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Abstract: Recently, byte-accessible NVRAM (nonvolatile RAM) technologies such as PRAM and FeRAM are 
advancing rapidly and there are attempts to use these NVRAMs as part of buffer caches. A nonvolatile buffer 
cache provides improved consistency of file systems by absorbing write I/Os as well as improved performance. In 
this paper, we discuss the optimality of cache replacement algorithms in nonvolatile buffer caches and present a 
new algorithm called NBM (NVRAM-aware Buffer cache Management). NBM has three salient features. First, it 
separately exploits read and write histories of block references, and thus it estimates future references of each 
operation more precisely. Second, NBM guarantees the complete consistency of write I/Os since all dirty data are 
cached in NVRAM. Third, metadata lists are maintained separately from cached blocks. This allows more efficient 
management of volatile and nonvolatile buffer caches based on read and write histories, respectively. Trace-driven 
simulations show that NBM improves the I/O performance of file systems significantly compared to the NVLRU 
algorithm that is a modified version of LRU to hold dirty blocks in NVRAM. 
 
Key-Words: Buffer cache, Replacement algorithm, Nonvolatile RAM, Caching, LRU. 
 
1   Introduction 
 
Due to recent advances in semiconductor technologies, 
byte-accessible NVRAMs (nonvolatile RAMs) such 
as MRAM (magnetic RAM), PRAM (phasechange 
RAM), and FeRAM (ferro electro RAM) are emerging 
rapidly [2, 3, 4]. There are some attempts to use 
NVRAMs as part of buffer caches [5, 7, 8]. By using 
NVRAMs together with VRAMs (volatile RAMs) as 
buffer cache spaces, consistency of file systems can be 
improved by absorbing write I/Os to the NVRAM. 
Since file systems generally tend to perform write I/Os 
to the RAM component and flush them to secondary 
storage periodically due to performance reasons, there 
is an interval of time in which consistency of the file 
system is compromised. By performing writes to 
NVRAM instead of VRAM, this period of 
inconsistency is removed, and consistency can be 
maintained completely [5]. 

In this paper, we discuss the optimality of cache 
replacement algorithms in nonvolatile buffer caches 

and present a new algorithm called NBM 
(NVRAM-aware Buffer cache Management). The 
storage architecture of NBM consists of the secondary 
storage media and two kinds of buffer caches, namely 
volatile buffer cache and nonvolatile buffer cache. The 
secondary storage is basically composed of hard disks, 
but NAND flash memory or other storage media can 
be used. The volatile buffer cache is composed of 
usual DRAM, and the nonvolatile buffer cache is 
composed of NVRAM such as PRAM, FeRAM, or 
MRAM. Our buffer cache replacement algorithm has 
three salient features. First, it separately exploits the 
read history and the write history of block references, 
and thus it estimates future references of each 
operation more precisely. Second, our algorithm 
guarantees the complete consistency of write I/Os 
since all dirty data are cached in NVRAM. Third, 
metadata lists are maintained separately from cached 
blocks. That is, we use two lists to maintain the 
recency history of references, namely the LRR (least 
recently read) list and the LRW (least recently written) 
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list. However, blocks in these lists are not necessarily 
identical to those blocks in the volatile and nonvolatile 
buffer caches, respectively. In reality, metadata of an 
evicted block from the buffer cache can be maintained 
in the list. This separation allows more efficient 
management of volatile and nonvolatile buffer cache 
spaces. Trace-driven simulations show that the 
proposed algorithm improves the I/O performance of 
files systems significantly.  

The remainder of the paper is organized as follows. 
Before describing our algorithm, we present the 
formal definition of nonvolatile buffer caching 
problems and give an offline optimal algorithm in 
Section 2. Then, we explain the system architecture 
and present a new buffer cache replacement algorithm 
on this architecture in Section 3. Section 4 shows 
experimental results obtained through trace-driven 
simulations to assess the effectiveness of the proposed 
scheme. Finally we conclude this paper in Section 5. 

 
 

Table 1. Comparison of DRAM, SRAM, NAND flash 
memory, and three types of byte-accessible NVRAMs. 
 

