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 Abstract-- During the last few years in the competitive energy market, participants have used stochastic 
programming based asset allocation models in their processes. In the demand side of electricity market, the 
customers’ behavior will be stochastic, so the actual consumption load is random. Therefore we can suppose 
that all decisions about load price and volume hold a certain amount of uncertainty. In this paper we present an 
approach for solving a stochastic linear programming model and then drawing bidding curves for an energy 
service provider. This approach is independent to large amount of historical information about the most 
relevant market variables and variables related to bidding or behavior of the other market participants, where 
an optimization process finds the optimal bid curve for the given prices and a single hour, by using the output 
of the scenario generation algorithm and the GAMS software. The model is illustrated using a case study with 
data from Iran electricity market and the results show that the proposed algorithm is efficient and satisfactory 
bidding curves are obtained. 

Index Terms-- Demand side bidding, scenario tree generation, stochastic optimization 

 

1. INTRODUCTION 
The electric power industry in I.R.of Iran has 

undergone revolutionary changes in recent years. The 
essence of these changes is the deregulation of the 
industry and introduction of competition both in 
generation and distribution. Instead of centralized 
resource allocation and operation, electric power is 
now sold by generation suppliers and purchased by 
energy service providers to meet the forecasted needs 
of their customers, all or partially through 
competition.  

The Iran electricity market has 40 distribution 
companies to serve a population of about 70 millions. 
Distribution companies provide energy services to 
their customers as a large retailer. They submit price 
insensitive bids to the day-ahead market. This is due 
to the fact that consumers are not exposed to short-
term price fluctuations, with monthly (or more often) 
metering being the norm. The bids are more or less 
close to expected demand, which is estimated by 

statistical techniques. They get their margins from 
buying wholesale and selling to end users. Many 
challenging issues arise under the new competitive 
market environment. Among them, bidding in 
different energy and service markets and optimization 
of bidding strategies have become important daily 
tasks for power service providers.   

Due to the fact that demand side markets are 
generally less mature and usually implemented much 
later than the supply market. In Iran, purchase 
allocation and bidding approaches for energy service 
providers1 are much less studied and there is a little 
historical information or data. In this manner, in other 
countries with the restructuring of the electricity 
market, researchers have studied many different 
approaches for topics such as, bidding history, 
bidding strategies, optimal bidding strategy or 
development of last techniques, but the main 

                                                 
1 Energy Service Provider (ESP) such as distribution company or retailer 
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drawback of these studies is the energy service 
providers' viewpoint. 

Though, constructing bidding curves for a retailer 
in the Norwegian Electricity Market has been studied 
by Fleten and Pettersen [1], with the greatest nicety. 
They propose a stochastic linear programming model 
for constructing piecewise-linear bidding curves to be 
submitted to Nord Pool. Stochastic programs need to 
be solved with discrete distributions and they are 
created by scenario generation. The simplest idea for 
generating scenario is referred in [2], this idea is to 
use past data that is in comparable circumstances and 
assign those equal probabilities. This can be done by 
just using the raw data or through procedures such as 
vector autoregressive modeling or bootstrapping 
which samples from the past data, in contrast to 
previous studies, our approach uses expert’s forecasts 
and viewpoint. So when there is no reliable data, one 
can use her or his market view (examples include the 
1981 Markowitz and Perold, and the 1988 Shapiro 
papers) or governmental regulations. Abaffy et al 
(2000) and Dupa˘cov´a et al (2000) survey scenario 
estimation and aggregation methods that represent a 
larger number of scenarios by a smaller number [2]. 

This research is motivated by the needs of an 
energy service provider in the Iran electricity market, 
such as Distributions Company or retailer. But we 
believe that the bidding model also can be applied by 
power marketers elsewhere, given a pool accepting 
piecewise linear bids and where there is a short-term 
balancing market whose prices affect the retailer 
costs whenever he experiences an imbalance between 
the load planned day-ahead and the realized load. 

In this approach we consider the case of price-
sensitive end users and ESPs usually submit price-
insensitive bids to the spot market. This is due to the 
fact that consumers are not exposed to short-term 
price fluctuations, with monthly (or less often) 
metering being the norm. The bids are more or less 
close to expected demand, which is estimated by 
statistical techniques. 

The paper is organized as follows. Section II 
explains the market rules that are relevant for 
demand-side bidding in the Iranian daily market. 
Section III shows the overall optimization procedure 
to construct the optimal bidding curve for electric 
daily markets. Section IV shows a realistic case study 
based on the Iranian daily market. And Section V 
presents several conclusions derived from this work 
and future research. 

