must be placed on the specific path of a

project in the servlet container (Figure 20).

of the fields are also used to show them for the biologists
on the web interface. There is also the option to specify
external links and translations for the field names.

For the previous computational systems, not generate
by Timina, these fields were defined on the source code
of the web interface and they were added manually in the
database definition. In order to add new fields, the class® Conclusions and future work
representing the manual annotation also require changes in
the source code. In this work we presented the framewofkming, that

Figure 19 shows the main page of theaplasma Project  builds the three phases of a computational system support-
as generated bfimina Note thafTiminaallows changeson  ing genome sequencing projects — submission, assembly
the layout of the user interface by changing the style sheet.and annotation — employing techniques of object-oriented
This is an interesting feature when comparing with the pre- development, in the context of open-source projeftaina
vious systems, in which changes in the layout definitions offers the most common functionalities of computational
required modifications on the source code. Figure 18 showssystems for sequencing projects, but with a simpler config-
some annotation pages in thararaca Project uration and architecture, when compared to other systems.

The use of properties files and CSS Biynina makes We also presented and discussed two case studies of bioin-
easier to adapt the system to the needs of each project.  formatics systems generated by our framework.

ISSN: 1790-2769 188 ISBN: 978-960-474-010-9



COMPUTERS and SIMULATION in MODERN SCIENCE, Volume |

annot ati onFi el ds = cogCat, cogNane, ec,

def GO1, def GO2, def GOB, def G4, def GCb,

cogCat .
cogCat .
cogCat .
cogCat .
cogCat .
cogCat .
cogCat .

= ftp:

cogNane.
cogNare.
cogNane.
cogNarre.

ec. nane

ec. nane.
ec. name.
ec.link =
ec. |ink. B

= GO "enzynes" to

catl, cat2, cat3,\\
ortoCene, ortoName

name = cogCat egory

name. en_US = COG Cat egory

nane. pt _BR = Categoria COG

link = yes

i nk. nane. en_US = COG tabl e

l'i nk. nanme. pt _BR = Tabel a do COG
link.url
/1 ftp.ncbi.nih.gov/pub/ COG COJ fun. t xt
nanme = cogName

nane. en_US = COG Nane

nane. pt _BR = None do COG

link = no

= ec

en_US = EC (GO

pt_BR = EC (GO

= yes

name. en_US

ec. | ink. name. pt _BR
= "Enzi mas" GO para Enzyne Conmi ssion Nunbers

ec. link

.url

Enzyme Conmi ssi on Nunbers

= http://ww. geneont ol ogy. or g/ ext er nal 2go/ mul ti f un2go

catl.nane = catl

cat 1. nal
cat 1. nal
catl.li

cat2.na
cat 2. nal
cat 2. nal
cat2.1i

cat 3. na
cat 3. nal
cat 3. nal
cat3.1i

def GOL.
def GOL.
def GOL.
def GOL.

def G2.
def G2.
def G2.
def GO2.

def GCB.
def GCB.
def GCB.
def GOB.

def GA.
def GA.
def GA4.
def GA4.

def GCb.
def GCb.
def GOB.
def GOB.

ortoCen
ortoCen
ortoGen
ortoGen

ort oNare.
ort oNare.
ort oNane.

me.en_US = Category 1

me. pt _BR = Categoria 1

nk = no

me = cat?2

me. en_US = Category 2

me. pt _BR = Categoria 2

nk = no

me = cat3

me. en_US = Category 3

me. pt _BR = Categoria 3

nk = no

nanme = def GOL

nane.en_US = GO Definition 1
nane. pt _BR = Defi ni \ uOOE7\ uOOE30
link = no

nane = def G2

nane. en_US = GO Definition 2
nane. pt _BR = Defi ni \ uOOE7\ uOOE30
link = no

nane = def GO3

nane. en_US = GO Definition 3
nane. pt _BR = Defi ni \ uOOE7\ uOOE30
link = no

nane = def G4

nane.en_US = GO Definition 4
nane. pt _BR = Defi ni \ uOOE7\ uOOE30
link = no

name = def G056

nane.en_US = GO Definition 5
nane. pt _BR = Defi ni \ uOOE7\ uOOE30
link = no

e.name = ortoCene

GO 1

GO 2

GO 3

Q0 4

&0 5

e.narme.en_US = Orthol og gene on E. coli

e. nanme. pt _BR

e.lin

ortoNane.lin

k = no

name = ortoNane
nane. en_US
nane. pt _BR

k = no

Gene ort\uOOF3o0l ogo em E. coli

Narme of orthol og gene on E. coli
None do gene ort\uOOF3ol ogo em E. coli

Figure 17. Properties file of the annotation
form fields for the Anaplasma Project.

