
NBM: An Efficient Cache Replacement Algorithm for
Nonvolatile Buffer Caches

JUNSEOK PARK and KERN KOH

Seoul National University
56-1 Shillim-dong, Kwanak-gu, Seoul, 151-742

REPUBLIC OF KOREA

HYUNKYOUNG CHOI and HYOKYUNG BAHN

Ewha University
11-1 Daehyun-dong, Seodaemun-gu, Seoul, 120-750

REPUBLIC OF KOREA

Abstract: Recently, byte-accessible NVRAM (nonvolatile RAM) technologies such as PRAM and FeRAM are
advancing rapidly and there are attempts to use these NVRAMs as part of buffer caches. A nonvolatile buffer
cache provides improved consistency of file systems by absorbing write I/Os as well as improved performance. In
this paper, we discuss the optimality of cache replacement algorithms in nonvolatile buffer caches and present a
new algorithm called NBM (NVRAM-aware Buffer cache Management). NBM has three salient features. First, it
separately exploits read and write histories of block references, and thus it estimates future references of each
operation more precisely. Second, NBM guarantees the complete consistency of write I/Os since all dirty data are
cached in NVRAM. Third, metadata lists are maintained separately from cached blocks. This allows more efficient
management of volatile and nonvolatile buffer caches based on read and write histories, respectively. Trace-driven
simulations show that NBM improves the I/O performance of file systems significantly compared to the NVLRU
algorithm that is a modified version of LRU to hold dirty blocks in NVRAM.

Key-Words: Buffer cache, Replacement algorithm, Nonvolatile RAM, Caching, LRU.

1 Introduction

Due to recent advances in semiconductor technologies,
byte-accessible NVRAMs (nonvolatile RAMs) such
as MRAM (magnetic RAM), PRAM (phasechange
RAM), and FeRAM (ferro electro RAM) are emerging
rapidly [2, 3, 4]. There are some attempts to use
NVRAMs as part of buffer caches [5, 7, 8]. By using
NVRAMs together with VRAMs (volatile RAMs) as
buffer cache spaces, consistency of file systems can be
improved by absorbing write I/Os to the NVRAM.
Since file systems generally tend to perform write I/Os
to the RAM component and flush them to secondary
storage periodically due to performance reasons, there
is an interval of time in which consistency of the file
system is compromised. By performing writes to
NVRAM instead of VRAM, this period of
inconsistency is removed, and consistency can be
maintained completely [5].

In this paper, we discuss the optimality of cache
replacement algorithms in nonvolatile buffer caches

and present a new algorithm called NBM
(NVRAM-aware Buffer cache Management). The
storage architecture of NBM consists of the secondary
storage media and two kinds of buffer caches, namely
volatile buffer cache and nonvolatile buffer cache. The
secondary storage is basically composed of hard disks,
but NAND flash memory or other storage media can
be used. The volatile buffer cache is composed of
usual DRAM, and the nonvolatile buffer cache is
composed of NVRAM such as PRAM, FeRAM, or
MRAM. Our buffer cache replacement algorithm has
three salient features. First, it separately exploits the
read history and the write history of block references,
and thus it estimates future references of each
operation more precisely. Second, our algorithm
guarantees the complete consistency of write I/Os
since all dirty data are cached in NVRAM. Third,
metadata lists are maintained separately from cached
blocks. That is, we use two lists to maintain the
recency history of references, namely the LRR (least
recently read) list and the LRW (least recently written)

Proceedings of the 8th WSEAS International Conference on APPLIED COMPUTER SCIENCE (ACS'08)

ISSN: 1790-5109 320 ISBN: 978-960-474-028-4

list. However, blocks in these lists are not necessarily
identical to those blocks in the volatile and nonvolatile
buffer caches, respectively. In reality, metadata of an
evicted block from the buffer cache can be maintained
in the list. This separation allows more efficient
management of volatile and nonvolatile buffer cache
spaces. Trace-driven simulations show that the
proposed algorithm improves the I/O performance of
files systems significantly.

The remainder of the paper is organized as follows.
Before describing our algorithm, we present the
formal definition of nonvolatile buffer caching
problems and give an offline optimal algorithm in
Section 2. Then, we explain the system architecture
and present a new buffer cache replacement algorithm
on this architecture in Section 3. Section 4 shows
experimental results obtained through trace-driven
simulations to assess the effectiveness of the proposed
scheme. Finally we conclude this paper in Section 5.