Media  
characteristics MRAM FeRAM PRAM SRAM DRAM NAND 

flash 
Nonvolatility Yes Yes Yes No No Yes 
Write latency 

per byte 10~50ns 30~100ns 100ns~ 30~70ns 50ns~ 10µs~
Read latency  

per byte 10~50ns 30~100ns 20~80ns 30~70ns 50ns 50ns
Max. erase  

cycle 1016 1012~1016 1012 1015 1015 106 
Energy  

consumption ~30µW ~10µW ~30µW ~300mW ~300mW 30mW

 
 
2   Formal Definition of Nonvolatile 
Buffer Caching 
 
Before describing nonvolatile buffer caching, we first 
review the traditional buffer caching problems. Let S 
be the size of buffer cache, r the total number of 
references, and h the number of hit references. Then, 
the buffer cache manager needs to store the currently 
requested block without exceeding S. In this paper, we 
focus on non-lookahead, demand fetching algorithms. 
If the number of blocks in the buffer cache is larger 
than S, the replacement algorithm selects a victim and 
purges it from the buffer cache. The goal of the 
algorithm is to maximize the number of blocks 
referenced directly from the buffer cache after all the 
requests have been processed. The hit ratio, calculated 
by h/r, is an appropriate performance metric to 
measure the performance of the replacement algorithm. 

In the traditional volatile buffer cache environments, 
Belady’s MIN algorithm is known to be optimal with 
respect to the hit ratio [1]. The MIN algorithm replaces 
the block that will be referenced furthest in the future. 
MIN is not a practical algorithm because one cannot 
know future references in real systems. However, 
MIN provides the upper bound of performance to the 
research community pursuing good online algorithms. 

Now, let us look at the nonvolatile buffer caching 
problems. We assume that both volatile and 
nonvolatile buffer caches are used together. We also 
assume that all writes are performed in nonvolatile 
buffer cache. Hence, consistency is always guaranteed. 
Writes to secondary storage occurs only when a block 
is evicted from the nonvolatile buffer cache. 
Additionally, we assume that all clean blocks reside in 
volatile buffer cache. This assumption may be 
released in practical terms, but similar to previous 
researches we include it in theoretical analysis [5].   

Let SNV be the size of nonvolatile buffer cache, SV be 
the size of volatile buffer cache, r the total number of 
read references, w the total number of write references, 
and h the number of hit references. Unlike traditional 
buffer caching problems, it is known that the hit ratio, 
calculated by h/(r+w), is not a good performance 
metric for nonvolatile buffer caching environments. 
Instead, the performance metric should be changed to 
the number of disk I/Os [5]. This is because even a hit 
may cause I/O operations. For example, if a write 
reference comes and the requested block exists in the 
volatile buffer cache but not in the nonvolatile buffer 
cache, it is apparently a hit. However, this incurs a 
write operation to nonvolatile buffer cache. If there is 
no empty slot in the nonvolatile buffer cache, we need 
to evict a dirty block from the nonvolatile buffer cache, 
which essentially incurs an I/O operation.  

The problem is then to reduce the total number of 
I/O operations. For read operations, blocks in both 
volatile and nonvolatile buffer caches can be 
referenced. However, for write operations, we should 
only use nonvolatile buffer cache for the consistency 
reason. Thus, if a write request arrives and the 
requested block does not exist in the nonvolatile buffer 
cache, the replacement algorithm should make a room 
in the nonvolatile buffer cache for that request. If the 
number of blocks in the nonvolatile buffer cache is 
larger than SNV, the replacement algorithm selects a 
victim and purges it, which eventually incurs a write 
I/O. However, if a read request arrives, a cache hit 
from either volatile or nonvolatile cache does not incur 
an I/O operation.  
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With these different situations, the optimality of the 
replacement algorithm also changes for nonvolatile 
buffer caching environments. An optimal algorithm, 
we call NV-MIN, behaves as follows. We do not 
provide the formal optimality proof of this algorithm, 
but it can be shown intuitively. Note that this 
algorithm is enhanced from MIN+ presented by Lee et 
al [5]. When a read miss occurs, NV-MIN chooses a 
victim block by the following scenario. If there is an 
empty slot in VRAM or there is a slot whose next 
reference is write in VRAM, NV-MIN caches the new 
block here. Otherwise, NV-MIN evicts the block that 
will be read-referenced furthest in the future among 
those in VRAM.  
   When a write miss occurs in NVRAM, NV-MIN 
behaves as follows. Note that this case includes the 
case that a write-referenced block already exists in 
VRAM but not in NVRAM. If there exists an empty 
slot in NVRAM, NV-MIN caches the requested block 
in this slot. (In this case, if the block already exists in 
VRAM, NV-MIN removes it from VRAM.) 
Otherwise, NV-MIN replaces the block that will be 
write-referenced furthest in the future. If the evicted 
block will be read-referenced again in the future, it 
may be copied to VRAM according to the following 
scenario. If there exists an empty slot in VRAM or if 
there exists a block whose next request is write in 
VRAM, NV-MIN caches the evicted block to this slot. 
Otherwise, NV-MIN compares two blocks, namely the 
block that will be read-referenced furthest in the future 
among those in VRAM and the evicted block from 
NVRAM, and evicts the block that will be 
read-referenced further in the future. Finally, 
NV-MIN writes the block to the disk. 
 