2. MARKET RULES 
There are two important markets for physical 

exchange of electricity in Iran: the day-ahead market 
and the regulating market organized by the 
independent system operator. In the day-ahead 
market, producers and energy service providers or 
retailers submit price-quantity bids for buying and 
selling electricity every day before noon. Market 
clearing prices are determined through auction trade 
for each delivery hour. The trading horizon is 12- 36 
hours ahead – the next day 24 hour period. The 
System price and the area prices are calculated after 
all participants bids have been received before gate 
closure at 12:00. 

The regulating market is used by the system 
operator to ensure real-time balance between supply 
and demand. Only producers with an ability to ramp 
up or down significantly on 15-min notice are 
allowed to participate. Whenever there is a load 
greater than was committed in the day-ahead market, 
there is a need for up regulation and vice versa. The 
independent system operator has collected bids for 
such up and down regulations for each participant 
and chooses to use the cheapest feasible source for 
such ramping. In the other hand, the system operator 
wants the day-ahead market to reflect the physical 
conditions. In short, they do not like demand-side 
speculation in the regulating market. Therefore, they 
are inclined to take measures toward ESPs that are 
suspected of bidding too high or too low volumes in 
the day-ahead market on purpose. So the 
specification of the volume deviation penalty 
function is necessarily ad hoc. If the realized load is 
larger or lower than one standard deviation from its 
expected value, market operator starts penalizing. 
Later in the full model, this risk factor will be 
considered. 

 
 

3. METHODOLOGY 
In our method an optimization process finds the 

optimal bid points for the hourly forecasted demand 
and several scenarios of market clearing price. It has 
a modular structure to allow for maximum flexibility 
of the model. There are three main modules, as 
depicted in Fig. 1. 

• Optimum decision model and constraints; 
• Model of scenario generator; 
• Stochastic programming. 
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Fig. 1: Overall optimization process algorithm description. 

 

3.1  Optimum decision model and constraints 
The optimum decision model together with the 

constraints constitutes the core of the problem that 
has to be solved and varies with respect to the 
specific characteristics of each individual application. 

The objective function in the implemented model 
is the ESP's Max profit. For, the profit is bounded, 
the loss is minimized. Therefore the main part of the 
objective function contains the probable losses, and 
the market rules construct the objective functions 
constraints. 

We assume that the bidding actions of this retailer 
do not influence prices in the electricity markets, i.e., 
the retailer are a price taker operating in a 
competitive market. 

We define β  andπ  to be the regulating market 
price and the day-ahead (“spot”) price, respectively. 
Based on the brief explanation of the regulating 
market design given in the introduction, we see that 
during up regulation 0>πβ − , during down 
regulation 0<πβ− , and when there is no 
regulation, 0=−πβ .Then the retailer’s cost of 
purchasing electricity may be written as 

δξββξπ yy −=−+= )(yC                                           (1) 

whereξ  is the load,  is the volume knocked down 
in the day-ahead market and

y
πβδ −=  is the 

difference between the regulating price and the spot 
price. Also observe that the day-ahead volume  is 
the only variable that is controlled by the retailer and 
the parameters

y

ξ , β , andπ are exogenous. 
The first termξβ  does not include any decision 

variables. Hence, the ESP or retailer should seek to 
{ }δyE −min  which is equivalent to minimizing the 

expected is regulating market loss { }δξ )( yE − . This 
relation denotes the money lost by purchasing the 

excess demand in the regulating market instead of in 
the spot market. Note that regulating market loss may 
well be negative, implying that the retailer may make 
extra profits in the regulating market. 

Model of scenario 
generator 

Optimum decision 
model and constraints 

Stochastic 
programming 

Since the expected cost turns out to be negative in 
the case study, we have chosen to turn this around, so 
that the model’s objective is to maximize expected 
regulating market profit or { }δyEmax . This 
expression is the first and main part of the objective 
function in the optimization model.  

The second part of objective function is an index 
called volume deviation risk. Since all derivatives are 
quoted with respect to the day-ahead price, the 
system operator wants the day-ahead market to 
reflect the physical conditions. In short, they do not 
like demand-side speculation in the regulating 
market. Therefore, they are inclined to take measures 
toward retailers that are suspected of bidding too high 
or too low volumes in the day-ahead market on 
purpose. 

The most important items in objective function 
and constrains are risk, load and bid points, that we 
consider in the model. 