Table 1. Comparison of DRAM, SRAM, NAND flash
memory, and three types of byte-accessible NVRAMs.

Media
characteristics MRAM FeRAM PRAM SRAM DRAM NAND

flash
Nonvolatility Yes Yes Yes No No Yes
Write latency

per byte 10~50ns 30~100ns 100ns~ 30~70ns 50ns~ 10µs~
Read latency

per byte 10~50ns 30~100ns 20~80ns 30~70ns 50ns 50ns
Max. erase

cycle 1016 1012~1016 1012 1015 1015 106
Energy

consumption ~30µW ~10µW ~30µW ~300mW ~300mW 30mW

2 Formal Definition of Nonvolatile
Buffer Caching

Before describing nonvolatile buffer caching, we first
review the traditional buffer caching problems. Let S
be the size of buffer cache, r the total number of
references, and h the number of hit references. Then,
the buffer cache manager needs to store the currently
requested block without exceeding S. In this paper, we
focus on non-lookahead, demand fetching algorithms.
If the number of blocks in the buffer cache is larger
than S, the replacement algorithm selects a victim and
purges it from the buffer cache. The goal of the
algorithm is to maximize the number of blocks
referenced directly from the buffer cache after all the
requests have been processed. The hit ratio, calculated
by h/r, is an appropriate performance metric to
measure the performance of the replacement algorithm.

In the traditional volatile buffer cache environments,
Belady’s MIN algorithm is known to be optimal with
respect to the hit ratio [1]. The MIN algorithm replaces
the block that will be referenced furthest in the future.
MIN is not a practical algorithm because one cannot
know future references in real systems. However,
MIN provides the upper bound of performance to the
research community pursuing good online algorithms.

Now, let us look at the nonvolatile buffer caching
problems. We assume that both volatile and
nonvolatile buffer caches are used together. We also
assume that all writes are performed in nonvolatile
buffer cache. Hence, consistency is always guaranteed.
Writes to secondary storage occurs only when a block
is evicted from the nonvolatile buffer cache.
Additionally, we assume that all clean blocks reside in
volatile buffer cache. This assumption may be
released in practical terms, but similar to previous
researches we include it in theoretical analysis [5].

Let SNV be the size of nonvolatile buffer cache, SV be
the size of volatile buffer cache, r the total number of
read references, w the total number of write references,
and h the number of hit references. Unlike traditional
buffer caching problems, it is known that the hit ratio,
calculated by h/(r+w), is not a good performance
metric for nonvolatile buffer caching environments.
Instead, the performance metric should be changed to
the number of disk I/Os [5]. This is because even a hit
may cause I/O operations. For example, if a write
reference comes and the requested block exists in the
volatile buffer cache but not in the nonvolatile buffer
cache, it is apparently a hit. However, this incurs a
write operation to nonvolatile buffer cache. If there is
no empty slot in the nonvolatile buffer cache, we need
to evict a dirty block from the nonvolatile buffer cache,
which essentially incurs an I/O operation.

The problem is then to reduce the total number of
I/O operations. For read operations, blocks in both
volatile and nonvolatile buffer caches can be
referenced. However, for write operations, we should
only use nonvolatile buffer cache for the consistency
reason. Thus, if a write request arrives and the
requested block does not exist in the nonvolatile buffer
cache, the replacement algorithm should make a room
in the nonvolatile buffer cache for that request. If the
number of blocks in the nonvolatile buffer cache is
larger than SNV, the replacement algorithm selects a
victim and purges it, which eventually incurs a write
I/O. However, if a read request arrives, a cache hit
from either volatile or nonvolatile cache does not incur
an I/O operation.

