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Abstract: This paper presents a method of managing interest rate portfolios with constrained sensitivities.The
problem is formulated as a stochastic control portfolio optimization problem. The method is general enough
so that it can applied equally well to trading and to risk managemnet level in a systematic way.The constraints
imposed on the portfolio sensitivities (greeks) must be met at all times so that optimal positions do not contribute
to unwanted risks. The method is dynamic by its nature and it can be used in a bottom up way so that additional
VAR or CVAR constraints can be imposed as well.
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1 Introduction

In this paper we present a method of managing port-
folios of interest rate derivatives with specific risk-
return characteristics. The derivatives can be any in-
terest rate derivative instrument such as bonds, caps,
floors, interest rate swaps, swaptions, constant ma-
turity swaps, etc. This is accomplished through the
maximization of portfolio value subject to constrained
imposed on the portfolio sensitivities throughout the
portfolio horizon. It is a special case of the broader
case of maximization of expected utility of ternminal
wealth of a portfolio of interest rate derivative instru-
ments with constrained sensitivities1. Various papers
try to tackle the portfolio maximization problem either
under stochastic interest rate (but with no constraints
imposed on portfolio value [18]) or with constraints
imposed as expressed on value at risk [5],[4],[19] but
with no explicit reference to the nature of the assets
in the portfolio. The design of derivative portfolios
with controlled risk-return characteristics has been
of major importance especially in the interest rate
area. We believe that the exact risk-return quantifi-
cation (through constraints on the portfolio sensitivi-
ties and on the minimum portfolio appreciation rate)
gives us the right means to construct portfolios with

1A detailed treatment of the portfolio problem in the interest
rate area with constraints in the sensitivities exists in [11] [12] or
in risk arbitrage setting in [8]

predetermined level of risk over their entire horizon
and can achieve a maximum possible level of return
given the risk preferences of the individual trader2.
In this sense this method is analogous to the classical
mean-variance methods applied to stocks (Markowitz,
[15]). The method described is useful to risk man-
agement in order to quantify exactly the risk limits of
the relevant proprietary desks, and to the proprietary
desks themselves where risk taking is a normal part
of the trading procedure. Also the method can be har-
moniously combined with modern VAR and CVAR
techniques([22],[23]) for better risk monitoring of a
bank’s derivative portofolio.
The problem is formulated as a portfolio maximiza-
tion problem (Merton,[17]), with the additional char-
acteristics that interest rate derivatives instead of pri-
mary securities are involved, and that constraints on
the portfolio positions are time and state dependent.
Employing the usual stochastic control methodology
([3]) , the utility function can be any continuous well
behaved function so for practical reasons we choose
the linear one (in essence we maximize the portfo-
lio value). The algorithm proposed to solve the above
problem is based directly on the discretization of the
interest rate derivative securities. In practical terms
this corresponds to the discretization of the interest
rate, since the derivative securities and their sensitiv-

2In this paper we do not distinguish the preferences of an in-
dividual trader from the preferences of the bank.
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ities are calculated on each node of the interest rate
discretization scheme. It has features borrowed from
the stochastic control algorithms (Kushner, [13]), and
from algorithms used for portfolio optimization on
trees [7, 6]3.
The salient characteristic of the algorithm is that we
no longer need an explicit discretization of the portfo-
lio value. Furthermore, the algorithm averts the need
to solve the problem for all possible initial portfolio
values (a usual characteristic of control problems), but
only for the given initial portfolio wealth. So the ex-
ecution time of the algorithm is significantly reduced
relative to such control algorithms. The algorithm is
based on the construction of a Markov chain to ap-
proximate the portfolio process by matching the port-
folio drift and variance at each node of the discretiza-
tion scheme, and ultimately reduces to a single Non-
Linear maximization Program (NLP).
Thus, instead of having many NLPs to solve (a feature
encountered in stochastic control dynamic program-
ming algorithms) we have one NLP but with several
variables.
The paper is organised as follows: In the next section
the necessary mathematical apparatus is briefly devel-
oped. In Section 3 control problem is formulated and
the algorithm is developped. In section 4 a specific
numerical example based on the widely used Hull and
White trinomial interest rate model is presented. Con-
clusions follow in Section 5.