Risk: Modeling of risk is dependent on the views 
of the decision maker. Decision makers perceive risk 
as the potential for downside losses. A way of 
accommodating this in a model is to have target 
levels for financial performance at different stages. 
The extent to which these targets are not met is called 
target shortfall [3], one would progressively penalize 
target shortfalls in the objective, e.g. in the form of a 
piecewise linear cost function as shown in Fig.2. Let 
we define variables , , …,  and , , … , . 
When the ESP is up regulated,  is 

positive, and when he is down regulated, 

+
1ω

+
2ω

+
mω

−
1ω

−
2ω

−
mω

∑ Μ∈
+ −=

m m yξω

∑ Μ∈
− −=

m m y ξω  is positive. Now, we let and denote 

the marginal cost of piece on the volume deviation 
risk function for positive and negative deviations, 
respectively. 
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Fig. 2: Volume deviation penalty function 
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Then, the volume deviations more the higher we 
get, are penalized in the objective function by adding 
the term 

( )∑ ∈
−−++ +−

Mm mmmm TTV ωω                                        (2)  

where V quantifies the ESP's aversion to the volume 
deviation risk, relative to other objective terms. 

Load: In this study, the customers' load ξ is 
considered price flexible. We assume that for some 
price 0π , the customers have an expected 
load 0][ ξξ =E . Then the expected load at price π is 
derived by (3) where η  is the price elasticity. 

[ ]
η

π
πξξ ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

0
0E                                                     (3) 

It means that, when the price of the load falls, the 
quantity consumers demand typically raises. Price 
elasticity is the ratio of the relative change in quantity 
demanded to the relative change in price and for most 
goods this ratio is negative. Fig.3. shows some price-
load curves with varying price elasticity of demand. 
 
 
 
 
 

 
 
 
 
 
 
 
 
 

Fig.3: Price-Load curves with varying price elasticity of demand  
 
Bid points: To obtain a piecewise-linear strictly 

decreasing curve for the day-ahead auction, which is 
consistent with the bidding rules on the market, the 
ESP submits n  price-volume pairs 

, where  and 
to the pool. A linear interpolation 

between the pairs and ,

),(),...,,(),,( 1100 nn xPxPxP nPPP ≤≤≤ ...10

nxxx ≥≥≥ ...10

),(P ii x ),( 11 ++ ii xP 1,...,1 −= ni  
gives the resulting line segments that decide at 
what price

1−n
π and volume the retailer is dispatched. 

Fig. 4 shows a bidding curve with five line segments. 
The ESP submits the points  

y

),( ii xP 5 , ... ,0, =i  to the 
pool, and the bidding curve emerges from a linear 
interpolation between those points.  
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Fig. 4: An example of a bidding curve with five line segments 
 

Objective function: Now using the maximum 
expected regulating market profit and the volume 
deviation approach to risk, the objective function 
looks as follows. 

( ){ }   max ∑ ∈
−−++ +−

Mm mmmm TTVy ωωδ                         (4) 
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The problem in the objective function is to select 
the volumes corresponding to , we consider the 
constraint by (5) to make the relation between and 

 linear in [1]. 

ix iP

iP

ix ix
 

3.2  Model of scenario generator 
The second element is the model of randomness. 

The correct description of the future is the key to 
modeling and decision-making under uncertainty. 
Scenario analysis is an effective tool to model the 
dynamics of the uncertainty. 

 Once the distribution is established, different 
scenarios that follow the underlying probability 
distribution are used to represent the uncertainty. 
Thus, by executing a scenario generator procedure, 
the random parameters of the decision model can be 
instantiated [4].We generated scenarios for this 
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model by using the method described in [5]. Short 
summary of this process is stated below. 

The algorithm produces one period scenario trees 
with specified correlations matrix and the first four 
moments (mean, variance, skewness and kurtosis) of 
the marginal distributions. It achieves this by using 
two transformations, one correcting the moments and 
the other correcting the correlations. Since each 
transformation distorts the results of the other one, 
they are repeated iteratively, alternating between the 
two. The algorithm stops when the error of both the 
moments and correlations is below a given threshold, 
or when a maximal number of iterations is reached. 