Proceedings of the 8th WSEAS International Conference on APPLIED COMPUTER SCIENCE (ACS'08)

ISSN: 1790-5109 321 ISBN: 978-960-474-028-4

With these different situations, the optimality of the
replacement algorithm also changes for nonvolatile
buffer caching environments. An optimal algorithm,
we call NV-MIN, behaves as follows. We do not
provide the formal optimality proof of this algorithm,
but it can be shown intuitively. Note that this
algorithm is enhanced from MIN+ presented by Lee et
al [5]. When a read miss occurs, NV-MIN chooses a
victim block by the following scenario. If there is an
empty slot in VRAM or there is a slot whose next
reference is write in VRAM, NV-MIN caches the new
block here. Otherwise, NV-MIN evicts the block that
will be read-referenced furthest in the future among
those in VRAM.
 When a write miss occurs in NVRAM, NV-MIN
behaves as follows. Note that this case includes the
case that a write-referenced block already exists in
VRAM but not in NVRAM. If there exists an empty
slot in NVRAM, NV-MIN caches the requested block
in this slot. (In this case, if the block already exists in
VRAM, NV-MIN removes it from VRAM.)
Otherwise, NV-MIN replaces the block that will be
write-referenced furthest in the future. If the evicted
block will be read-referenced again in the future, it
may be copied to VRAM according to the following
scenario. If there exists an empty slot in VRAM or if
there exists a block whose next request is write in
VRAM, NV-MIN caches the evicted block to this slot.
Otherwise, NV-MIN compares two blocks, namely the
block that will be read-referenced furthest in the future
among those in VRAM and the evicted block from
NVRAM, and evicts the block that will be
read-referenced further in the future. Finally,
NV-MIN writes the block to the disk.

3 A New Replacement Algorithm for
Nonvolatile Buffer Caches

3.1 System Architecture

The system architecture in this paper is described in
Fig. 1. The storage system consists of the secondary
storage media and two kinds of buffer caches, namely
volatile buffer cache and nonvolatile buffer cache. The
secondary storage is basically composed of hard disks,
but NAND flash memory or other storage media can
be used. The volatile buffer cache is composed of
usual DRAM, and the nonvolatile buffer cache is
composed of NVRAM such as PRAM, FeRAM, or
MRAM. All writes to buffer caches are performed in

nonvolatile buffer cache. Hence, all dirty blocks reside
in NVRAM and thus consistency is always guaranteed.
Writes to secondary storage happens only when an
eviction from NVRAM occurs.

Hybrid hard disks (HHD) [9] also have a NVRAM
layer between DRAM and secondary storage.
However, NVRAM layer in HHD cannot be used as a
system buffer cache since it is composed of flash
memory and thus it is not byte-accessible. Moreover,
NVRAM in this paper is equivalently used with
traditional DRAM except that it is non-volatile,
whereas NVRAM in HHD mainly serves as a write
buffer.

DRAM

Secondary storage

read

write

DISK

NVRAM

Nonvolatile buffer cache

Volatile buffer cache

replacement

Fig. 1 System architecture of NBM.

3.2 The NBM (NVRAM-aware Buffer cache

Management) Algorithm

In this subsection, we present the NVRAM-aware
buffer cache management (NBM) algorithm. NBM
separately exploits the read history and the write
history of block references to estimates future
references of each operation precisely. To do this,
NBM uses two lists to maintain the recency history of
references, namely the LRR (least recently read) list
and the LRW (least recently written) list. Note that
blocks in these two lists are not necessarily identical to
those blocks in the volatile and nonvolatile buffer
caches, respectively. This separated management of
metadata and actual data allows more efficient
management of volatile and nonvolatile buffer cache
spaces. For example, if a block is recently read and
written, the metadata of the block can exist in both
LRR and LRW lists, but actual data is only maintained
in the nonvolatile buffer cache. Thus, some blocks in
the LRR list may not exist in the volatile buffer cache.
This allows volatile buffer cache to hold more blocks,
leading to more read-hits. Nevertheless, we maintain

Proceedings of the 8th WSEAS International Conference on APPLIED COMPUTER SCIENCE (ACS'08)

ISSN: 1790-5109 322 ISBN: 978-960-474-028-4

the read history of the block in the LRR list because
the block may return to the volatile buffer cache if it is
evicted from the nonvolatile buffer cache. Fig. 3
depicts the pseudocode of the NBM algorithm.

Nonvolatile
buffer cache

Volatile
buffer cache

SNV SV

Buffer
cache area

Metadata
history list

Least-Recently-
Written (LRW) list

Least-Recently-
Read (LRR) list

Write
referenced

Read referenced

head of the list (LRU position)

tail of the list (MRU position)

Fig. 2 Data structures used in the NBM algorithm.