ISSN: 1790-2769

189

| (el (el (] (+] @ biomal @G

| 00 Appie 801y Amazon eBay vahoo!

L=
}\“*Timina

‘ BlastX over NR - Contig31 (Assembly 2 - 2008-04-29 18:22) 0

7x 2.2.15 (0ct-15-2006)

| fec: Sequonces producing siga

pir| 13C1348
Category 1: ‘ emb]CAM3631

ref|NP_377110.1

9b|AAGS2805.1|
ref|NP_765819.1]
ref|zp_00231457.1
| bl ABK26259.1 u

Figure 18. Manual and automatic annotation
pages in the Jararaca Project, respectively
from left to right.

[-YeYo) Projeto de Seqiienciamento do Anaplasma marginale a
(L[] ] @ most oo ve TG G
O Applc (50)v Amazon eBay Yahoo! News (33617

Annotation Administrator @
STRCTURAL GENoMIC ANALYSIS 4 s
a

Anaplasma Genome Project

Structural i ysis of gil and its icati in
identification of antigens for immunization and diagnosis

J

U

Figure 19. Layout of the homepage of the
Anaplasma Project, as generated by Timina.

As future work we intend to develop: (i) a system that
helps biologists to decide which function to infer for a gene
— it could use the plug-in interface, also described on this
work, (ii) a visual interface to make easier the system con-
figuration, and (iii) a performance analysis comparing the
implementation using Servlets with an implementation as-
sisted by a presentation framework. Another possible future
work is to adopt the aspect oriented paradigm for the design
and implementation ofimina The framework could get
benefits from this technique considering that its subsystems
have very similar code.

ISBN: 978-960-474-010-9



COMPUTERS and SIMULATION in MODERN SCIENCE, Volume |

classes path

L <<properies files> >
[ “naplasma properties
g Specific annatation plugin
L <</sPs and servetss >
[ Anaplasma presentation

libraries path !

ISubmissionComuoller  IAssemblyController lAnnotationController

<<jar files > C General annotation plugin
persistence I

<<database> >
Anaplasma

Figure 20. Distribution of the components of
Timina in a server for the Anaplasma Project.

References

(1]

(2]

(3]

(4]

(5]

(6]

L. G. P. Almeida, R. Paixao, R. C. Souza, G. C. da Costa,
F. J. A. Barrientos, M. T. dos Santos, D. F. de Almeida, and
A. T. R. Vasconcelos. A System for Automated Bacterial
(genome) Integrated Annotation — SABIMBioinformatics
20(16):2832-2833, 2004.

S. F. Altschul, W. Gish, W. Miller, E. W. Meyers, and D. J.
Lipman. Basic Local Alignment Search Toollournal of
Molecular Biology 215(3):403-410, 1990.

L. C. Bailey, Jr., S. Fischer, J. Schug, J. Crabtree, M. Gib-
son, and G. C. Overton. The GAIA Software Framework for
Genome Annotation. Technical report, Center of Bioinfor-
matics - University od Pennsylvania, USA, 1998.

E. Bartocci, F. Corradini, E. Merelli, and L. Scortichini.
BioWMS: a web-based Workflow Management System for
bioinformatics.BMC Bioinformatics8(1), March 2007.

G. Booch, J. Rumbaugh, and I. Jacobs®he Unified Mod-
eling Language User Guide Addison Wesley Longman,
Inc., Reading, Massachussetts, 1999.

Brazilian Amazon Consortium for Genomic Research. Ge-
nomic Analysis of Bothrops atrox 5 2008. Available
athttp://citosina. bionmol.unb. br/jararaca
(accessed in May 2008).

[7] A. M. R. Davila, D. M. Lorenzini, P. N. Mendes, T. S. Sa-

take, G. R. Sousa, L. M. Campos, C. J. Mazzoni, G. Wagner,
P. F. Pires, E. C. Grisard, M. C. R. Cavalcanti, and M. L. M.
Campos. GARSA: genomic analysis resources for sequence
annotation Bioinformatics 21(23):4302—-4303, 2005.