Correlations are corrected using a variant of the 
standard method for generating correlated normal 
variates, based on Cholesky decomposition of the 
correlation matrix. Moments of the marginal 
distributions are corrected one at a time, using a cubic 
transformation  

32 dxcxbxay +++=                                             (6) 

Finding the parameters ,b , c ,  is the most 
challenging part of the algorithm, as it requires 
solving a system of four implicit nonlinear equations 
in four unknowns. In this approach, one needs the 
historical data to determine the target moments. Fig.5 
shows the moments matching cycle. 

a d

In [1], the authors have generated scenarios for 
spot priceπ , for load prediction errorε , and for the 
difference between the regulating market price and 
the spot priceδ . For π  and δ , they have used hourly 
spot prices and regulating prices for the Trondheim 
region in the period 10 March 1997–16 December 
2003 and removed the prices in weekends and 
holidays. Ultimately, they have generated scenarios 
by using more than 30 000 entries for π , δ and ε  and 
the method described in [5]. They have calculated the 
first four moments and correlation by using historical 
data. 

The main idea of our approach is the assumption 
that, the ESP hasn't a large amount of information 
about the market variables and prices. While this 
assumption satisfies in Iran electricity market. 
Therefore, we let the ESP as a decision maker, 
specify his market expectations by any statistical 
properties that are considered relevant for the 
problem to be solved, and construct the scenario tree 
so that these statistical properties are preserved. 

Expressing market expectations can be done in 
many ways. We have chosen to let the ESP or 

decision maker supply percentiles for the marginal 
cumulative probability distribution functions for all 
uncertain variables such as π  andδ , see Fig. 6. An 
approximating cumulative distribution function is 
fitted to these percentiles. The properties that are 
listed in Table 1 are calculated from the function that 
is fitted to the percentiles. 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 5: Flowchart of moments matching cycle. 

 
 

Table 1 Percentiles of the Marginal Cumulative Distributions 

 
The approximating cumulative distribution 

functions are found using a NAG (Numerical 
Algorithms Group) C Library routine for 
interpolating data. This method does not guarantee 
that the second derivative changes sign only once, in 
the case of Fig. 6 causing a somewhat peculiar form 
near the top of the distribution. However, the 
resulting function is monotonic, so we are guaranteed 
that the curve will have the properties of a cumulative 
distribution function, and that the user specified 
percentiles are fit exactly (including the 0% and 
100% points). 

Probability distribution functions (pdf) are fitted 
to the percentiles, and then from the pdf, we can 
calculate all marginal moments.[6] 

 
 

 0% 5% 25% 50% 75% 95% 100%
Market price 

(Rls.) 150 250 360 390 430 580 720 

 Start 

Generate s scenario 
(Random variable Xi) 

Calculate the 12 first 
moments from Xi 

Compute the parameters 
a, b, c, d 

y=a+bx+cx2+dx3

Compute the outcomes Yi
Yi=a+bXi+cXi

2+dXi
3 

with TRSFMOM moments 
p matrix  correlation and R

Matrix Transformation 
Correct correlation 

(Moments will distort) 

Cubic Transformation 
Correct moments 

(Correlation will distort) 

NO 

NO 

 End 

 If 
Error of correlation > 

MaxErrorCorr 
 

 If 
Error of moments > 

MaxErrorMom 
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3.3 Stochastic programming 

As defined by the stochastic programming 
community - COSP at [7] - Stochastic programming 
is a framework for modeling optimization problems 
that involves uncertainty. Stochastic programs need 
to be solved with discrete distributions. Usually, we 
are faced with either continuous distributions or data. 
Hence, we need to pass from the continuous 
distributions or the data to a discrete distribution 
suitable for calculations.  

More formally, stochastic programming is a 
branch of operations research that tries to suggest an 
approach to deal with uncertainty. Instead of 
suggesting an objective function such as  (in 
linear programming

)(xf
xc ) in which the decision 

variable x is considered to have only one realization 
as part of the objective function, the stochastic 
programming approach defines a stochastic variable 

Ω∈ξ  and a new objective function ),( ξxf . 
Therefore, the new objective function value is 
dependent on a different realization of ξ  and 
therefore includes the effect of a stochastic process 
when evaluating the decision at the variable x . 

The purpose of a scenario generator is to 
discretize the distribution capture of all the various 
possible values of ξ  and introduce uncertainty into 
the model. The output of the scenario generation is 
then used numerous times as the input for the 
optimization model. Fig.7 indicates the general 
workflow of this process. 

As indicated, we have generated scenarios to 
solve a stochastic programming. Therefore, we may 
change relations (3), (4) and (5) by including the 
subscripts s to point out that and y π are scenario 
dependent.   

s
s

s ε
π
πξξ
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+⎟⎟
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Fig.6: (i) The ESP percentiles for day ahead market price.  
(ii) A cumulative distribution function is fitted to the percentiles. 
(iii) The probability distribution function for day ahead market 
price. 