NBM (block p, operation op) /* p is requested block */
{ if (p is in the buffer cache) /* cache hit */

{ if (op is read)
 { if (p∉read_list) add p at the tail of read_list;
 else move p to the tail of read_list;
 else /* write */

{ if (p∉write_list) add p at the tail of write_list;
 else move p to the tail of write_list;

if (p is not in NVRAM)
{ if (no free block in NVRAM) replace_NVRAM ();

move p from VRAM to NVRAM;
}

 }
}
else /* cache miss */

 { if (op is read)
 { if (no free block in VRAM) replace_VRAM ();

add p to VRAM;
add p at the tail of read_list;

 }
else /* write */
{ if (no free block in NVRAM) replace_NVRAM ();

add p to NVRAM;
add p at the tail of write_list;

 }
 }
}

replace_VRAM ()
{ evict the least recently read block p in VRAM;
 evict the read history of p from read_list;
}

replace_NVRAM ()
{ select the least recently written block p in NVRAM;

evict the write history of p from write_list;
 if (p∈read_list)
 { if (p is more recently read
 than the least recently read block q in VRAM)
 { evict q from VRAM;

evict the read history of q from read_list;
 move p from NVRAM to VRAM;
 }

}
else evict p from NVRAM;

}

Fig. 3 Pseudocode of NBM.

4 Experimental Results

We have conducted trace-driven simulations to compare the
performance of buffer cache management algorithms in
terms of total number of I/O operations. We used traces
collected by Roselli et al. [6] from the Hewlett-Packard
series 700 workstations running HP-UX. These traces are
categorized into three environments, namely INS
(instructional workload), RES (research workload), and
WEB (Web server workload). Details of these traces are
summarized in Table 2.

Table 2. Summary of traces used in our experiments.
 trace INS RES WEB

Total 861168 393571 371019
Reads 733549 336963 329377
Writes 127619 56608 41642

System calls

Read:Write 5.75 5.95 7.91
VRAM 106 68 316 Memory

usage (MB) NVRAM 152 133 136
Read clean block 1173289 39819 2035430
Read dirty block 162212 94099 84766 Read access

pattern
Ratio 7.23 4.22 24.01

For comparison, we have designed and

implemented NVLRU, which is a modified version of
the traditional LRU algorithm. NVLRU holds dirty
blocks in NVRAM, conserving file system
consistency without periodical flush. Whenever it
needs to accommodate a new dirty block but there is
no free block in NVRAM, it selects and evicts the least
recently used dirty block from NVRAM.

Fig. 4 shows the performance of NBM in terms of
the total number of I/O operations normalized by
NVLRU. NBM outperforms NVLRU especially when
the system is under heavy NVRAM pressure. This is
due to the major drawback of the NVLRU algorithm.
NVLRU holds dirty blocks that are recently read but
rarely written in NVRAM because it maintains LRU
list based on not only write references but also read
references for dirty blocks in NVRAM. On the other
hand, NBM efficiently identifies dirty but rarely
written blocks using LRW list which tracks write
reference history only.

Moreover, NBM further reduces total I/O count
when the VRAM space is sufficiently large. As
explained earlier, for every NVRAM replacement
victim, NBM decides to move the block from
NVRAM to VRAM if it is recently read. This helps
the system buffer cache to hold all the recently read
blocks while consuming less NVRAM space.
However, if VRAM is under heavier memory pressure
than NVRAM is, moving a block from NVRAM to
VRAM can result in worse read hit ratio.

Proceedings of the 8th WSEAS International Conference on APPLIED COMPUTER SCIENCE (ACS'08)

ISSN: 1790-5109 323 ISBN: 978-960-474-028-4

Fig. 4 Performance of NBM in terms of total I/O count
normalized by NVLRU varying VRAM and NVRAM sizes.

NBM shows little performance improvement for
workloads that rarely reads from dirty blocks. For such
workloads, using LRU or LRW for NVRAM blocks
makes no difference. Hence, NBM and NVLRU work
similarly. This can be observed well in Fig. 4 (c).