 
3   A New Replacement Algorithm for 
Nonvolatile Buffer Caches 
 
3.1 System Architecture 
 
The system architecture in this paper is described in 
Fig. 1. The storage system consists of the secondary 
storage media and two kinds of buffer caches, namely 
volatile buffer cache and nonvolatile buffer cache. The 
secondary storage is basically composed of hard disks, 
but NAND flash memory or other storage media can 
be used. The volatile buffer cache is composed of 
usual DRAM, and the nonvolatile buffer cache is 
composed of NVRAM such as PRAM, FeRAM, or 
MRAM. All writes to buffer caches are performed in 

nonvolatile buffer cache. Hence, all dirty blocks reside 
in NVRAM and thus consistency is always guaranteed. 
Writes to secondary storage happens only when an 
eviction from NVRAM occurs. 

Hybrid hard disks (HHD) [9] also have a NVRAM 
layer between DRAM and secondary storage. 
However, NVRAM layer in HHD cannot be used as a 
system buffer cache since it is composed of flash 
memory and thus it is not byte-accessible. Moreover, 
NVRAM in this paper is equivalently used with 
traditional DRAM except that it is non-volatile, 
whereas NVRAM in HHD mainly serves as a write 
buffer. 

 

DRAM

Secondary storage

read

write

DISK

NVRAM

Nonvolatile buffer cache

Volatile buffer cache

replacement

 
Fig. 1 System architecture of NBM. 

 
 
3.2 The NBM (NVRAM-aware Buffer cache 

Management) Algorithm  
 
In this subsection, we present the NVRAM-aware 
buffer cache management (NBM) algorithm. NBM 
separately exploits the read history and the write 
history of block references to estimates future 
references of each operation precisely. To do this, 
NBM uses two lists to maintain the recency history of 
references, namely the LRR (least recently read) list 
and the LRW (least recently written) list. Note that 
blocks in these two lists are not necessarily identical to 
those blocks in the volatile and nonvolatile buffer 
caches, respectively. This separated management of 
metadata and actual data allows more efficient 
management of volatile and nonvolatile buffer cache 
spaces. For example, if a block is recently read and 
written, the metadata of the block can exist in both 
LRR and LRW lists, but actual data is only maintained 
in the nonvolatile buffer cache. Thus, some blocks in 
the LRR list may not exist in the volatile buffer cache. 
This allows volatile buffer cache to hold more blocks, 
leading to more read-hits. Nevertheless, we maintain 
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the read history of the block in the LRR list because 
the block may return to the volatile buffer cache if it is 
evicted from the nonvolatile buffer cache. Fig. 3 
depicts the pseudocode of the NBM algorithm. 
 
 

Nonvolatile 
buffer cache

Volatile 
buffer cache

SNV SV

Buffer 
cache area

Metadata 
history list

Least-Recently-
Written (LRW) list

Least-Recently-
Read (LRR) list

Write 
referenced

Read referenced

head of the list (LRU position)

tail of the list (MRU position)

 
Fig. 2 Data structures used in the NBM algorithm. 