2 Preliminaries
We assume that the horizon of the portfolio isT >
0.We assume that the rate market is governed by the
Ito type diffusion4

dr = µr(r(t), t)dt + σr(r(t), t)dw(t) (1)

where r = r(t) is the short rate,µr(r(t), t) and
σr(r(t), t) are the instantaneous drift and standard
deviation of the rate respectively andw(t) is a
one-dimensional standard Brownian motion which
generates the augmented right continuous filtration
Ft, ∀t ∈ [0, T ] in the complete probability space
(Ω,F ,P).
The interest rate market is assumed to be complete
[10]. More precisely we assume the existence of a
generic pure discount bondB(r(t), t) with maturity
greater thanT , that “spans” the derivative market. We

3applications of stochastic control exist in many other areas
such as electrical enginnering ([24])

4This is assumed only for reasons of simplicity. In fact our
method can be applied equally well for any type of interest rate
model that is able to value interest rate derivative securities such
as the widely used family of Libor Market Models [20]

assume that we haveN interest rate derivative securi-
ties depending on the rater with maturities at leastT .
The vector of derivatives is denoted by

F (t, r(t)) = [F1(t, r(t)), · · · , FN (t, r(t))]>.

whereFi(t, r(t)) denotes the price of theith deriva-
tive at timet. The derivative security vector may rep-
resent any derivative depending on the rater or on the
bond such as bonds, swaps, swaoptions,constant ma-
turity swaps, caps, floors, european and/or american
options depending on the rater, or on the bond, etc.
(In the following we may suppress ther(t) and/or the
t from the functional expression of the derivatives ac-
cording to our needs).
We denote the vector payoff rate per unit of time by
g(r(t), t) with the understanding that if theith claim is
American, then the corresponding entry in the vector
will be zero after the stopping timeτ i

0
5. The terminal

payoff rate is denoted by theIRN vectorf(r(t), t).
We define thevalue process of the portfolio for an ini-
tial investmentv to be the process given by the strong
solution of the linear stochastic differential equation

dV (v,θ)(r(t), t) = θ>(t)dF (r(t), t)+
(V (v,θ)(r(t),t)−θ>(t)F (r(t),t))

D(t) dD(t)+

θ>(t)g(t)dt

(2)

The initial condition of the above S.D.E. is
V (v,θ)(r(0), 0) = v.
It is easy to see that the value process consists of po-
sitions in the securities and in the “locally riskless”
bondD(t) 6. From the above S.D.E. we can deduce
that the trading strategies (or equivalently the portfolio
positions) are self-financing. Throughout this paper
we impose the condition thatV (v,θ)(r(t), t) ≥ 0 ∀t ∈
[0, T ]. This condition rules out arbitrage. The set
of all strategies (or equivalently portfolio processes)
such that the corresponding value process satisfies:
a. V (v,θ)(r(0), 0) = V (v,θ)(r(0), 0) = v

b. V (v,θ)(r(t), t) ≥ 0 ∀t ∈ [0, T ]
is calledadmissible for the portfolio F and is sym-
bolised byA(T, v). From now on the portfolio drift
will be denoted byµ(t, V (t), θ(t)) and the portfolio
variance byσ(t, V (t), θ(t)). Usually the bank (and of
course the individual interest rate traders) would like
to construct ”near” risk-free or risk-constrained port-
folios. So the ideal situation would be to construct
a portfolio in such a way that the risk-sensitivities of
the whole portfolio would be constrained at the ap-
propriate level over thewhole horizon of the portfo-
lio. In other words, the problem amounts to the choice