Fig. 5 shows read I/O counts and write I/O counts
varying NVRAM sizes. For every workload we have
considered, the two algorithms showed almost the
same write I/O counts. NBM does flush before moving
a dirty block from NVRAM to VRAM to conserve file
system consistency. For this reason, NBM issues write
I/O as much as NVLRU does. In Fig. 5 (a), we can see
reduced read I/O counts by adopting NBM. This
change is highlighted in memory settings with small
NVRAM. As the amount of NVRAM grows, most of
dirty blocks that are currently being used can be held
in NVRAM even with simpler algorithms, leaving no
room to improve the system performance. At some
points, NBM performs even slightly worse than
NVLRU in terms of read I/O count. These cases can be
observed in certain memory size settings where
VRAM is under relatively heavier memory pressure
than NVRAM.

5 Conclusion

In this paper, we introduced the NBM algorithm that
uses both VRAM and NVRAM as buffer caches. To
reserve consistency in such systems, dirty blocks are
stored in NVRAM and actual write I/O operations
occur only when there is not enough free NVRAM
space.

To fully utilize NVRAM space, when selecting a
NVRAM block to replace, NBM efficiently identifies
the least recently written block regardless of its read
references by using LRW list. In addition to this, NBM
can decides to move the victim block from NVRAM to
VRAM depending on its read reference history which
is recorded in LRR list, rather than discarding the
block after flushing. Consequently, NBM fills
NVRAM up only with the most recently written
blocks among dirty blocks while maintaining all the
recently read blocks in the buffer cache.

Through trace-driven simulations, we have shown
that the NBM algorithm outperforms NVLRU in terms
of the total number of I/O operations especially in
systems with small NVRAM and large VRAM.

0.98

0.99

1

1.01

1.02

1.03

1.04

4 8 16 32 64 128 256 512

N
or

m
al

iz
ed

 I
/O

 c
ou

nt

VRAM size (MB)

4MB

8MB

16MB

32MB

NVRAM size

(a) INS workload

0.99

0.995

1

1.005

1.01

1.015

1.02

2 4 8 16 32 64

N
or

m
al

iz
ed

 I
/O

 c
ou

nt

VRAM size (MB)

2MB

4MB

8MB

16MB

32MB

NVRAM size

(b) RES workload

0.99

0.995

1

1.005

1.01

1.015

1.02

16 32 64 128 256 512

N
or

m
al

iz
ed

 I
/O

 c
ou

nt

VRAM size (MB)

8MB

16MB

32MB

64MB

128MB

NVRAM size

(c) WEB workload

Proceedings of the 8th WSEAS International Conference on APPLIED COMPUTER SCIENCE (ACS'08)

ISSN: 1790-5109 324 ISBN: 978-960-474-028-4

50000

55000

60000

65000

70000

75000

80000

85000

90000

95000

4 8 16 32 64 128

R
ea

d
I/

O
 c

ou
nt

NVRAM size (MB)

NVLRU

NBM

(a) Read I/O count in INS workload (VRAM=128MB)

0

20000

40000

60000

80000

100000

120000

4 8 16 32 64 128

W
ri

te
 I/

O
 c

ou
nt

NVRAM size (MB)

NVLRU

NBM

(b) Write I/O count in INS workload (VRAM=128MB)

160000

162000

164000

166000

168000

170000

4 8 16 32 64 128

R
ea

d
I/

O
 c

ou
nt

NVRAM size (MB)

NVLRU

NBM

(c) Read I/O count in WEB workload (VRAM=256MB)

0

10000

20000

30000

40000

50000

60000

70000

4 8 16 32 64 128

W
ri

te
 I/

O
 c

ou
nt

NVRAM size (MB)

NVLRU

NBM

(d) Write I/O count in WEB workload (VRAM=256MB)

Fig. 5 Comparison of two algorithms in terms of read I/O
count and write I/O count varying NVRAM size.

References:

[1] L. Belady, “A Study of Replacement of Algorithms for a

Virtual Storage Computer,” IBM Systems Journal, vol.5,
no.2, pp.78–101, 1966.

[2] Magnetic RAM (MRAM) Product & Technology,
http://www.memorystrategies.com/report/focused/mra
m.htm, 2008.

[3] Ferroelectric Memories, http://www.memorystrategies.
com/report/focused/ Ferroelectric.htm, 2007.

[4] A Memory Strategies Focus Report: Focus on Phase
Change Memory and Resistance RAMs,
http://www.memorystrategies.com/report/focused/phas
echange.htm, 2008.