 
 

 
NBM (block p, operation op)   /* p is requested block */  
{    if (p is in the buffer cache) /* cache hit */ 

{    if (op is read)  
            {    if (p∉read_list) add p at the tail of read_list; 
                  else move p to the tail of read_list; 
          else   /* write */  

{    if (p∉write_list) add p at the tail of write_list;      
                  else move p to the tail of write_list; 

if (p is not in NVRAM)  
{    if (no free block in NVRAM) replace_NVRAM (); 

move p from VRAM to NVRAM; 
} 

            } 
}  
else /* cache miss */  

      {    if (op is read) 
            {    if (no free block in VRAM) replace_VRAM ();  

add p to VRAM; 
add p at the tail of read_list; 

            } 
else    /* write */ 
{    if (no free block in NVRAM) replace_NVRAM ();  

add p to NVRAM; 
add p at the tail of write_list;      

     } 
      }  
}  
 
replace_VRAM () 
{    evict the least recently read block p in VRAM; 
      evict the read history of p from read_list; 
}  
 
replace_NVRAM () 
{    select the least recently written block p in NVRAM; 

evict the write history of p from write_list; 
      if (p∈read_list) 
      {    if (p is more recently read 
                 than the least recently read block q in VRAM) 
           {   evict q from VRAM; 

evict the read history of q from read_list; 
                move p from NVRAM to VRAM; 
            } 

} 
else evict p from NVRAM; 

} 

Fig. 3 Pseudocode of NBM. 

4   Experimental Results 
 
We have conducted trace-driven simulations to compare the 
performance of buffer cache management algorithms in 
terms of total number of I/O operations. We used traces 
collected by Roselli et al. [6] from the Hewlett-Packard 
series 700 workstations running HP-UX. These traces are 
categorized into three environments, namely INS 
(instructional workload), RES (research workload), and 
WEB (Web server workload). Details of these traces are 
summarized in Table 2. 
 

Table 2. Summary of traces used in our experiments. 
 trace INS RES WEB 

Total 861168 393571 371019 
Reads 733549 336963 329377 
Writes 127619 56608 41642 

System calls

Read:Write 5.75 5.95 7.91 
VRAM 106 68 316 Memory 

usage (MB) NVRAM 152 133 136 
Read clean block 1173289 39819 2035430
Read dirty block 162212 94099 84766 Read access 

pattern 
Ratio 7.23 4.22 24.01 

 
For comparison, we have designed and 

implemented NVLRU, which is a modified version of 
the traditional LRU algorithm. NVLRU holds dirty 
blocks in NVRAM, conserving file system 
consistency without periodical flush. Whenever it 
needs to accommodate a new dirty block but there is 
no free block in NVRAM, it selects and evicts the least 
recently used dirty block from NVRAM. 

Fig. 4 shows the performance of NBM in terms of 
the total number of I/O operations normalized by 
NVLRU. NBM outperforms NVLRU especially when 
the system is under heavy NVRAM pressure. This is 
due to the major drawback of the NVLRU algorithm. 
NVLRU holds dirty blocks that are recently read but 
rarely written in NVRAM because it maintains LRU 
list based on not only write references but also read 
references for dirty blocks in NVRAM. On the other 
hand, NBM efficiently identifies dirty but rarely 
written blocks using LRW list which tracks write 
reference history only. 

Moreover, NBM further reduces total I/O count 
when the VRAM space is sufficiently large. As 
explained earlier, for every NVRAM replacement 
victim, NBM decides to move the block from 
NVRAM to VRAM if it is recently read. This helps 
the system buffer cache to hold all the recently read 
blocks while consuming less NVRAM space. 
However, if VRAM is under heavier memory pressure 
than NVRAM is, moving a block from NVRAM to 
VRAM can result in worse read hit ratio. 
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Fig. 4 Performance of NBM in terms of total I/O count 
normalized by NVLRU varying VRAM and NVRAM sizes. 
 
 

 
 

NBM shows little performance improvement for 
workloads that rarely reads from dirty blocks. For such 
workloads, using LRU or LRW for NVRAM blocks 
makes no difference. Hence, NBM and NVLRU work 
similarly. This can be observed well in Fig. 4 (c). 