5τ i
0 is the optimal exercise time of theith derivative. If the

derivative is European this is the expiration time
6D(t) = 1

β(t)
= exp(

∫ t

0
r(s)ds)
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of controls (portfolio positions) in order to have con-
strained portfolio delta, gamma and theta and at the
same time restrict the portfolio growth from falling
below a desired level. This has to be done whatever
the state of the world is, or in mathematical terms “al-
most surely”. Now we quantify the above ideas: We
define the portfolio delta (∆), portfolio Gamma (Γ),
portfolio theta (Θ) to be the weighted sum of deltas,
gammas and thetas of the individual derivatives re-
spectively as follows7:

∆(F,B, θ)(t) = θ>(t)FB(B(t))

Γ(F,B, θ)(t) = θ>(t)FBB(B(t))

Θ(F, θ)(t) = θ>(t)Ft(t)

It is a matter of preference whether we express the
portfolio sensitivities with respect to the rate or the
bond8. Short sale constraints and frictions in the mar-
ket. For instance, it may be known that at a future
datet1, only a limited numberKt1 of derivatives of
type i will be available in the market. The constraint
can be described by the inequalityθi(t1) ≤ Kt1 ,
almost surely. We use two functions to encapsu-
late all the different kinds of anomalies or constraints
imposed by the bank itself: all constraints in the
form of an equality can be described by theIRN1-
valued functionG(t, F (t), Z(t), θ(t)) = 0 and all
constraints that can be written in the form of an in-
equality can be described by theIRN2-valued function
L(t, F (t), Z(t), θ(t)) ≤ 0. So we can define the risk
sensitivity setU(F, t)

U(F, t) =






θ(t) ∈ IRN ,

|∆(F, B, θ)(t)| ≤ fδ(t)
|Γ(F, B, θ)(t)| ≤ fγ(t)
Θ(F, B, θ)(t) ≥ fθ(t)
A(F, r, θ)(t) ≥ fA(t)

G(t, F (t), Z(t), θ(t)) = 0
L(t, F (t), Z(t), θ(t)) ≤ 0






.

(3)
The control setsU(F, t) are assumed to be nonempty

closed convex sets ofIRN 9. We define the setK ={
θ(t) ∈ IRN : θ(t) ∈ U(F, t), m[0,T ] ⊗ P − almost surely

}
10.

7Fx, Fxx denote respectively the vector of first and second
partial derivative ofF with respect to the scalarx

8Throughout this paper we calculate the portfolio gamma and
delta as derivatives with respect to the bond price rather than with
respect to the underlying short rate. We find that more intuitive
appealing since a bond is a traded instrument. But there are situa-
tions where portfolio sensitivities defined with respect to a bench-
mark rate (e.g. LIBOR) are more appropriate.
Also in a multifactor interest rate model the portfolio delta is a
matrix since in that case we have more than one bond that spans
the market, and the portfolio gamma is a tensor.

9This is assumed in order that the theoretical existence of the
solution of the problem to be guaranteed. More details exist in
Kiriakopoulos [11], Chapter 3.

10m[0,T ] denotes the Lebesgue measure in the interval[0, T ]

We seek portfolio strategies that maximizes the expected
utility of terminal wealth and belong to theU(F, t)11.
Despite the fact that the unrestricted optimal portfolio
strategies are not unique, we restrict ourselves to the
optimal portfolio strategies that belong to the setU(F, t).
Provided that the functionsfδ(t), fγ(t), fθ(t), fA(t) are
not chosen such that the setU(F, t)

⋂
Â(T, v) is empty,

we can have optimal portfolio strategies that reflect the risk
management objectives and constraints set by the bank,
the bank regulators and the market, over the whole horizon
of the portfolio life.