[5] K. Lee, I. Doh, J. Choi, D. Lee, S. H. Noh, “Write-aware
buffer cache management scheme for nonvolatile
RAM,” Proceedings of the third conference on IASTED
International Conference: Advances in Computer
Science and Technology, Phuket, Thailand, pp.29-35,
2007.

[6] D. Roselli, J. R. Lorch, and T. E. Anderson, “A
Comparison of File System Workloads,” In
Proceedings of the 2000 USENIX Annual Technical
Conference (USENIX-00), Berkeley, CA, pp.41-54,
2000.

[7] T. R. Haining and D. D. E. Long, “Management policies
for non-volatile write caches,” Proceedings of the IEEE
International Performance, Computing and
Communications Conference, pp. 321-328, 1999.

[8] S. Akyurek and K. Salem, “Management of Partially
Safe Buffers,” IEEE Transactions on Computers, vol.44,
no.3, pp. 394-407, 1995.

[9] T. Bisson, S. A. Brandt, and D. D. Long, “A hybrid
diskaware spin-down algorithm with I/O subsystem
support,” Proceedings of the 26th IEEE International
Performance, Computing and Communications
Conference, 2007.

Proceedings of the 8th WSEAS International Conference on APPLIED COMPUTER SCIENCE (ACS'08)

ISSN: 1790-5109 325 ISBN: 978-960-474-028-4

FCM Algorithm Based on Unsupervised Mahalanobis Distances with

Better Initial Values and Separable Criterion

JENG-MING YIH
Graduate Institute of Educational Measurement and Statistics

Department of Mathematics Education, National Taichung University
 140 Min-Sheng Rd., Taichung City 403, Taiwan

Taiwan
yih@mail.ntcu.edu.tw

YUAN-HORNG LIN

Department of Mathematics Education
National Taichung University

140 Min-Sheng Rd., Taichung City 403, Taiwan
Taiwan

lyh@mail.ntcu.edu.tw

HSIANG-CHUAN LIU
Department of Bioinformatics, Asia University

500 Lioufeng Rd., Wufeng, Taichung 413,Taiwan
TAIWAN

Abstract: The fuzzy partition clustering algorithms are most based on Euclidean distance function, which can
only be used to detect spherical structural clusters. Gustafson-Kessel (GK) clustering algorithm and Gath-
Geva (GG) clustering algorithm, were developed to detect non-spherical structural clusters, but both of them
based on semi-supervised Mahalanobis distance needed additional prior information. An improved Fuzzy C-
Mean algorithm based on unsupervised Mahalanobis distance, FCM-M, was proposed by our previous work,
but it didn’t consider the relationships between cluster centers in the objective function. In this paper, we
proposed an improved Fuzzy C-Mean algorithm, FCM-MS, which is not only based on unsupervised
Mahalanobis distance, but also considering the relationships between cluster centers, and the relationships
between the center of all points and the cluster centers in the objective function, the singular and the initial
values problems were also solved. A real data set was applied to prove that the performance of the FCM-MS
algorithm gave more accurate clustering results than the FCM and FCM-M methods, and the ratio method
which is proposed by us is the better of the two methods for selecting the initial values.

Key-Words: FCM-MS, FCM-M, GK algorithms, GG algorithms, Mahalanobis distance

1 Introduction
Clustering plays an important role in data analysis
and interpretation. It groups the data into classes or
clusters so that the data objects within a cluster have
high similarity in comparison to one another, but are
very dissimilar to those data objects in other clusters.
Fuzzy partition clustering is a branch in cluster
analysis, it is widely used in pattern recognition
field. The well known ones, such as, C. Bezdek’s
“Fuzzy C-Mean (FCM)” [1], are all based on
Euclidean distance function, which can only be used

to detect the data classes with same super spherical
shapes.

Extending Euclidean distance to Mahalanobis
distance, the well known fuzzy partition clustering
algorithms, Gustafson-Kessel (GK) clustering
algorithm [3] and Gath-Geva (GG) clustering
algorithm [2] were developed to detect non-
spherical structural clusters, but these two
algorithms fail to consider the relationships between
cluster centers in the objective function, GK
algorithm must have prior information of shape

Proceedings of the 8th WSEAS International Conference on APPLIED COMPUTER SCIENCE (ACS'08)

ISSN: 1790-5109 326 ISBN: 978-960-474-028-4