[8] A. L. Delcher, D. Harmon, S. Kasif, O. White, and S. L.

Salzberg. Improved microbial gene identification with

ISSN: 1790-2769 190

(9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

GLIMMER. Nucleic Acids Researct27(23):4636-4641,
1999.

G. H. V. Domselaar, P. Stothard, S. Shrivastava, J. A. Cruz,
A. Guo, X. Dong, P. Lu, D. Szafron, R. Greiner, and D. S.
Wishart. BASys: a web server for automated bacterial
genome annotatiomMucleic Acids ResearcB3(Web Server
issue):W455-W459, 2005.

B. Ewing and P. Green. Base-Calling of Automated Se-
quencer Traces Using Phred. Il. Error Probabilit®@snome
Research8(3):186—-194, 1998.

B. Ewing, L. Hillier, M. C. WendI, and P. Green. Base-
Calling of Automated Sequencer Traces Using Phred. I. Ac-
curacy AssessmenBenome ResearcB(3):175-185, 1998.
FSF. The Free Software Definition, 7 2006. Available
athtt p: // www. gnu. or g/ phi | osophy/ (accessed in
Februrary 2006).

E. Gamma, R. Helm, R. Johnson, and J. Vlissidesdroes

de Projetos: Solugdes reutilizaveis de software orientado a
objetos. Bookman, Porto Alegre, 2000.

P. Green. Phred, Phrap, Consed, 2 2006. Available
at htt p: // ww. phrap. or g/ phr edphr apconsed.

ht m (accessed in Februrary 2006).

N. L. Harris. Genotator: A Workbench for Sequence Anno-
tation. Genome Researcli7):754-762, 1997.

X. Huang and A. Madan. CAP3: A DNA Sequence Assem-
bly Program.Genome ResearcB(9):868—-877, 1999.
Midwest Network on Bioinformatics. Genomic Analysis of
Anaplasma marginale5 2008. Available attt ps://
www. bi onol . unb. br/ anapl asma (accessed in May
2008).

NCBI. FASTA format description, 2 2006. Avail-
able athttp://wwv. ncbi.nl mnih. gov/bl ast/
fasta.shtml (accessed in Februrary 2006).

G. C. Overton, C. Bailey, J. Crabtree, M. Gibson, S. Fischer,
and J. Schug. GAIA: Framework Annotation of Genomic
SequenceGENOME RESEARCHS8):234-250, 1998. Cen-
ter for Bioinformatic — University of Pennsylvania.

W. R. Pearson and D. J. Lipman. Improved Tools for Bio-
logical Sequence ComparisoRroceedings of the National
Academy of Sciences of the UBA(8):2444-2448, 1988.

M. Pocock, T. Down, and T. Hubbard. BioJava: open
source components for bioinformaticSIGBIO Newsletter
20(2):10-12, 2000.

S. L. Salzberg, A. L. Delcher, S. Kasif, and O. White. Mi-
crobial gene identification using interpolated Markov mod-
els. Nucleic Acids ResearcR6(2):544-548, 1998.

R. L. Tatusov, N. D. Fedorova, J. D. Jackson, A. R. Jacobs,
B. Kiryutin, E. V. Koonin, D. M. Krylov, R. Mazumder, S. L.
Mekhedov, A. N. Nikolskaya, B. S. Rao, S. Smirnov, A. V.
Sverdloy, S. Vasudevan, Y. |. Wolf, J. J. Yin, and D. A. Na-
tale. The COG database: an updated version includes eu-
karyotes.BMC Bioinformatics4(1):41, 2003.

TIGR. Manatee, 2 2006. Availablelatt p: / / manat ee.
sour cef or ge. net (accessed in Februrary 2006).

W3C. Web Content Accessibility Guidelines 1.0,
2 2006. Available athttp://ww. w3. org/ TR/

WAl - WEBCONTENT/ (accessed in Februrary 2006).

R. Waterston and J. Sulstont. The genome of Caenorhabditis
elegansProc. Natl. Acad. Sci(11):10836-10840, 1995.

ISBN: 978-960-474-010-9



	Text1: 