3 Problem Formulation and Algo-
rithm Presentation

This algorithm maximizes the expected terminal wealth
subject to constraints on the portfolio sensitivities and to
other constraints imposed by trading desks or by risk ran-
agement. One of theN derivatives may be the cash ac-
count itself. The reason that we have incorporated the cash
account into the vector of derivatives is that this gives us
greater flexibility. One might question the necessity of a
cash account given that the algorithm is intended for use
in a trading environment, where usually there is not an ex-
plicit cash account as such, but instead short term money
market instruments (like deposits or Treasury Bills). It is
clearly the case that for the cash account the derivative that
represents will have zero volatility term. We assume that
the trader has a utility of terminal wealthU(V ).
We have the maximization program:

max
θ∈A′(T,v)

⋂
K

E[V (v,θ(T ))]

subject to

E[ξ(T )V (v,θ)(T )] ≤ v

where

A′(T, v) = {θ ∈ A(T, v), E[(V (v,θ)(T )] < ∞}

whereξ(t) is the state price deflator12

Also we assume that the linear equation 2 has a unique,
strong solution for every initial conditionv > 013.

11Since it has been implicitly assumed that the number of
derivative securities is greater than the number of Brownian mo-
tions that spans the interest rate market, the unrestricted problem
of utility maximization of terminal portfolio wealth has more than
one solution ([11], Chapter 1). The set of the optimal portfolio
strategies for the unrestricted problem is denoted byÂ(T, v).

12ξ(t) = β(t)Z(t). If a(t) is the usual market price of risk

([21])thenZ(t) = exp
(
−

∫ t

0
a(s)dw(s) − 1

2

∫ t

0
a2(s)ds

)
.

13In this paper we do not discriminate between original and
equivalent martingale measure,and consequently between original
w(t) Brownian motion and equivalent ”risk-neutral” one. This is
something which is very common in the financial literature for
valuing derivative securities.We make the optimization in the real
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Figure 1: The branching process

We assume that we have an-nomial non-recombining tree
for the discretization of the rate14. So the node(i, j)
represents the ordered pair(i∆t, rij), where∆t > 0 is
the time approximation step, andrij is the approximat-
ing value of the rate. The value of the derivative vector
at this node is denoted byFij

15. The probabilities ema-
nating from this node to then nodes(i + 1, k1), · · · , (i +
1, kn) at time (i + 1)∆t are denoted respectively by
pr(i, j, k1), · · · , pr(i, j, kn) and the probability ofbeing at
node (i, j) is denoted bypr(i, j) (Figure 1). As usual,
(0, 0) is the starting node (and sopr(0, 0) = 1) with ini-
tial rater00 = r0 and portfolio budgetv. Also the portfolio
horizon is assumed to beT = M∆t. At each node of the
tree we introduce anIRN -valued vectorθij that represents
the position in the derivatives at that particular node. So

θij =




θ1,ij

...
θN,ij





whereθk,ij is the position in thek-derivative at node(i, j).
Let us assume that from the node(i, j) the n nodes that
emanate havey coordinates belonging to the setKij . We
useKi to denote the set of all they coordinates of the nodes
at timei∆t.
The expected terminal wealth is

∑

k∈KM

pr(M, k)VMk, (4)

world since we do not primarily interested in valuing securities
but in finding optimal portfolios

14In general if our state variable isk-dimensional, then it can
be approximated by ank + 1-dimensional Markov process. So
for interest rate models withk bonds that span the interest rate
market, the tree that we use isk + 1-nomial, [1, 2, 6, 7].

15In general, if we have a variablex its value at the node(i, j)
is denoted byxij .

and our objective is to maximize it. Since the solution of
the portfolio value S.D.E. [2] is a Markov process, the local
consistency condition [14], page 71, for the mean of the
portfolio equationV becomes:

∑

k∈Kij

pr(i, j, k)
[
V(i+1)k − Vij

]
= µ(i∆t, Vij , θij)∆t,

∀(i, j), i = 0, · · · , M − 1, j ∈ Ki.
(5)

The local consistency equation for the portfolio variance
becomes
∑

k∈Kij
pr(i, j, k)

[
V(i+1)k − Vij

]2
− {µ(i∆t, Vij , θij)∆t}

2

= σ2(i∆t, Vij , θij)∆t,
∀(i, j), i = 0, · · · , M − 1, j ∈ Ki.