Fig. 5 shows read I/O counts and write I/O counts 
varying NVRAM sizes. For every workload we have 
considered, the two algorithms showed almost the 
same write I/O counts. NBM does flush before moving 
a dirty block from NVRAM to VRAM to conserve file 
system consistency. For this reason, NBM issues write 
I/O as much as NVLRU does. In Fig. 5 (a), we can see 
reduced read I/O counts by adopting NBM. This 
change is highlighted in memory settings with small 
NVRAM. As the amount of NVRAM grows, most of 
dirty blocks that are currently being used can be held 
in NVRAM even with simpler algorithms, leaving no 
room to improve the system performance. At some 
points, NBM performs even slightly worse than 
NVLRU in terms of read I/O count. These cases can be 
observed in certain memory size settings where 
VRAM is under relatively heavier memory pressure 
than NVRAM. 
 
5  Conclusion 
 
In this paper, we introduced the NBM algorithm that 
uses both VRAM and NVRAM as buffer caches. To 
reserve consistency in such systems, dirty blocks are 
stored in NVRAM and actual write I/O operations 
occur only when there is not enough free NVRAM 
space. 

To fully utilize NVRAM space, when selecting a 
NVRAM block to replace, NBM efficiently identifies 
the least recently written block regardless of its read 
references by using LRW list. In addition to this, NBM 
can decides to move the victim block from NVRAM to 
VRAM depending on its read reference history which 
is recorded in LRR list, rather than discarding the 
block after flushing. Consequently, NBM fills 
NVRAM up only with the most recently written 
blocks among dirty blocks while maintaining all the 
recently read blocks in the buffer cache. 

Through trace-driven simulations, we have shown 
that the NBM algorithm outperforms NVLRU in terms 
of the total number of I/O operations especially in 
systems with small NVRAM and large VRAM. 
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(a) Read I/O count in INS workload (VRAM=128MB) 
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(b) Write I/O count in INS workload (VRAM=128MB) 
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(c) Read I/O count in WEB workload (VRAM=256MB) 
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Fig. 5 Comparison of two algorithms in terms of read I/O 
count and write I/O count varying NVRAM size. 
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Abstract: The fuzzy partition clustering algorithms are most based on Euclidean distance function, which can 
only be used to detect spherical structural clusters. Gustafson-Kessel (GK) clustering algorithm and Gath-
Geva (GG) clustering algorithm, were developed to detect non-spherical structural clusters, but both of them 
based on semi-supervised Mahalanobis distance needed additional prior information. An improved Fuzzy C-
Mean algorithm based on unsupervised Mahalanobis distance, FCM-M, was proposed by our previous work, 
but it didn’t consider the relationships between cluster centers in the objective function. In this paper, we 
proposed an improved Fuzzy C-Mean algorithm, FCM-MS, which is not only based on unsupervised 
Mahalanobis distance, but also considering the relationships between cluster centers, and the relationships 
between the center of all points and the cluster centers in the objective function,  the singular and the initial 
values problems were also solved. A real data set was applied to prove that the performance of the FCM-MS 
algorithm gave more accurate clustering results than the FCM and FCM-M methods, and the ratio method 
which is proposed by us is the better of the two methods for selecting the initial values. 
 
Key-Words: FCM-MS,  FCM-M, GK algorithms, GG algorithms, Mahalanobis distance 
 
1 Introduction 
Clustering plays an important role in data analysis 
and interpretation. It groups the data into classes or 
clusters so that the data objects within a cluster have 
high similarity in comparison to one another, but are 
very dissimilar to those data objects in other clusters. 
Fuzzy partition clustering is a branch in cluster 
analysis, it is widely used in pattern recognition 
field. The well known ones, such as, C. Bezdek’s 
“Fuzzy C-Mean (FCM)” [1], are all based on 
Euclidean distance function, which can only be used 

to detect the data classes with same super spherical 
shapes. 

Extending Euclidean distance to Mahalanobis 
distance, the well known fuzzy partition clustering 
algorithms, Gustafson-Kessel (GK) clustering 
algorithm [3] and Gath-Geva (GG) clustering 
algorithm [2] were developed to detect non- 
spherical structural clusters, but these two 
algorithms fail to consider the relationships between 
cluster centers in the objective function, GK 
algorithm must have prior information of shape 
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