 
 
 
 
 
 
 
 
 
 
 
 

Fig. 7: Problem solving steps 
 

4. CASE STUDY 

The case study and numerical simulation of 
construct bidding curves is performed based on the 
actual data of the Iran power market. Since this 
market no longer exists, the historical data aren't still 
enough for analysis. Therefore we do as follow: 

Optimization
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 Step 1: Expressing our market expectations for 
π and δ . 

We have supplied our percentiles of spot price and 
the difference between the regulating market price 
and the spot price for the TSW region1, based on our 
experiences and prospect for the future. Then we 
have fitted an approximated cumulative distribution 
to the percentiles by using a NAG C library routine 
and derive the marginal distributions, as shown in 
table 2 and Fig. 8. 
 

Table 2 Percentiles of the Marginal Cumulative Distributions 
ofπ andδ   

 

Step 2: Determining the target moments and 
correlation 

For load prediction error, we have used measured 
and estimated load for the TSW region for every hour 
during the period 20 March–21 September 2007. We 
have subtracted estimated load from measured load 
and obtained 4440 entries forε .[8] 

Given the fitted cumulative distribution and 
historical data, we calculate the first four moments 
into account. Table 3 shows statistical properties of 
random variablesπ ,δ andε . 

Thus, we have specified the correlation between all 
stochastic variables. The correlation between π and 
δ was estimated to be -0.45. Apart from that, the 
correlations were all rather low. We have generated 
scenarios with varying correlation and compared 
results. Fig 9 shows sets of scenario for varying 
correlations. Increase in correlation caused growth of 
dispersion of scenarios. 

Table3  Statistical Properties Derived from the Marginal 
Distributions in Figures 8 

                                                 

 

 

1 Tehran South West Power Distribution (TSWPD), in charge of electric 
power distribution has started its activities since 1997 having a 
commission to provide energy and desirable services. TSWPD undertakes 
a considerable responsibility to supply electricity to 708834 customers in 
an area of 855 km  situated in south western part of the capital city of 
Tehran.

2

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 
Fig 8: The fitted cumulative distribution functions and the 
derived density functions for the spot price and the difference 
between the regulating market price and the spot price. 

 
 
 
 
 
 
 
 
 
 
 

 
 
 

Fig 9: Generating scenario for varying correlations. 
 
Step 3: Generating scenarios 

Based on the descriptive statistics presented in 
Table 3, we generated 1296 scenarios by using the 
method described in §III B. 

Step 4: Specifying the volume deviation penalty 
function 

The volume deviation risk has a major impact on 
ESP bidding decisions; therefore, the specification of 
the volume deviation penalty function in the 
objective function is necessary. We have chosed to 
work with the piecewise linear penalty function, as 
described in §III A. 
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Step 5: Modeling and solving 
We modeled and solved the linear program using 

GAMS software. A typical problem was solved in 
about 12 seconds on a 1-GHz Pentium III PC with 
524 MB RAM. An example of an optimal bidding 
curve is shown in Fig. 10. This curve has 7 line 
pieces. Also shown is the expected load curve and the 
load-price scenarios.  

By using a price elasticity of demand of =η -0.6, 
Fig. 11 shows the effect of varying the number of 
fixed price points. If the number of price points is 
decreased, the result is a cruder bidding curve. Notice 
also that the bidding curves are cruder at prices that 
are less likely, e.g., above 900 Rls./MWh.  

 
  
 
 
 
 
 
 
 
 
 
 

Fig. 10: An 7 segments bidding curve, expected load curve and 
load scenario 
 
 

 
 
 
 
 
 
 
 
 

Fig.11: Bidding curves with a varying number of fixed price 
points. 

When we do not know what the price elasticity of 
demand will be in a future we have to estimate this 
for the given hour for which a bidding curve is to be 
constructed. Thus, we can construct bidding curves 
with a range of elasticities. 

 
5. CONCLUSION  

In this study, a method of constructing piecewise 
linear bidding curve is designed for each hour of the 
day. We propose a stochastic linear programming 

model and build a bidding curve based on several 
scenarios of MCP. We then considered the ESP's or 
retailer's aversion to the volume deviation risk to 
offer for each hour according to their risk attitude. 
The important suppositions of this work are the rules 
of day ahead market, end users with price sensitive 
demand, price taking retailer and making use of two 
way communication technology. 

The mention for other factors causing retailer 
object function is left for future work. For example, 
encouragement consumers to participate in electricity 
trading by demand side bidding rules can make a 
supplier alternative for retailer. This could enable 
electricity prices to be reduced in the short term. 
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