(6)

Also at each node(i, j) the portfolio value is equal
to the portfolio position times the price of the appropriate
interest rate derivative plus the payoff of the derivative at
that node. So, we have

Vij = θ>ij [Fij + gij ] , ∀(i, j) : i = 0, · · · , M, j ∈ Ki.
(7)

The budget constraint isV00 = v > 0, wherev is any
positive number. Thus, from equations [4, 5, 6, 7] we
have the maximization program on the discretization tree
The result of this non-linear optimization program is the
portfolio positionsθij , i = 0, · · · , M , j ∈ Ki at each
node of the tree, so that the portfolio value is maximised
in a way consistent with our risk preferences (expressed
through control setsU(Fij , i∆t)). We note that the
portfolio position is chosen so that the risk limits imposed
by risk management hold almost surely, that is to say, at
every node of our tree. We also observe that when the
utility function has a linear form, then our problem reduces
to the maximization of terminal wealth of our portfolio.
Finally we note that the above is a non-convex optimization
problem[16]. In most practical applications, where we
are interested only in the maximization of portfolio value,
convexification is possible due to the quadratic nature of
the local variance consistency constraints.

4 Numerical Results

In the implementation of the above algorithm, the inter-
est rate model that we have used is the generalised model
of Hull and White [9]. A feature of this model is that
that it fits the initial term structure and the initial volatil-
ity structure of interest rates. The volatility of the short rate
is assumed to have the functional form beσr(t, r(t)) =
σr(0, r(0))r(t)β . The model characteristics are displayed
in Table 1.

The trinomial Hull and White model has been used for
valuing all the derivatives and for calculating all the hedg-
ing parameters in the portfolio. We include in the port-
folio the following twelve types of interest rate derivative

Proceedings of the 9th WSEAS International Conference on SIMULATION, MODELLING AND OPTIMIZATION

ISSN: 1790-2769 220 ISBN: 978-960-474-113-7



Declining Initial Term and Volatility Structure

Time Horizon(M) 20
Time Step(∆t) 1

β 1
Rate at timei∆t 0.1(1 − (i∆t)/300)

Volality at timei∆t 0.14(1 − (i∆t)/300)

Table 1: Yield curve characteristics

securities: bonds, swaps, European and American calls on
a bond, European and American puts on a bond,European
and American payer’s swaoptions, European and American
receiver’s swaoptions, caps and floors16. We assume that
the utility function is logarithmic i.e.U(x) = ln(x). For
simplicity we have assumed that the portfolio sensitivity
bounds are constant. They are given in Table 2. Also we
have not specified minimum local appreciation constraints.

Risk Limits
Delta limit (∆) 0.513483

Gamma limit(Γ) 0.315038
Theta limit(Θ) 5.420731

Table 2: Portfolio risk profile

The portfolio positions17 in the derivative securities
are assumed to be in the interval[−10, 10].
Our portfolio horizon is 7 periods and the number of nodes
used for the optimization is 57. The total number of vari-
ables introduced is 684. The portfolio budgetv is equal
$103.5. Results are shown in figures 2,3,4,5

From the figures above we can see that the optimal
portfolio greeks are within the boundaries set in table 2.

5 Conclusion
In this paper we have designed a tree-based algorithm for
the problem of maximizing the expected value of a deriva-
tives portfolio subject to constraints on the portfolio sen-
sitivities. Its main advantage is that it does not require an-
other discretization axis for the portfolio value. Instead, us-
ing the local consistency conditions, it discretizes the port-
folio S.D.E. on the existing tree structure. The algorithm
is flexible enough so that various interest rate models can
be used so that the interest derivative claims can be valued.
The various LP’s is very easy to solve and the optimal port-
folios can have the required risk/return characteristics set
by the trading desks or the risk management of the bank.

16The derivatives characteristics are available from the authors
upon request

17in numbers
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Figure 2: Optimal Portfolio Value
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